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Resumo

Nesse trabalho, provamos uma série de resultados sobre as propriedades de
controle e estabilização para uma classe de sistema Boussinesq que acopla
duas equações do tipo Benjamin-Bona-Mahony. Inicialmente, consideramos
o sistema num intervalo limitado e mostramos que este não é espectralmente
controlável se os controles atuarem num extremo do intervalo. No entanto,
pode-se mostrar que é aproximadamente controlável. Em seguida, quando o
modelo é considerado em um domínio periódico, propomos vários mecanismos
dissipativos que nos levam a sistemas para os quais todas as trajetórias são
atraídas pela origem desde que a continuação única de soluções fracas seja
válida. Finalmente, os problemas de controle e estabilização são abordados
para um sistema Boussinesq de ordem superior, em um domínio periódico.
As propriedades de estabilidade são demonstradas quando operadores dissi-
pativos generalizados são introduzidos em cada equação. Mais precisamente,
as soluções do sistema linearizado decaem uniformemente ou não para zero,
dependendo dos parâmetros desses operadores. No caso de decaimento
uniforme, mostramos que a mesma propriedade é válida para o sistema não
linear. No que diz respeito às propriedades de controle, se apenas um único
controle interno for usado, a controlabilidade exata é estabelecida através do
Hilbert Uniqueness Method. Se considerarmos dois controles, obtém-se um
resultado de controlabilidade exato mais forte usando o método de momentos.

Palavras chave: Controlabilidade, sistema de Boussinesq , equação de
Benjamin-Bona-Mahony, propriedade de continuação única.



i

Abstract

This work is devoted to prove a series of results concerning the control and

stabilization properties for a class of Boussinesq system which couples two

Benjamin-Bona-Mahony type equations. Initially, we consider the system posed

on a bounded interval and show that it is not spectrally controllable if the

controls act at one endpoint of the interval. However, it can be shown that it is

approximately controllable. Next, when the model is posed on a periodic domain,

we propose several dissipation mechanisms leading to systems for which all the

trajectories are attracted by the origin provided that the unique continuation of

weak solutions holds. Finally, the control and stabilization problems are addressed

for a higher-order Boussinesq system, posed on a periodic domain. The stability

properties are proved when generalized damping operators are introduced in each

equation. More precisely, the solutions of the linearized system decay uniformly or

not to zero, depending on the parameters of the damping operators. In the uniform

decay case, we show that the same property holds for the nonlinear system. In

what concerns the controllability properties, if only a single internal control is used,

the exact controllability is established via the Hilbert Uniqueness Method. If we

consider two controls, a stronger exact controllability result is obtained by using

the moment method.

Key words: Controllability, Boussinesq system, Benjamin-Bona-Mahony equation,

unique continuation property.
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Chapter 1

General Introduction

It is common knowledge that nonlinear dispersive wave equations arise as models of var-
ious physical phenomena. Because of the range of their applications, and because their
mathematical properties are interesting and subtle, since the latter half of the 1960s and
in the 1970s the mathematical theory for such equations came to the fore as a major
topic within nonlinear analysis. In what concerns the propagation of unidirectional, one-
dimensional, small-amplitude long waves in nonlinear dispersive media, for example, the
phenomenon is well approximated by the Benjamin-Bona-Mahony (BBM) equation

ut + ux − uxxt + uux = 0.

The equation itself was initially put forward in [3] and [30] as an approximate description
of long-crested, surface water waves and it is an alternative to the classical Korteweg-de
Vries (KdV) equation,

ut + ux + uxxx + uux = 0.

Both models are special cases of a broad class of evolution equations for which the theory
associated to the pure initial-value problem is by now well developed, though there are
still interesting open issues. By contrast, the theory for coupled systems of such equations
is much less developed, though physicists and mathematicians were led to derive sets of
equations to describe the dynamics of the water waves in some speci�c physical regimes.
For instance, in [4, 5] the authors have derived and analyzed a four-parameter family of
Boussinesq systems {

ηt + wx + (ηw)x + awxxx − bηxxt = 0,
wt + ηx + wwx + cηxxx − dwxxt = 0,

(1.1)

to approximate the motion of small amplitude long waves on the surface of an ideal �uid
under the force of gravity in situations where the motion is sensibly two-dimensional.
Here, the variable, x, is proportional to distance in the direction of propagation while t
is proportional to elapsed time. The quantity η(x, t) + h0 corresponds to the total depth
of the liquid at the point x and at time t, where h0 is the undisturbed water depth. The
variable w(x, t) represents the horizontal velocity at the point (x, y) = (x, θh0), at time t,
where y is the vertical coordinate, with y = 0 corresponding to the channel bottom or sea
bed. Thus, w is the horizontal velocity �eld at the height θh0, where θ is a �xed constant
in the interval [0, 1]. The constants a, b, c, d satisfy the consistency conditions

a+ b =
1

2
(θ2 − 1

3
), c+ d =

1

2
(1− θ2) ≥ 0. (1.2)

2
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Contrary to some classical wave models which assume that the waves travel only in one
direction, system (1.1) is free of the presumption of unidirectionality and may have a
wider range of applicability.

1.1 Problems and Main Results

1.1.1 Controllability of the Boussinesq system of BBM-BBM type on a bounded

domain

A major concern on the mathematical side of the study of dispersive wave models has been
to settle the issues of local and global well-posedness for the pure initial-value problem,
and thus pertains to wave motion far from the ends of a channel or for very long-crested
waves in �eld situations. In this context, a natural example arises when modeling the
e�ect in a channel of a wave maker mounted at one end, or in modeling near-shore zone
motions generated by waves propagating from deep water. The mathematical theory
pertaining to the study of such boundary value problem is considerably less advanced,
specially in what concerns the study of the controllability properties. Such properties can
be useful, for example, to see whether the solutions can be driven to a given state at a
given �nal time by means of a control acting on a endpoint of the channel.

In this chapter, we are mainly concerned with the study of the Boussinesq system from
the control point of view. Consideration is given to an initial-boundary-value problem as-
sociated to linearized Boussinesq system (1.1) when the parameters given in (1.2) are such
that a = c = 0. The resulting system couples two Benjamin-Bona-Mahony type equations
and it is called purely BBM-type Boussinesq system. Our attention, in particular, is given
to the following distributed control system:

ηt + wx − bηtxx = 0, x ∈ (0, 2π), t > 0
wt + ηx − dwtxx = 0, x ∈ (0, 2π), t > 0
η(t, 0) = w(t, 0) = 0, t > 0
η(t, 2π) = f(t);w(t, 2π) = g(t), t > 0
η(0, x) = η0(x), x ∈ (0, 2π)
w(0, x) = w0(x), x ∈ (0, 2π).

(1.3)

In (1.3), the external forcing terms f and g are considered as control inputs. The purpose
is to see whether one can force the solutions of the system to have certain desired properties
by choosing appropriate control inputs acting at one end of the channel. More precisely,
we are mainly concerned with the following problems which are fundamental in control
theory:

Given T > 0, initial states (η0, w0) and terminal states (η1, w1) in a certain space, can
one �nd appropriate control inputs f and g so that the system (1.3) admits a solution
(η, w) which satis�es (η(0, ·), w(0, ·)) = (η0, w0) and (η(T, ·), w(T, ·)) = (η1, w1)?

If one can always �nd a control input to guide the system described by (1.3) from
any given initial state to any given terminal state, then the system is said to be exactly
controllable. If any given initial state can be steered to (0, 0), the system is said to be
null controllable.
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Given T > 0, ε > 0, initial states (η0, w0) and terminal states (η1, w1) in a certain
space H, can one �nd appropriate control inputs f and g so that the system (1.3) admits
a solution (η, w) which satis�es ||(η(T, ·), w(T, ·)) − (η0, w0)||H < ε, for a certain space
H?

This means that the set of reachable states is dense in H and, in this case, the system
is said to be approximately controllable.

Observe that exact controllability is essentially stronger notion than approximate con-
trollability. In other words, exact controllability always implies approximate controllabil-
ity. The converse statement is generally false.

Those questions were �rst investigated in [25] where periodic boundary conditions
were considered. The space of the controllable data is determined for each value of
the four parameters a, b, c and d. Then, some simple feedback controls are constructed
for a particular choice of the parameters such that the resulting closed-loop systems
are exponentially stable. Later on, in [9], it was discovered that whether the system
of Boussinesq system of KdV-KdV type (b = d = 0), posed on a interval, is exactly
controllable or not depends on the length of the spatial domain. When the system is
controllable, the authors also proved that the solutions issuing from small data are globally
de�ned and exponentially decreasing in the energy space. A similar result was obtained
in [28].

Concerning the Boussinesq system of BBM-BBM type, the work [26] addresses the
stabilization problem for the linearized system, posed on a bounded interval, when a
localized damping term acts in one equation only. By considering Dirichlet boundary
conditions it was proved that the energy associated to the model converges to zero as
time goes to in�nity. More recently in [27], on periodic domain, the stability properties
was studied by introducing generalized damping operators in each equation. In this case,
whether the solutions of the linearized system decay uniformly or not to zero depend on
the parameters of the damping operators. In the uniform decay case, the same property
holds for the nonlinear system. Let us also mention that a similar problem for the model
posed on the whole real axis was studied in [13].

We begin our analysis by providing a negative result for the �rst problem introduced
above: system (1.3) is not spectrally controllable if (η0, w0) ∈ (H1

0 (0, 2π))2. This means
that no �nite linear nontrivial combination of eigenvectors of the operator associated with
the state equations (A : (H1

0 (0, 2π))2 → (H1
0 (0, 2π))2) can be driven to zero in �nite time

by using controls (f, g) ∈ (H1(0, T ))2. As it will become clear during our proofs, the
bad control property comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed in [24] for
the single BBM equation. To obtain the results we make use of the carefull spectral
analysis developed in [26], which provides important developments to justify the use
of eigenvector expansions for the solutions, as well as, the asymptotic behavior of the
eigenvalues. Therefore, for the sake of completeness, we have included the analysis of [26]
in an Appendix.

