Seminário Júnior

Universidade Federal do Rio de Janeiro, 2020

Medidas observáveis

Diego A. S. Sanhueza *

Quarta-feira 17 de Junho - Horário 17:00h.

Resumo

Dada uma função contínua $f:X\to X$ sobre um espaço métrico compacto, uma medida de Borel de probabilidade μ é f-invariante se $\mu(f^{-1}(A))=\mu(A)$ para todo boreliano $A\subseteq X$. É bem sabido que o conjunto de medidas f-invariantes é convexo e não vazio e, munido com a topologia fraca estrela, é métrico e compacto. Para $x\in X$, δ_x é a medida suportada em x. Definem-se então as $medidas\ emp\'iricas$ ao longo da órbita de x como

$$\mathcal{E}_n(x) = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}, n \ge 1.$$

Os pontos de acumulação da sequência $\{\mathcal{E}_n(x)\}_{n\geq 1}$ são medidas f-invariantes e formam um conjunto conexo, compacto e não vazio. Se X é uma variedade, uma medida é dita *física* se

$$G_{\mu}(f) = \{x \in X : \mathcal{E}_n(x) \to \mu\}$$

tem medida de Lebesgue positiva. Mais geralmente, uma medida é dita **observável** se o conjunto $G_{\mu}(\varepsilon) = \{x \in X : \overline{d}(\mathcal{E}_n, \mu) < \varepsilon\}$ tem medida de Lebesgue positiva, para todo $\varepsilon > 0$.

Neste seminário falaremos sobre a estrutura do espaço de medidas observáveis. Também veremos algumas caracterizações e exemplos de tais medidas.

Referências

[1] Catsigeras, E. and Enrich, H., SRB-like measures for C^0 dynamics, Bull. Pol. Acad. Sci. Math., **59** (2), 2011. p. 151–164.

^{*}Contato: sanhueza.diego.a@gmail.com