Nevertheless, we give a positive answer to the second problem mentioned above, i.e.,
it is possible to show that system (1.3) is approximately controllable for any T > 0. More
precisely, there exist control inputs (f, g) ∈ (H1(0, T ))2 such that the set of reachable
states is dense in (L2(0, 2π))2, for any (η0, w0) ∈ (H−1(0, 2π))2 and T > 0. As in the
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�rst problem, to obtain the results we rely strongly on the carefully developed spectral
analysis in [26] for the operator associated with the state equations. The main idea is
to use the series expansion of the solution in terms of the eigenvectors of the operator in
order to reduce the problem to a unique continuation problem (of the eigenvectors). In
the present case, it can be solved by classical ODE methods.

We point out that a similar problem was studied in [24] for the scalar BBM equation
from which we borrow some ideas. The proofs in [24] make use of the explicit Fourier
series expansion of the solution in terms of the eigenvectors of the di�erential operator
associated to the space variable. This approach does not apply directly in our case, since
the eigenfunctions are not explicit and, therefore, our proofs require further developments.
On the other hand, the program of the present work establish as a fact that model (1.3)
inherits some interesting properties initially observed for the linear BBM equation.

In what concern the nonlinear model, the problem remains open, including for the
BBM equation. At this respect, we note that the controllability properties of nonlinear
systems are usually studied by linearizing the problem at an equilibrium state, by proving
exact controllability results for this linear problem and by applying next the implicit
function theorem. However, taking into account the negative results obtained in this
paper for the linearized model (like nonspectral controllability) it is not possible to study
the controllability properties of the full Boussinesq system of BBM type by using one of
the classical techniques. To our knowledge, the only result on the subject was obtained in
[32] for the BBM equation on the torus T = R/(2πZ). The authors show that, when an
internal control acting on a moving interval is applied in the BBM equation, it is locally
exactly controllable in Hs(T), for any s > 0, and globally exactly controllable in Hs(T),
for any s > 1, in a su�ciently large time depending on the Hs-norms of the initial and
terminal states.

1.1.2 Large time behavior for the Boussinesq system of BBM-BBM type

In all the situations mentioned in the previous sections, it is often important to investigate
the stability properties of the solutions when dissipative e�ects are generated by internal
and boundary damping. The problem might be easy to solve when the underlying models
have a strong enough intrinsic dissipative nature, but very often, as the cases we address
here, the models are of conservative nature and the decay requires appropriate damping
mechanisms. Obviously, for practical purposes, it is desirable to achieve this property
with a minimal amount of damping both in what concerns its support and its intensity.
Moreover, in the context of coupled systems, the damping mechanism has to be designed
in an appropriate way in order to capture all the components of the system. For all these
reasons the right choice of damping terms is far from being obvious and requires a careful
analysis in each particular case.

In this chapter, we investigate such questions when the parameters given in (1.2) are
such that a = c = 0. The resulting system couples two Benjamin-Bona-Mahony type
equations and it is called purely BBM-type Boussinesq system. We consider either a
distributed (localized) feedback law or a boundary feedback law.

We �rst consider the case in which a localized damping mechanism acts in one equation
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of the system: 
ηt + wx − bηtxx = Bη for x ∈ (0, 2π), t > 0
wt + ηx − dwtxx = 0 for x ∈ (0, 2π), t > 0
η(0, x) = η0(x) for x ∈ (0, 2π),
w(0, x) = w0(x) for x ∈ (0, 2π),

(1.4)

where b, d > 0, and B is a linear bounded and positive operator which will be e�ective
only on an open subset ω of the interval (0, 2π). A precise de�nition of the operator B
will be given in the next sections, but in this case (1.4) is closed with periodic boundary
conditions, i. e., {

η(t, 0) = η(t, 2π); ηx(t, 0) = ηx(t, 2π) for t > 0
w(t, 0) = w(t, 2π); wx(t, 0) = wx(t, 2π) for t > 0.

(1.5)

The natural energy associated to (1.4)-(1.5) is given by

E(t) =
1

2

∫ 2π

0

[
b|ηx(t, x)|2 + |η(t, x)|2 + d|wx(t, x)|2 + |w(t, x)|2

]
dx

and if we multiply the �rst equation in (1.4) by η, the second one by w and integrate by
part over (0, 2π), we obtain (at least formally)

dE(t)

dt
= −

∫ 2π

0

Bη(t) η(t)dx. (1.6)

So, the energy decreases along the trajectories of the system.
When B ≡ 0, i.e., in the absence of an internal damping term, we study (1.4) with the

following set of boundary conditions:
ηxt(t, 0) =

w(t, 0)

2b
+ η(t, 0) ; ηxt(t, L) =

w(t, L)

2b
− η(t, L) for t ≥ 0

wxt(t, 0) =
η(t, 0)

2d
+ w(t, 0) ; wxt(t, L) =

η(t, L)

2d
− w(t, L) for t ≥ 0.

(1.7)

In this case, the energy associated to (1.4)-(1.7) satis�es the following energy dissipa-
tion law

dE(t)

dt
= −b

(
|η(t, L)|2 + |η(t, 0)|2

)
− d

(
|w(t, L)|2 + |w(t, 0)|2

)
. (1.8)

Hence, E(t) is decreasing and the boundary conditions play the role of a feedback damping
mechanism.

In each case, we can ask weather E(t) is asymptotically stable, as t→∞. The prob-
lem was �rst addressed in [31] for the scalar BBM equation and the conclusion is that
all trajectories are indeed attracted by the origin provided that the unique continuation
property holds for the conservative equation. We remark that the unique continuation
property for the BBM equation is still an open problem. Moreover, since the underlying
Cauchy problem is a characteristic one, we can not expect to apply Carleman-type esti-
mates or the classical Holmgren uniqueness theorem. In order to overcome this di�culty,
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in [32] the authors introduced a moving control and derived with such a control both the
exact controllability and the exponential stability of the full BBM equation. They also
proved a conditional unique continuation result by assuming that the initial data is small
in the L∞-norm and it has a nonnegative mean value.

The program of the present work is carried out for the particular choice of damping
e�ect entering in (1.6) and (1.8) and aims to establish as a fact that the correspond-
ing models inherit the interesting qualitative properties initially observed by Rosier for
the BBM equation. Following the approach developed in [31], we �rst prove the global
wellposedness of the systems (1.4)-(1.5) and the convergence towards a solution which is
null on a band. Then, from the unique continuation property obtained for �nite energy
solutions of the conservative system, it follows that the origin is asymptotically stable for
the damped BBM-BBM model. Similar conclusions remains valid for system (1.4)-(1.7)
and, as it will become clear during our proofs, the boundary conditions play an important
role and allow us to apply the same unique continuation argument. Here, the proof of
the unique continuation property makes use of the explicit Fourier series expansion of the
solution in terms of the eigenvectors of the di�erential operator associated to the space
variable. Concerning the existence of a solution, it is established by converting (1.4)-(1.5)
and (1.4)-(1.7) into integral equations and applying the contraction-mapping principle.
The regularity then follows from the fact that solutions of the integral equations are ex-
actly as smooth as the data a�ords. At this respect, it is important to note that identities
(1.6) and (1.8) do not provide any global (in time) a priori bounds for the solutions of
the nonlinear system. Consequently, it does not lead to the existence of a global (in time)
solution in the energy space. The same lack of a priori bounds occurs when higher order
Sobolev norms are considered (e. g. Hs−norm). Since the main focus of this paper is on
the asymptotic behavior of the solutions when the time goes to in�nity, a global (in time)
existence result is necessary.

The stabilization problem for the linearized Boussinesq system of BBM-BBM was also
studied in [26], when the model is posed on a bounded interval. By considering Dirichlet
boundary conditions and introducing a localized damping term in one equation it was
proved that the energy associated to the model converges to zero as time goes to in�nity.
In periodic case, the stability properties was studied in [27] by introducing generalized
damping operators in each equation. In this case, weather the solutions of the linearized
system decay uniformly or not to zero depend on the parameters of the damping operators.
In the uniform decay case, the same property holds for the nonlinear system. We also
refer to [25] for a rather complete picture of the control properties of (1.1) on a periodic
domain with a locally supported forcing term. As an application of the established exact
controllability results, some feedback controls are constructed for some particular choice
of the parameters such that the resulting closed-loop systems are exponentially stable.
Later on, the boundary stabilization problem for the Boussinesq system of KdV-KdV
type (b = d = 0) was studied in [28] and [10]. The authors proved that the system is
locally exponentially stable in the energy space for solutions issuing from small data.
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1.1.3 Stabilization for higher-order Boussinesq system with generalized damp-

ing on a periodic domain

Higher-order systems in the form ηt − bηtxx + b2ηtxxxx = −wx − (ηw)x − awxxx − (a+ b− 1
3
)(ηwx)x − a2wxxxxx,

wt − dwtxx + d2wtxxxx = −ηx − cηxxx − wwx − c(wwx)xx − (ηηxx)x
+(c+ d− 1)wxwxx + (c+ d)ηxηxxx − c2ηxxxxx,

(1.9)

were also derived in [4, 5]. These systems are formally second-order approximations of
the full, two-dimensional Euler equations. The constants a, b, c, d, a2, b2, c2, d2 satisfy
(1.2) and

a2− b2 = −1

2
(θ2− 1

3
)b+

5

24
(θ2− 1

5
)2, c2−d2 =

1

2
(1− θ2)c+

5

24
(1− θ2)(θ2− 1

5
), (1.10)

where, as before, θ ∈ [0, 1].
In this chapter, attention is a given to a particular subclass of linear higher-order

regularized long-wave systems that have

b, d, b2, d2 > 0; a, c < 0 or b, d, b2, d2 > 0; a = c ≥ 0. (1.11)

Adding damping mechanisms is often important in obtaining good agreement between
experimental observations and the prediction of theoretical models describing the propa-
gation of waves in nonlinear dispersive media (see, for instance, [7]). To address the issue,
we will consider a general class of damping operator, with nonnegative symbol. Our pur-
pose is to investigate the dissipative e�ects generated by these operators in model (1.9),
posed on a periodic domain. More precisely, we consider the following system

ηt + wx − bηtxx + b2ηtxxxx + awxxx + β1Mα1η = −(ηw)x
−(a+ b− 1

3
)(ηwx)x, for x ∈ (0, 2π), t > 0

wt + ηx − dwtxx + d2wtxxxx + cηxxx + β2Mα2w = −wwx − c(wwx)xx
−(ηηxx)x + (c+ d− 1)wxwxx + (c+ d)ηxηxxx for x ∈ (0, 2π), t > 0
η(0, x) = η0(x) for x ∈ (0, 2π)
w(0, x) = w0(x) for x ∈ (0, 2π),

(1.12)

with the periodic boundary conditions
∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t > 0, 0 ≤ r ≤ 3,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t > 0, 0 ≤ q ≤ 3,

(1.13)

where β1, β2 ≥ 0, α1, α2 ∈ [0, 4], and the operators Mαj are Fourier multiplier operators
de�ned in terms of their Fourier coe�cients as follows:
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Mαj : Hs+4
p (0, 2π)→ Hs

p(0, 2π),

Mαj

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

(1 + k2)
αj
2 âke

ikx (j = 1, 2).
(1.14)

This type of damping was used to describe several dissipative dispersive phenomena (see,
for instance, [8, 12, 19]). The operators Mαj are, in some sense, similar to fractional

derivative operators. Indeed, for a periodic function h(x) =
∑

k∈Z∗ ake
ikx, the Weyl

fractional derivative operator of order α ≥ 0 applied to h is de�ned by (see [34])

Wα
x h(x) =

∑
k∈Z∗

(ik)αake
ikx.

Consequently, the Fourier coe�cients of Mαh and Wα
t h behave in the same manner for

large k.
With the notation introduced above, we consider the operator H as follows

H

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

√
w1

w2

âke
ikx,

where w1 = 1−ak2
1+bk2+b2k4

and w2 = 1−ck2
1+dk2+d2k4

. Then, the energy associated to (1.12)-(1.13)
is given by

E[η, w](t) =

∫ 2π

0

(∣∣(I − b∂2
x + b4∂

2
x)

1/2η(t, x)
∣∣2 +

∣∣(I − b∂2
x + b4∂

2
x)

1/2Hw(t, x)
∣∣2) dx,

(1.15)

and, we obtain (see (4.63))

d

dt
E[η, w](t) ≤ −β1‖η‖2

H
α1
2
p (0,2π)

− Cβ2‖w‖2

H
α2
2
p (0,2π)

−
∫ 2π

0

(ηw)x(t)η(t)dx

− (a+ b− 1

3
)

∫ 2π

0

(ηwx)x(t)η(t)dx− c
∫ 2π

0

(wwx)xx(t)w(t)dx−
∫ 2π

0

(ηηxx)x(t)w(t)dx

+

∫ 2π

0

(c+ d− 1)wxwxx(t)w(t)dx+ (c+ d)

∫ 2π

0

ηxηxxx(t)w(t)dx. (1.16)

Inequality (1.16) shows that, if β1, β2 ≥ 0, the terms Mα1η and Mα2w play the role of
feedback damping mechanisms. For the linearized system we obtain that the energy (1.6)
is non increasing. However, for the full system (1.12) the right hand side of (1.16) does not
have a de�nite sign. Therefore, the study of the asymptotic behavior of solutions becomes
a more di�cult task. The following questions arise: Does E(t) → 0, as t → ∞? If it is
the case, can we give its decay rate? The same questions can be addressed concerning the
behavior of the Hs−norm (the Sobolev norm of order s ∈ R) of η and w.

Firstly, we analyze the linearized system. Through a detailed spectral analysis, we
obtain the following results:
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• If α1 = α2 = 4 and β1, β2 > 0, we prove the exponential decay of solutions in the
Hs-setting, for any s ∈ R, and (η0, w0) ∈ Hs ×Hs (see Theorem 4.1.5).

• If max{α1, α2} ∈ [0, 4), β1, β2 ≥ 0 and β2
1+β2

2 > 0, we obtain a polynomial decay rate
of solutions in the Hs-setting, by considering smoother initial data, more precisely,
(η0, w0) ∈ Hs+q ×Hs+q, for q > 0 (see Theorem 4.1.6).

Secondly, the exponential decay estimate obtained in the �rst case is combined with
the contraction mapping theorem in a convenient weighted space to prove the global well-
posedness together with the exponential stability property of the nonlinear system (1.12)
by considering small data (see Theorem 4.2.1).

As pointed out in section 1.1.2, the problem was only addressed in [26] when b2 =
d2 = a = c = 0.

1.1.4 Controllability for higher-order linear Boussinesq system on a periodic

domain

The main task of this chapter is to study the controllability for system (1.9) by means of
some localized control actions. More precisely, we will consider the following nonhomoge-
neous systems{

ηt + wx − bηtxx + b2ηtxxxx + awxxx + a1wxxxxx = f(t, x) for x ∈ (0, 2π), t > 0,
wt + ηx − dwtxx + d2wtxxxx + cηxxx + c1ηxxxxx = g(t, x) for x ∈ (0, 2π), t > 0,

(1.17)
with the periodic boundary conditions

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t > 0, 0 ≤ r ≤ r0,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t > 0, 0 ≤ q ≤ q0

(1.18)

and the initial conditions

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π). (1.19)

The number of a boundary conditions depends on the values of the parameters. The
forcing functions f(t, x) and g(t, x), which will be considered as control inputs, are as-
sumed to be supported in ω, a nonempty open subinterval of a (0, 2π). We will be mainly
interested in the following problem for system (1.17)-(1.19).

Problem (Exact controllability): Given T > 0, the initial state (η0, w0) and the terminal
state (η1, w1) in a appropriate space, can one �nd controls f and g in a suitable space such
that (1.17) admits a unique solution (η(t, x), w(t, x)) satisfying the boundary conditions
(1.18) and

(η(0, x), w(0, x)) = (η0, w0), (η(T, x), w(T, x)) = (η1, w1)?
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Depending on the values of its parameters, system (1.17) couples two equations that
may be of KdV or BBM types of orders 5. It is therefore interesting to see to which extent
the controllability properties of each equation are maintained. It is not unusual that in
the �rst case (KdV case) some good controllability properties are proved whereas in the
second case (BBM case) there are no such controllability properties. What happens in
the last case is a priori less clear. We will however prove that the system is controllable
in that case. Di�erent approaches will be used to establish the exact controllability
depending on whether we employ a single control input or two control inputs. If only a
single control action is used, the exact controllability will be established via the Hilbert
Uniqueness Method (HUM) (cf. [20]). If both control actions are used, a stronger exact
controllability result will be obtained by using the classical moment method (cf. [33]).
Our analysis is inspired by the results obtained in [25], where the same problem was
studied by considering b2 = d1 = a1 = c1 = 0 in (1.17)-(1.19). Summarizing, our main
results read as follows:

• Assume that the parameter a1 6= 0 and T > 2π
γ
, where γ will be de�ned later. Let

s ∈ R and de�ne n1 by

n1 =

 2, if b2 = 0, b 6= 0,
0, if b2 = b = 0,
4, if b2 6= 0.

Then, for any given initial state (η0, w0) and the terminal state (η1, w1) in [Hs
p(0, 2π)]2,

there exist (f, g) ∈ [L2(0, T ;Hs−n1
p (0, 2π))]2, such that the system (1.17)-(1.19) ad-

mits a unique solution (η, w) ∈ [C([0, T ];Hs
p(0, 2π))]2 satisfying

η(T, ·) = η1(·) and w(T, ·) = w1(·) in Hs
p(0, 2π).

(see Theorem 5.2.1).

• Assume that b2 = d1 = b = d = 0. Then, there exist a time T > 0 and a subspace
V ⊂ L2

p(0, 2π)×Hs
p(0, 2π), de�ned in Theorem 5.3.3, such that, for given

(η0, w0) ∈ V , (ηT , wT ) ∈ V ,

one can �nd a control input f ∈ L2((0, T ) × (0, 2π)), such that (1.17)-(1.19) with
g = 0 admits a unique solution

(η, w) ∈ C([0, T ];V)

satisfying
(η(T, ·), w(T, ·)) = (ηT , wT ) in V .

(see Theorem 5.3.3).



Chapter 2

Controllability of the Boussinesq

system of BBM-BBM type on a

bounded domain

In this chapter we are concerned with a Boussinesq system of Benjamin-Bona-Mahony
type equation, posed on a bounded interval, modelling the the two-way propagation of
surface waves in a uniform horizontal channel �lled with an irrotational, incompressible
and inviscid liquid under the in�uence of gravitation. The main focus is on the boundary
controllability property, which corresponds to the question of whether the solutions can
be driven to a given state at a given �nal time by means of controls acting at one endpoint
of the interval. We �rst show that the equation is not spectrally controllable. This means
that, no �nite linear combination of eigenfunctions associated to the state equations, other
than zero, can be steered to zero. Although the system is not spectrally controllable it can
be shown that it is approximately controllable, i.e., any state can be steered arbitrarily
close to another state. It gives the possibility of steering the system to the states which
form the dense subspace in the state space.

2.1 Global well-posedness

In this section we present the well-posedness results needed to study the control system
(1.3). We state results for both homogeneous and nonhomogeneous system.

2.1.1 The homogeneous system

Let us �rst consider the homogeneous system

ηt + wx − bηtxx = 0, x ∈ (0, 2π), t > 0
wt + ηx − dwtxx = 0, x ∈ (0, 2π), t > 0
η(t, 0) = η(t, 2π) = 0, t > 0
w(t, 0) = w(t, 2π) = 0, t > 0
η(0, x) = η0(x), x ∈ (0, 2π)
w(0, x) = w0(x), x ∈ (0, 2π).

(2.1)

12
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System (2.1) can be written as an abstract evolution equation in (H1
0 (0, 2π))2 as follows{

Ut +AU = 0
U(0) = U0,

(2.2)

where U =

(
η
w

)
, U0 =

(
η0

w0

)
∈ (H1

0 (0, 2π))2 and A is the operator associated to the

state equations and belongs to L((H1
0 (0, 2π))2):

A =

 0 (I − b∂2
x)
−1
∂x

(I − d∂2
x)
−1
∂x 0

 . (2.3)

Recall that, for α > 0, the operator (I − α∂2
x)
−1 is de�ned in the following way:

(I − α∂2
x)
−1ϕ = v ⇔

{
v − αvxx = ϕ

v(0) = v(2π) = 0.

Then, if ϕ ∈ L2(0, 2π), we have that there exists a unique v ∈ H2(0, 2π) ∩ H1
0 (0, 2π)

verifying the above equation and (I − α∂2
x)
−1 : L2(0, 2π) → L2(0, 2π) is a well-de�ned,

compact operator.
From the classical semigroup theory we have the following well-posedness result:

Theorem 2.1.1. Let b, d > 0. For any U0 ∈ (H1
0 (0, 2π))2, system (2.1) has a unique

classical solution U ∈ C(R; (H1
0 (0, 2π))2). Moreover, U ∈ Cω(R, (H1

0 (0, 2π))2), the class
of analytic functions in t ∈ R with values in H1

0 (0, 2π).

Proof. According to Theorem 6.2.2 of the Appendix 6.2, the operator A is skew-adjoint
and, therefore, generates a group of isometries {S(t)}t∈R in (H1

0 (0, 2π))2, which allows us
to obtain the well-posedness result. The second part of the theorem follows from the fact
that A is a compact operator in (H1

0 (0, 2π))2 (see, for instance, [Theorem 11.4.1, Chap.
XI in [17]]).

2.1.2 The nonhomogeneous system

In this subsection, attention will be given to the full system (1.3). We begin with the
following result:

Theorem 2.1.2. Let b, d > 0. For any

(
η0

w0

)
∈ (H1

0 (0, 2π))
2
and

(
f
g

)
∈ (C2

0(0,∞))
2

system (1.3) has a unique solution U ∈ C([0,∞; (H1
0 (0, 2π))2).

Proof. Let φ1, φ2 ∈ C∞([0, 2π]) be functions, such that φ1(0) = φ2(0) = 0 and φ1(2π) =
φ2(2π) = −1. If we consider the change of functions(

z
ϕ

)
=

(
η
w

)
−
(
u
v

)
+

(
f(t)φ1(x)
g(t)φ2(x)

)
, (2.4)
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where

(
u
v

)
∈ C([0,∞); (H1

0 (0, 2π))2) is the solution of the system
ut + vx − butxx = 0, x ∈ (0, 2π), t > 0
vt + ux − dvtxx = 0, x ∈ (0, 2π), t > 0
u(t, 0) = v(t, 0) = 0, t > 0
u(t, 2π) = v(t, 2π) = 0, t > 0
u(0, x) = η0(x), v(0, x) = w0(x), x ∈ (0, 2π),

(2.5)

given by Theorem 2.1.1, the pair

(
z
ϕ

)
solves the problem

zt + ϕx − bztxx = F, x ∈ (0, 2π), t > 0
ϕt + zx − dϕtxx = G, x ∈ (0, 2π), t > 0
z(t, 0) = ϕ(t, 0) = 0, t > 0
z(t, 2π) = ϕ(t, 2π) = 0, t > 0
z(0, x) = ϕ(0, x) = 0, x ∈ (0, 2π),

(2.6)

where(
F (t, x)
G(t, x)

)
=

(
f ′(t) (φ1(x)− bφ′′1(x)) + g(t)φ′2(x)
g′(t) (φ2(x)− dφ′′2(x)) + f(t)φ′1(x)

)
∈ [C([0,∞]× [0, 2π])]2 .

With the notation introduced in the previous section, system (2.6) can be written as an
abstract evolution equation as follows{

Wt +AW = H
W (0) = 0,

whereW =

(
z
ϕ

)
andH = A0

(
F
G

)
∈ L1 (0,∞; (H1

0 (0, 2π))2), beingA0 : (H1
0 (0, 2π))2 −→

(H1
0 (0, 2π))2 de�ned by

A0 =

 (I − b∂2
x)
−1

0

0 (I − d∂2
x)
−1

 . (2.7)

Since A generates a group of isometries in (H1
0 (0, 2π))2 we have that system (2.6) has a

unique solutionW =

(
z
ϕ

)
∈ C ([0,∞);H1

0 (0, 2π)). Then, returning to (2.4) we conclude

the proof.

Using the previous well-posedness results we will study solutions of the system (1.3)
in the sense of transposition:

Definition 2.1.1. Let

(
η0

w0

)
∈ (H−1(0, 2π))

2
and

(
f
g

)
∈ (H1(0, T ))

2
. A solution

(by transposition) of the system (1.3) is a pair

(
η
w

)
∈ L2(0, T ; (L2(0, 2π))2), such that,
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any

(
h
k

)
∈ L1(0, T ; (L2(0, 2π))2), satis�es

∫ T

0

∫ 2π

0

(ηh+ wk) dxdt+

〈(
η0

w0

)
,

(
u(0)
v(0)

)〉
(H−1(0,2π))2,(H1

0 (0,2π))
2

= −b
∫ T

0

f(t)uxt(t, 2π)dt−

− d
∫ T

0

g(t)vxt(t, 2π)dt, (2.8)

where

(
u
v

)
is solution of the adjoint system


ut + vx − butxx = h, x ∈ (0, 2π), t > 0
vt + ux − dvtxx = k, x ∈ (0, 2π), t > 0
u(t, 0) = v(t, 0) = 0, t > 0
u(t, 2π) = v(t, 2π) = 0, t > 0
u(T, x) = v(T, x) = 0, x ∈ (0, 2π).

(2.9)

The existence of solutions for system (2.9) can be proved following the arguments used
in the proof of Theorem 2.1.2. Moreover, due to the regularizing e�ect of the operator
(I − α∂2

x)
−1, α > 0, we obtain the following result:

Theorem 2.1.3. If

(
h
k

)
∈ L1(0, T ; (L2(0, 2π))2), system (2.9) has a unique solution(

u
v

)
∈ C([0, T ]; (H1

0 (0, 2π))2). Moreover,

‖(ut, vt)‖L1(0,T ;(H1
0∩H2(0,2π))2) ≤ C‖(h, k)‖L1(0,T ;(L2(0,2π))2), (2.10)

for some constant C > 0.

Proof. System (2.9) can be written as an abstract evolution equation as follows{
Wt +AW = F
W (T ) = 0,

where W =

(
u
v

)
, A : (H1

0 (0, 2π))2 −→ (H1
0 ∩ H2(0, 2π))2 is given by (2.3) and F =

A0

(
h
k

)
∈ L1 (0,∞; (H1

0 ∩H2(0, 2π))2), with A0 : (L2(0, 2π))2 −→ (H1
0 ∩ H2(0, 2π))2

de�ned by (2.7).
Since A generates a group of isometries in (H1

0 (0, 2π))2 we have that the system (2.9)

has a unique solution W =

(
u
v

)
∈ C([0,∞); (H1

0 (0, 2π))2). Moreover, by using the

equations in (2.9), we deduce that

(
ut
vt

)
∈ L1(0,∞; (H1

0 ∩ H2(0, 2π))2). Indeed, in
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order to obtain estimate (2.10), we multiply the �rst equation in (2.9) by u, the second
one by v and integrate by parts on (0, 2π) to obtain

1

2

d

dt
‖(u(t, ·), v(t, ·))‖2

(H1
0 (0,2π))2 =

∫ 2π

0

(hu+ kv) dx. (2.11)

Integrating the above identity from t up to T , and using Young's inequality, it follows
that

1

2
‖(u(t, ·), v(t, ·))‖2

(H1
0 (0,2π))

2 ≤ ‖h‖L1(0,T ;L2(0,2π))‖u‖C([0,T ];L2(0,2π)) + ‖k‖L1(0,T ;L2(0,2π))‖v‖C([0,T ];L2(0,2π))

≤ 1

4
‖(u, v)‖2

C([0,T ];(L2(0,2π))2) + C‖(h, k)‖2
L1(0,T ;(L2(0,2π))2).

(2.12)

Then, from (2.11) and (2.12) we get

‖(u, v)‖C([0,T ];(H1
0 (0,2π))2) ≤ C‖(h, k)‖L1(0,T ;(L2(0,2π))2), (2.13)

for some C > 0. On the other hand, due to the regularizing e�ect of the operator (I−∂2
x)
−1,

it follows that (I − b∂2
x)
−1h(t, ·), (I − d∂2

x)
−1k(t, ·) ∈ H1

0 ∩H2(0, 2π) and the operator A
takes values in (H1

0 ∩ H2(0, 2π))2, which is compactly embedded in (H1
0 (0, 2π))2. Thus,

combining (2.13) and the equations in (2.9), it follows that

‖(ut(t, ·), vt(t, ·))‖(H1
0∩H2(0,2π))2 ≤ C(‖(u, v)‖C([0,T ];(H1

0 (0,2π))2) + ‖(h(t, ·), k(t, ·))‖(L2(0,2π))2),

where C is a positive constant. Then, integrating the inequality above we obtain (2.10).

The next theorem establishes the existence and uniqueness of solutions for system
(1.3) in the sense of transposition.

Theorem 2.1.4. Let

(
η0

w0

)
∈ (H−1(0, 2π))

2
and

(
f
g

)
∈ (H1(0, T ))

2
. Then, there

exists a unique solution

(
η
w

)
∈ C ([0, T ]; (L2(0, 2π))2) of system (1.3) which veri�es

(2.8).

Proof. The result is proved in two steps. We �rst use the Riesz representation theorem
to prove the existence of a solution in L1(0, T ; (L2(0, 2π))2). Then, the continuity in the
time variable is proved by using density arguments.

We start by introducing the linear operator T : L1(0, T ; (L2(0, 2π))2) −→ R as follows

T ((h, k)) = −
〈(

η0

w0

)
,

(
u(0)
v(0)

)〉
(H−1(0,2π))2,(H1

0 (0,2π))
2
− b
∫ T

0

f(t)uxt(t, 2π)dt−

− d
∫ T

0

g(t)vxt(t, 2π)dt,
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where

(
u
v

)
is a solution of (2.9).

Note that T is well de�ned and is continuous. Indeed, proceeding as in the proof of
Theorem 2.1.3 we obtain identity (2.11). Then, integrating over (0, T ), from (2.13) it
follows that

‖(u(0), v(0))‖
(H1

0 (0,2π))
2 ≤ C‖(h, k)‖L1(0,T ;(L2(0,2π))2), (2.14)

for some constant C > 0. On the other hand, from the Sobolev embedding and estimate
(2.10) the following estimate holds∣∣∣∣b ∫ T

0

f(t)uxt(t, 2π)dt+ d

∫ T

0

g(t)vxt(t, 2π)dt

∣∣∣∣ ≤ C‖(f, g)‖(H1(0,T ))2‖(h, k)‖L1(0,T ;(L2(0,2π))2),

(2.15)
where C > 0. Finally, (2.14) and (2.15) allow to conclude that

T ∈ L(L1(0, T ; (L2(0, 2π))2);R).

Then, by Riesz representation theorem, we obtain the existence and uniqueness of
(η, w) ∈ L∞(0, T ; (L2(0, 2π))2) satisfying (2.8). Moreover,

‖(η, w‖[L∞(0,T ;L2(0,2π)]2 =‖T‖L(L1(0,T ;(L2(0,2π))2);R)

≤ C
(
‖(η0, w0)‖(H−1(0,2π))2 + ‖(f, g)‖(H1(0,T ))2

)
. (2.16)

By using density arguments, starting with more regular data, we can also get the regularity
in the time variable. Indeed, since (f, g) ∈ (H1(0, T ))

2
and (η0, w0) ∈ (H−1(0, 2π))

2
, there

exist sequences (fn, gn) ∈ (D(0, T ))2 and (η0
n, w

0
n) ∈ (D(0, 2π))2, such that, as n→∞,

(fn, gn) −→ (f, g) in
(
H1(0, T )

)2(
η0
n, w

0
n

)
−→

(
η0, w0

)
in
(
H−1(0, 2π)

)2
.

Let us denote by (ηn, wn) the solution of the system (1.3), corresponding to the data
(fn, gn) and (η0

n, w
0
n), given by Theorem 2.1.2. Then, (ηn, wn) ∈ C([0, T ]; (L2(0, 2π))) and,

for each n ∈ N, the solution (ηn, wn) satis�es (2.8). Thus, if (η, w) is a solution by
transposition of (1.3), it follows that (ηn, wn)− (η, w) is a solution by transposition with
data (fn, gn)− (f, g) and (η0

n, w
0
n)− (η0, w0). From estimate (2.16), we obtain

‖(ηn−η, wn−w)‖L∞(0,T ;(L2(0,2π))2) ≤ C(‖(η0
n−η0, w0

n−w0)‖(H−1(0,2π))2+‖(fn−f, gn−g)‖(H1(0,T ))2).

When n→∞, from the above inequality we deduce that (ηn, wn)→ (η, w) in L∞(0, T ; (L2(0, 2π))2)
and, since (ηn, wn) ∈ C([0, T ]; (L2(0, 2π))2), it follows that (η, w) ∈ C([0, T ]; (L2(0, 2π))2).

2.2 Controllability

In this section we study some boundary controllability properties of the system (1.3). We
start with the following characterization of a control driving system (1.3) to the rest. This
kind of result is already classic for dispersive systems (see, for instance, [24]).
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Lemma 2.2.1. The initial data

(
η0

w0

)
∈ (H−1(0, 2π))2 is controllable to zero in time

T > 0 with controls

(
f
g

)
∈ (H1(0, T ))2 if and only if〈(

η0

w0

)
,

(
u(0)
v(0)

)〉
(H−1(0,2π))2,(H1

0 (0,2π))
2

= −b
∫ T

0

f(t)uxt(t, 2π)dt−
∫ T

0

g(t)vxt(t, 2π)dt,

(2.17)

for any solution of the adjoint system

ut + vx − butxx = 0, x ∈ (0, 2π), 0 < t < T
vt + ux − dvtxx = 0, x ∈ (0, 2π), 0 < t < T
u(t, 0) = v(t, 0) = 0, 0 < t < T
u(t, 2π) = v(t, 2π) = 0, 0 < t < T
u(T, x) = uT (x), x ∈ (0, 2π)
v(T, x) = vT (x), x ∈ (0, 2π),

(2.18)

with

(
uT

vT

)
∈ (H1

0 (0, 2π))2.

Proof. Remark that the change of variables t→ T −t and x→ L−x reduce system (2.18)

to (1.3) with f ≡ g ≡ 0. Then, we can apply to

(
u
v

)
all the well-posedness results

obtained in Section 2.
We �rst prove the result for regular solutions. The less regular framework can be

proved using density arguments as in the proof of Theorem 2.1.4. Let (η, w) be a solution
of (1.3) and (u, v) solution of (2.18). Integration by parts leads to

0 =

∫ T

0

∫ 2π

0

(ηt + wx − bηxxt)udxdt+

∫ T

0

∫ 2π

0

(wt + ηx − dwxxt)vdxdt =

−
∫ 2π

0

(η0u(0) + η0
xux(0))dx−

∫ 2π

0

(w0v(0) + w0
xvx(0))dx

+

∫ 2π

0

(η(T )u(T ) + ηx(T )ux(T ))dx+

∫ 2π

0

(w(T )v(T ) + wx(T )vx(T ))dx

+b

∫ T

0

f(t)uxt(t, 2π)dt+ d

∫ T

0

g(t)vxt(t, 2π)dt.

Consequently, by the density of H1
0 (0, 2π) in H−1(0, 2π), we can pass the limit in the

identity above to obtain〈(
η0

w0

)
,

(
u(0)
v(0)

)〉
(H−1(0,2π))2,(H1

0 (0,2π))2
+ b

∫ T

0

f(t)uxt(t, 2π)dt+ d

∫ T

0

g(t)vxt(t, 2π)dt

=

〈(
η(T )
w(T )

)
,

(
u(T )
v(T )

)〉
(H−1(0,2π))2,(H1

0 (0,2π))2
.

Hence,

(
η0

w0

)
is controllable to zero in time T > 0 if and only if (2.17) holds.
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The next result is devoted to show that system (1.3) is not spectrally controllable.
This means that no nontrivial �nite linear combination of eigenvectors of the operator A
de�ned in (2.3) can be driven to zero in �nite time by using controls f, g ∈ H1(0, T ).

Theorem 2.2.1. No eigenfunction of the operator A can be driven to zero in �nite time.

Proof. We �rst note that, according to Theorem 6.2.2 of the Appendix, the operator A has
a sequence of purely imaginary eigenvalues (µjn)n∈Z∗, j∈{1,2}. Moreover, the corresponding
eigenfunctions (Φj

n)n∈Z∗, j∈{1,2} form an orthogonal basis of (H1
0 (0, 2π))2.

For each k 6= 0, let us consider

(
η0

w0

)
= Φj

k =

 ϕjk

vjk

 , j = 1, 2, eigenfunctions of

the operator A. Then, from the proof of Theorem 6.2.2 we have that, for each eigenvalue

µ = µjk, the functions

 ϕ1
k

v1
k

 and

 ϕ2
k

v2
k

 solve the problems


ϕ1 − bϕ1

xx + µv1
x = 0, x ∈ (0, 2π)

v1 − dv1
xx + µϕ1

x = 0, x ∈ (0, 2π)
ϕ1(0) = 0, ϕ1

x(0) = 1
v1(0) = 0, v1

x(0) = γ

(2.19)

and 
ϕ2 − bϕ2

xx + µv2
x = 0, x ∈ (0, 2π)

v2 − dv2
xx + µϕ2

x = 0, x ∈ (0, 2π)
ϕ2(0) = 0, ϕ2

x(0) = γ
v2(0) = 0, v2

x(0) = 1,

(2.20)

with γ = γ1
n and γ = γ2

n, respectively. We also note that, according to Theorem 6.2.2,

|γ1
n| ≤

δ

|n|
and |γ2

n| ≤
δ

|n|
, for a given positive δ.

In a similar way, if we also consider(
uT

vT

)
=

{
Φj
n n 6= k

0 n = k,

the corresponding solution of (2.18) can be written as(
u
v

)
= e−λ

j
n(T−t)Φj

n, where λjn =
1

µjn
,

and µjn are the eigenvalues of the operator A given by Theorem 6.2.2. Moreover,

lim
n→∞

λjn = 0.

On the other hand, since the sequence (Φj
n)n∈Z∗, j∈{1,2} forms an orthonormal basis of

(H1
0 (0, 2π))2, we get〈(

η0

w0

)
,

(
u(0)
v(0)

)〉
(H1

0 (0,2π))
2

= δjn,ke
λjnT , j = 1, 2.
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Thus, if

(
η0

w0

)
is controllable to zero in time T > 0, from (2.17) it follows that

∫ T

0

λjne
−λjn(T−t) (bf(t)ϕjn,x(2π) + dg(t)vjn,x(2π)

)
dt = δjn,ke

λjnT , j = 1, 2. (2.21)

For j = 1, the identity above can be written as follows∫ T
2

−T
2

h(t)e
−λ1n

(
T
2
−t
)
dt = δ1

n,ke
λ1nT , (2.22)

where
h(t) = bf

(
t+ T

2

)
ϕ1
n,x(2π) + dg

(
t+ T

2

)
v1
n,x(2π).

Since h ∈ L2
(−T

2
, T

2

)
, if we de�ne F : C −→ C by

F (z) =

∫ T
2

−T
2

h(t)eiztdt.

From Paley-Wiener theorem, we have that F is an entire function. Moreover, since
limn→∞ λ

j
n = 0, it follows that F is zero on a set with a �nite accumulation points. Then,

F ≡ 0 and, consequently,

bf (t)ϕ1
n,x(2π) + dg (t) v1

n,x(2π) = 0, ∀t ∈ [0, T ]. (2.23)

For j = 2, we can use (2.21) and proceed in a similar way to obtain

bf (t)ϕ2
n,x(2π) + dg (t) v2

n,x(2π) = 0, ∀t ∈ [0, T ]. (2.24)

Thus, from (2.23) and (2.24) we deduce that f and g should satisfy the system bf (t)ϕ1
n,x(2π) + dg (t) v1

n,x(2π) = 0

bf (t)ϕ2
n,x(2π) + dg (t) v2

n,x(2π) = 0.
(2.25)

The next steps are devoted to analyze carefully the coe�cients of the system (2.25). In
order to do that, we �rst consider the solution of the following problems

−bϕ̃1
xx + µ̃ṽ1

x = 0, x ∈ (0, 2π)
−dṽ1

xx + µ̃ϕ̃1
x = 0, x ∈ (0, 2π)

ϕ̃1(0) = 0, ϕ̃1
x(0) = 1

ṽ1(0) = 0, ṽ1
x(0) = γ,

(2.26)

and 
−bϕ̃2

xx + µ̃ṽ2
x = 0, x ∈ (0, 2π)

−dṽ2
xx + µ̃ϕ̃2

x = 0, x ∈ (0, 2π)
ϕ̃2(0) = 0, ϕ̃2

x(0) = γ
ṽ2(0) = 0, ṽ2

x(0) = 1.

(2.27)
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For each µ = µ̃n, where µ̃n =
√
bdni (n ∈ Z∗), the solutions of (2.26) and (2.27) are given

by formula (6.11) of the Appendix and will be denoted by

Φ̃1
n =

 ϕ̃1
n

ṽ1
n

 and Φ̃2
n =

 ϕ̃2
n

ṽ2
n

 ,

respectively. Then, we have that ϕ̃1
n,x(2π)

ṽ1
n,x(2π)

 =

 1

0

 and

 ϕ̃2
n,x(2π)

ṽ2
n,x(2π)

 =

 0

1

 . (2.28)

From (2.28), Proposition 6.1.2 and Theorem 6.2.2, the coe�cients of the system (2.25)
can be estimated as follows

|ϕ1
n,x(2π)− 1| = |ϕ1

n,x(2π)− ϕ̃1
n,x(2π)| ≤ C

|µn|
(1 + |γ|) + C

(
|µ1
n − µ̃n|+ |γ|

)
≤

≤ C

|µ̃n|

(
1 +

δ

|n|

)
+
C

|n|
+
Cδ

|n|
,

for some constant C > 0. From the estimate above, we conclude that ϕ1
n,x(2π) ∼ 1.

Performing similar computations, we get

v1
n,x(2π) ∼ 0, ϕ2

n,x(2π) ∼ 0, v2
n,x(2π) ∼ 1.

Finally, we deduce that the determinant of the coe�cients of the system (2.25) satis�es∣∣∣∣ϕ1
n,x(2π) v1

n,x(2π)
ϕ2
n,x(2π) v2

n,x(2π)

∣∣∣∣ ∼ 1.

Hence f ≡ g ≡ 0 is the unique solution of the system (2.25), which contradicts (2.21) and
the proof ends.

Remark 2.2.1. Taking into account the properties of the operator A mentioned in the
proof of Theorem 2.2.1, the following holds:

• Each eigenvalue of the operator A has geometric multiplicity at most two, i. e., there
is no eigenvalue that corresponds to three linear independent eigenfunction. Indeed,

suppose that there exist

(
ϕ1
n

v1
n

)
,

(
ϕ2
n

v2
n

)
,

(
ϕ3
n

v3
n

)
linear independent eigenfunctions

that correspond to the same eigenvalue µ. Let(
ψn
zn

)
= α

(
ϕ1
n

v1
n

)
+ β

(
ϕ2
n

v2
n

)
+ γ

(
ϕ3
n

v3
n

)
,

and α, β, γ ∈ C, not simultaneously zero, such that{
ψn(0) = αϕ1

n,x(0) + βϕ2
n,x(0) + γϕ3

n,x(0) = 0
zn(0) = αv1

n,x(0) + βv2
n,x(0) + γv3

n,x(0) = 0.
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Under these conditions, it follows that

(
ψn
zn

)
solves the initial value problem


ψ − bψxx + µzx = 0, x ∈ (0, 2π)
z − dzxx + µψx = 0, x ∈ (0, 2π)
ψ(0) = ψx(0) = 0
z(0) = zx(0) = 0.

Then,

(
ψ
z

)
=

(
0
0

)
, which allows us to conclude the claim.

• λ = 0 is not an eigenvalue of the operator A. In fact, if this is the case we obtain(
η
w

)
satisfying 

(I − b∂2
x)
−1wx = 0, x ∈ (0, 2π),

(I − d∂2
x)
−1ηx = 0, x ∈ (0, 2π),

η(0) = w(0) = 0,
η(2π) = w(2π) = 0.

(2.29)

Due to the properties of the operator (I − α∂2
x)
−1, for α > 0, we deduce that ηx ≡

wx ≡ 0, i.e., η and w are constant functions. Then, from the boundary conditions,
it follows that η ≡ w ≡ 0.

We shall pass now to study the approximate controllability of systems (1.3). In order
to make that precise, we introduce the following de�nition.

Definition 2.2.1. System (1.3) is approximately controllable in time T if, for every initial

data

(
η0

w0

)
∈ (H−1(0, 2π))2, the set of reachable states

R

((
η0

w0

)
, T

)
=

{(
η(T, x)
w(T, x)

)
:

(
f
g

)
∈ (H1(0, T ))2

}
is dense in (L2(0, 2π))2.

We have the following result:

Theorem 2.2.2. System (1.3) is approximately controllable in time T > 0 with controls
in H1(0, T ).

Proof. Due to the linearity of the system under consideration, it is su�cient to prove the

result for any T > 0 and

(
η0

w0

)
=

(
0
0

)
. Thus, we are going to prove that the set

R

((
0
0

)
, T

)
is dense in (L2(0, 2π))2.

Let

(
η
w

)
∈ C([0, T ], (L2(0, 2π))2) the corresponding solution of the system (1.3)

given by Theorem 2.1.4 and

(
u
v

)
solution of the adjoint system (2.18). Then, it follows
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that〈(
η(T, x)
w(T, x)

)
,

(
uT

vT

)〉
(H1

0 (0,2π))
2

= b

∫ T

0

f(t)uxt(t, 2π)dt+ d

∫ T

0

g(t)vxt(t, 2π)dt.

(2.30)

Assume that R

((
0
0

)
, T

)
is not dense in (H1

0 (0, 2π))2. In this case, there exists(
uT

vT

)
∈ (H1

0 (0, 2π))2,

(
uT

vT

)
6=
(

0
0

)
, satisfying

〈(
η(T, x)
w(T, x)

)
,

(
uT

vT

)〉
(H1

0 (0,2π))
2

= 0, ∀
(
f
g

)
∈ (H1(0, T ))2.

Consequently, from (2.30) we obtain〈(
f
g

)
,

(
uxt(·, 2π)
vxt(·, 2π)

)〉
(L2(0,T ))2

= 0, ∀
(
f
g

)
∈ (H1(0, T ))2.

Thus, (
uxt(t, 2π)
vxt(t, 2π)

)
=

(
0
0

)
, ∀ t ∈ (0, T ). (2.31)

On the other hand, since A is a skew adjoint operator in (H1
0 (0, 2π))2, it has a sequence

of eigenvalues (λn)n≥1 ⊂ iR∗ with geometric multiplicity at most two (see Remark 2.2.1).
The corresponding eigenfunctions form an orthonormal basis for (H1

0 (0, 2π))2, which we
denote by

(Φn)n≥1 ∪ {Φ1
n,Φ

2
n}n≥1,

where Φn =

(
ϕn
vn

)
and Φj

n =

(
ϕjn
vjn

)
, j = 1, 2, correspond to a simple and double

eigenvalue, respectively.

Then, if

(
uT

vT

)
∈ (H1

0 (0, 2π))2, we have

(
uT

vT

)
=

∑
n≥1

λnsimple

anΦn +
∑
n≥1

λndouble

a1
nΦ1

n + a2
nΦ2

n

and the corresponding solution

(
u
v

)
can be written as

(
u
v

)
=

∑
n≥1

λn simple

ane
−λn(T−t)Φn +

∑
n≥1

λn double

(a1
nΦ1

n + a2
nΦ2

n)e−λn(T−t). (2.32)



24

Thus, from (2.31)-(2.32) it follows that

0 = uxt(t, 2π) =
∑
n≥1

λn double

(
a1
nϕ

1
n,x(2π) + a2

nϕ
2
n,x(2π)

)
λne

−λn(T−t)+

+
∑
n≥1

λnsimple

anϕn,x(2π)λne
−λn(T−t).

Since u is an analytic function (see Theorem 2.1.1), we can integrate the identity above
over (−S, S), for any S > 0. Then, for each m ∈ Z∗ we deduce that

0 = lim
s→+∞

1

2S

∫ S

−S
uxt(s, 2π)e−λmsds =

=


(
a1
nϕ

1
n,x(2π) + a2

nϕ
2
n,x(2π)

)
λne

−λnT , if λn is double

anϕn,x(2π)λne
−λnT , if λn is simple .

(2.33)

From (2.31) we have that vxt(t, 2π) = 0. Therefore, we can use (2.32) and proceed in a
similar way to obtain

0 =


(
a1
nv

1
n,x(2π) + a2

nv
2
n,x(2π)

)
λne

−λnT , if λn is double

anvn,x(2π)λne
−λnT , if λn is simple .

(2.34)

Assume that λn is double. In this case, if we consider(
ψn
zn

)
=

(
a1
nϕ

1
n + a2

nϕ
2
n

a1
nv

1
n + a2

nv
2
n

)
= a1

n

(
ϕ1
n

v1
n

)
+ a2

n

(
ϕ2
n

v2
n

)
,

from (2.33) and (2.34) we have that

(
ψn
zn

)
and

(
ψn,x(2π)
zn,x(2π)

)
=

(
0
0

)
solve the initial-

value problem 
ψ − bψxx + µzx = 0, x ∈ (0, 2π)
z − dzxx + µψx = 0, x ∈ (0, 2π)
ψ(2π) = ψx(2π) = 0
z(2π) = zx(2π) = 0.

(2.35)

Then, by uniqueness,

(
ψn
zn

)
=

(
0
0

)
. On the other hand, since

(
ϕ1
n

v1
n

)
and

(
ϕ2
n

v2
n

)
are linearly independent, it follows that a1

n = a2
n = 0.

If λn is simple, from (2.33) and (2.34) we obtain

anΦn,x(2π) = an

(
ϕn,x(2π)
vn,x(2π)

)
= 0.

If Φn,x(2π) = 0, we can proceed as in the previous case to conclude that Φn = 0. Since
no eigenfunction can be identically zero, we have obtained a contradiction. Therefore,
an = 0.
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Thus, from (2.32) it follows that(
u
v

)
=

∑
n≥1

λn simple

ane
−λn(T−t)Φn +

∑
n≥1

λn double

(a1
nΦ1

n + a2
nΦ2

n)e−λn(T−t) =

(
0
0

)

and, in particular,

(
uT

vT

)
=

(
0
0

)
. This is also a contradiction and the proof ends.



Chapter 3

Large time behavior for the Boussinesq

system of BBM-BBM type

In this chapter we are concerned with a Boussinesq system of Benjamin-Bona-Mahony
type modelling the two-way propagation of surface waves in a uniform horizontal channel
�lled with an irrotational, incompressible and inviscid liquid under the in�uence of grav-
itation. We propose several dissipation mechanisms leading to systems for which one has
both the global existence of solutions and a nonincreasing energy. Following the analysis
developed in [31] we prove that all the trajectories are attracted by the origin provided
that the unique continuation of weak solutions holds.

3.1 Unique Continuation Property

In this section we study some unique continuation properties for the following system

ηt + wx − bηtxx = 0 for x ∈ (0, 2π), t > 0
wt + ηx − dwtxx = 0 for x ∈ (0, 2π), t > 0
η(t, 0) = η(t, 2π); ηx(t, 0) = ηx(t, 2π) for t > 0
w(t, 0) = w(t, 2π); wx(t, 0) = wx(t, 2π) for t > 0
η(0, x) = η0(x) for x ∈ (0, 2π)
w(0, x) = w0(x) for x ∈ (0, 2π),

(3.1)

where b, d > 0, that will be used to obtain our main results. The proofs depend on some
global well-posedness obtained in [26] by using the Fourier approach. Therefore, for the
sake of completeness, we include such results in this section.

We �rst introduce a few notations. Given any v ∈ L2(0, 2π) and k ∈ Z, we denote by
v̂k the k

th−Fourier coe�cient of v,

v̂k =
1

2π

∫ 2π

0

v(x)e−ikx dx,

and, for any m ∈ N, we de�ne the space

Hm
p (0, 2π) =

{
v ∈ L2(0, 2π)

∣∣∣∣∣ v =
∑
k∈Z

v̂ke
ikx,

∑
k∈Z

|v̂k|2(1 + k2)m <∞

}
,

26



27

which is a Hilbert space with respect to the inner product

(v, w)m =
∑
k∈Z

v̂kŵk(1 + k2)m. (3.2)

The norm corresponding to (3.2) is denoted by || ||m. It can be seen that

Hm
p (0, 2π) =

{
v ∈ Hm(0, 2π)

∣∣∣∣ ∂rv∂xr
(0) =

∂rv

∂xr
(2π), 0 ≤ r ≤ m− 1

}
,

where Hm(0, 2π) stands for the classical Sobolev space of exponent m in (0, 2π). We can
extend the de�nition of Hm

p (0, 2π) to the case m = s ≥ 0, a nonnegative real number, by
setting

Hs
p(0, 2π) =

{
v =

∑
k∈Z

v̂ke
ikx ∈ Hs(0, 2π)

∣∣∣∣∣∑
k∈Z

|v̂k|2(1 + k2)s <∞

}
. (3.3)

For any nonnegative real number s, Hs
p(0, 2π) can also be seen as a Hilbert space with

respect to the inner product de�ned by (3.2) with m replaced by s. In particular, for any
v ∈ Hs

p(0, 2π),

‖v‖s =

(∑
k∈Z

|v̂k|2(1 + k2)s

) 1
2

.

As pointed out in [26], for s < 0 we de�ne the space Hs
p(0, 2π) as the topological dual of

H−sp (0, 2π):

Hs
p(0, 2π) =

(
H−sp (0, 2π)

)′
.

Riesz representation theorem ensures that any v ∈ H0
p (0, 2π) = L2(0, 2π) can be identi�ed

with an element wv ∈
(
H0
p (0, 2π)

)′
such that

wv(z) =

∫ 2π

0

z(x)v(x) dx
(
z ∈ H0

p (0, 2π)
)
.

Traditionally, the same notation is used for v and wv (the spaces
(
H0
p (0, 2π)

)′
andH0

p (0, 2π)
are identi�ed). Given s < 0, any element w ∈ Hs

p(0, 2π) can be uniquely expanded as
follows

w =
∑
k∈Z

ŵke
ikx, (3.4)

where ŵk = 1
2π
w
(
e−ikx

)
for each k ∈ Z. The slight abuse of notation in (3.4) (the element

w on the left hand side is not a function of x and the exponential function eikx on the
right hand side is actually the representant of this L2−function in the dual space) is
compensated by the fact that expansion (3.4) looks exactly like one corresponding to an
element in a space Hs with positive exponent s. On the other hand, the following map is
a duality product between Hs

p(0, 2π) and H−sp (0, 2π), for any s ≥ 0,

〈v, w〉s =
∑
k∈Z

v̂kŵ−k
(
v ∈ Hs

p(0, 2π), w ∈ H−sp (0, 2π)
)
. (3.5)
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Consequently, if s < 0, the space Hs
p(0, 2π) can also be de�ned by (3.3) and can be viewed

as a Hilbert space with respect to the inner product (3.2) with m replaced by s.
Under the considerations above, for α > 0 we can de�ne the operator (I − α∂2

x)
−1
p in

the following way:

(I − α∂2
x)
−1
p ϕ = v ⇔

 v − αvxx = ϕ in (0, 2π),

v(0) = v(2π), vx(0) = vx(2π).
(3.6)

Since for any ϕ ∈ L2(0, 2π), the elliptic equation from above has a unique solution v ∈
H2
p (0, 2π), the operator (I − α∂2

x)
−1
p is a well-de�ned, compact operator in L2(0, 2π).

Given s ∈ R, let us introduce the Hilbert space

V s = Hs
p(0, 2π)×Hs

p(0, 2π), (3.7)

endowed with the inner product de�ned by

〈(f1, f2), (g1, g2)〉 = b(f1, g1)s + d(f2, g2)s. (3.8)

Let us remark that system (3.1) can be written in the following vectorial form η

w


t

(t) + A

 η

w

 (t) =

 0

0

 ,

 η

w

 (0) =

 η0

w0

 , (3.9)

where A is the linear compact operator in V s de�ned by

A =

 0 (I − b∂2
x)
−1
p ∂x

(I − d∂2
x)
−1
p ∂x 0

 . (3.10)

Thus, if we assume that the initial data in (3.1) are given by

(η0, w0) =
∑
k∈Z

(
η̂0
k, ŵ

0
k

)
eikx, (3.11)

then, at least formally, the solution of (3.1) can be written as

(η, w)(t, x) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx, (3.12)

where (η̂k(t), ŵk(t)) ful�ll
(1 + bk2)(η̂k)t + ikŵk = 0, t ∈ (0, T ),

(1 + dk2)(ŵk)t + ikη̂k = 0, t ∈ (0, T ),

η̂k(0) = η̂0
k, ŵk(0) = ŵ0

k.

(3.13)

We have the following result:
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Lemma 3.1.1. (see [26]) Let

λ±k =
±|k|i√

(1 + bk2)(1 + dk2)
(k ∈ Z∗). (3.14)

The solution (η̂k(t), ŵk(t)) of (3.13) is given by
η̂k(t) =

1

2

[(
η̂0
k +

√
1 + dk2

1 + bk2
ŵ0
k

)
e−λ

+
k t +

(
η̂0
k −

√
1 + dk2

1 + bk2
ŵ0
k

)
e−λ

−
k t

]
,

ŵk(t) =
1

2

[(√
1 + bk2

1 + dk2
η̂0
k + ŵ0

k

)
e−λ

+
k t −

(√
1 + bk2

1 + dk2
η̂0
k − ŵ0

k

)
e−λ

−
k t

]
,

(3.15)

if k 6= 0 and {
η̂0(t) = η̂0

0,

ŵ0(t) = ŵ0
0.

(3.16)

Using Lemma 3.1.1 it was proved that the operator A generates an analytic semigroup
in V s.

Theorem 3.1.1. (see [26]) The family of linear operators (S(t))t≥0 de�ned by

S(t)(η0, w0) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

(
(η0, w0) ∈ V s

)
, (3.17)

where the coe�cients (η̂k(t), ŵk(t)) are given by (3.15)-(3.16), is an analytic semigroup in
V s and veri�es the following estimate, for each s ∈ R,

‖S(t)(η0, w0)‖V s ≤M‖(η0, w0)‖V s
(
(η0, w0) ∈ V s

)
, (3.18)

where M is a positive constant. Moreover, its in�nitesimal generator is the operator
(D(A), A), where D(A) = V s and A is given by (3.10).

From Theorem 3.1.1 and the semigroup theory, we obtain the following global well-
posedness result:

Theorem 3.1.2. (see [26]) Let T > 0 and s ∈ R. For each (η0, w0) ∈ V s and (f, g) ∈
L1 (0, T ;V s), there exists a unique solution (η, w) ∈ W 1,1 ([0, T ];V s) of the system η

w


t

(t) + A

 η

w

 (t) =

 f

g

 ,

 η

w

 (0) =

 η0

w0

 , (3.19)

which veri�es the variation of constants formula(
η
w

)
(t) = S(t)

(
η0

w0

)
+

∫ t

0

S(t− s)
(
f
g

)
(s) ds. (3.20)

Moreover, if (f, g) ≡ (0, 0) it follows that (η, w) ∈ Cω(R, V s), the class of analytic func-
tions in t ∈ R with values in V s.
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The main results of this section reads as follows:

Theorem 3.1.3. Let (η, w) solution of system (3.1) given by Theorem 3.1.2. Suppose
that there exist an open set Ω ⊂ [0, 2π] and T > 0 such that

η(t, x) = 0, ∀ (t, x) ∈ (0, T )× Ω. (3.21)

Then,
(η, w) = (0, 0) in R× (0, 2π). (3.22)

Proof. From Lemma 3.1.1, it follows that the solution (η, w) can be written as
η(t, x) =

∑
k∈Z

η̂k(t)e
ikx =

∑
k∈Z

(
a+
k e
−λ+k t + a−k e

−λ−k t
)
eikx

w(t, x) =
∑
k∈Z

ŵk(t)e
ikx =

∑
k∈Z

(
b+
k e
−λ+k t + b−k e

−λ−k t
)
eikx,

(3.23)

where a+
k = 1

2

(
η̂0
k +

√
1+dk2

1+bk2
ŵ0
k

)
and a−k = 1

2

(
η̂0
k −

√
1+dk2

1+bk2
ŵ0
k

)
. Since the solution (η, w)

is an analytic function of t, from (3.21) we deduce that

η(t, x) = 0, ∀ (t, x) ∈ R× Ω.

Consequently, for any S > 0 and x ∈ Ω, if we multiply η(t, x) by eλ
+
k t and integrate

between −S and S, from (3.23) we obtain

0 = lim
S→∞

1

2S

∫ S

−S

(∑
k∈Z

(
a+
k e
−λ+k t + a−k e

−λ−k t
)
eikx

)
eλ

+
j tdt

= a+
k e

ikx + a+
−ke

−ikx in Ω. (3.24)

On the other hand, if we multiply η(t, x) by eλ
−
k t, similar computations yield

0 = lim
S→∞

1

2S

∫ S

−S

(∑
k∈Z

(
a+
k e
−λ+k t + a−k e

−λ−k t
)
eikx

)
eλ
−
j tdt

= a−k e
ikx + a−−ke

−ikx in Ω. (3.25)

Since both functions on the left hand side are analytic in x, it follows that

a±k e
ikx + a±−ke

−ikx = 0 in [0, 2π].

By using the orthogonality of {eikx}k∈Z and {e−ikx}k∈Z in [0, 2π], we deduce that a±k =
a±−k = 0. This implies directly that η̂0

k = ŵ0
k = 0 for any k ∈ Z. Hence, (η, w) = (0, 0) in

R× (0, 2π).

As consequence of Theorem 3.1.3, we have the following result:
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Theorem 3.1.4. Let (η, w) be solution of system (3.1) given by Theorem 3.1.2. Suppose
that there exist an open set Ω ⊂ [0, 2π] and T > 0 such that

ηx(t, x) = 0, ∀ (t, x) ∈ (0, T )× Ω. (3.26)

Then,
(η, w) = (c1, c2) in R× (0, 2π), (3.27)

for some constants c1 and c2.

Proof. From Lemma 3.1.1, we have that
η(t, x) =

∑
k∈Z

η̂k(t)e
ikx =

∑
k∈Z

(
a+
k e
−λ+k t + a−k e

−λ−k t
)
eikx

w(t, x) =
∑
k∈Z

ŵk(t)e
ikx =

∑
k∈Z

(
b+
k e
−λ+k t + b−k e

−λ−k t
)
eikx,

(3.28)

where a+
k = 1

2

(
η̂0
k +

√
1+dk2

1+bk2
ŵ0
k

)
and a−k = 1

2

(
η̂0
k −

√
1+dk2

1+bk2
ŵ0
k

)
. Then, proceeding as in

the proof of Theorem 3.1.3, from (3.26) and (3.28) the following identities holds

ka+
k e

ikx + ka+
−ke

−ikx = 0 in [0, 2π],

ka−k e
ikx + ka−−ke

−ikx = 0 in [0, 2π],

for any k ∈ Z∗. From the orthogonality of {eikx}k∈Z and {e−ikx}k∈Z in [0, 2π], it follows
that a±k = a±−k = 0, ∀ k ∈ Z∗. This implies directly η̂0

k = ŵ0
k = 0, for any k ∈ Z∗. Hence,

(η, w) = (c1, c2) in R× (0, 2π), for some c1, c2 ∈ R.

3.2 Internal Stabilization

This section is devoted to prove the asymptotic behavior of the solutions of following
system 

ηt + wx − bηtxx + Bη = 0 for x ∈ (0, 2π), t > 0
wt + ηx − dwtxx = 0 for x ∈ (0, 2π), t > 0
η(t, 0) = η(t, 2π); ηx(t, 0) = ηx(t, 2π) for t > 0
w(t, 0) = w(t, 2π); wx(t, 0) = wx(t, 2π) for t > 0
η(0, x) = η0(x) for x ∈ (0, 2π)
w(0, x) = w0(x) for x ∈ (0, 2π),

(3.29)

where b, d > 0 and B : Hs
p(0, 2π) −→ Hs

p(0, 2π) is a bounded operator. More precisely,
let {

a ∈ C∞p (0, 2π) a nonnegative function on (0, 2π)
with a(x) > 0 on a given open set Ω1 ⊂ (0, 2π).

(3.30)

We analyze the following cases for the operator B:

Bϕ = a(x)ϕ and Bϕ = (a(x)ϕx)x.
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3.2.1 Internal stabilization with the feedback Bϕ = a(x)ϕ

We �rst prove that the system is well-posed. This is done by using a �xed point argument,
therefore we �rst write the solution of (3.29) in its integral form

η(t) = η0 −
∫ t

0

(
1− b∂2

x

)−1
(∂xw + aη)(τ)dτ,

w(t) = w0 −
∫ t

0

(
1− d∂2

x

)−1
∂xη(τ)dτ,

(3.31)

where (1− α∂2
x)
−1
f denotes, for f ∈ L2(0, 2π) and α > 0, the unique solution v ∈

H2
p (0, 2π) of the elliptic equation (1− α∂2

x) v = f . Moreover, for any s ≥ 0,

‖
(
1− α∂2

x

)−1

p
f‖Hs

p(0,2π) ≤ C‖f‖Hs
p(0,2π) and ‖

(
1− α∂2

x

)−1

p
∂xf‖Hs

p(0,2π) ≤ C‖f‖Hs
p(0,2π),

(3.32)

for all α > 0, where C is a positive constant.
We have the following result:

Theorem 3.2.1. Let s ≥ 0. For any (η0, w0) ∈
[
Hs
p(0, 2π)

]2
, there exists T > 0 and a

unique solution (η, w) of (3.29) with Bϕ = a(x)ϕ in the class
[
C([0, T ];Hs

p(0, 2π))
]2
. If

s = 1, the solution exists for every T > 0. Moreover, the map F de�ned as follows

F :
[
Hs
p(0, 2π)

]2 −→ [
C([0, T ];Hs

p(0, 2π))
]2

(η0, w0) 7→ (η, w)

is Lipschitz continuous.

Proof. In order to apply a �xed point argument, for any (η0, w0) ∈
[
Hs
p(0, 2π)

]2
, we

introduce the operator

Γ(η, w)(t) := (η0, w0)−
(∫ t

0

(
1− b∂2

x

)−1
(∂xw + aη)(τ)dτ,

∫ t

0

(
1− d∂2

x

)−1
∂xη(τ)dτ

)
.

Let 0 < β ≤ T , to be chosen later. Then, for each (η1, w1), (η2, w2) ∈
[
C([0, β];Hs

p(0, 2π)
]2
,

from (3.32) it follows that

‖Γ(η1, w1)− Γ(η2, w2)‖
[C([0,β];Hs

p(0,2π)]
2 = sup

0≤t≤β
‖
(
Γ(η1, w1)− Γ(η2, w2)

)
(t)‖

[Hs
p(0,2π)]

2

≤
∫ β

0

(
‖(
(
1− b∂2

x

)−1
∂x(w

1 − w2))(τ)‖Hs
p(0,2π) + ‖(

(
1− b∂2

x

)−1
(a(η1 − η2)))(τ)‖Hs

p(0,2π)

)
dτ

+

∫ β

0

‖(
(
1− d∂2

x

)−1
∂x(η

1 − η2))(τ)‖Hs
p(0,2π)dτ

≤ Cβ

(
‖(η1 − η2, w1 − w2)‖

[C([0,β];Hs
p(0,2π)]

2 + ‖(a(η1 − η2), w1 − w2)‖
[C([0,β];Hs

p(0,2π)]
2

)
≤ Cβ‖(η1, w1)− (η2, w2)‖

[C([0,β];Hs
p(0,2π)]

2 ,
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where C is a positive constant. Choosing β > 0 satisfying Cβ ≤ 1

2
, from the estimate

above we obtain

‖Γ(η1, w1)− Γ(η2, w2)‖
[C([0,β];Hs

p(0,2π)]
2 ≤ 1

2
‖(η1, w1)− (η2, w2)‖

[C([0,β];Hs
p(0,2π)]

2 . (3.33)

Let

(η, w) ∈ BR(0) = {(η, w) ∈
[
C([0, β];Hs

p(0, 2π)
]2

: ‖(η, w)‖
[C([0,β];Hs

p(0,2π)]
2 ≤ R},

where R = 2‖(η0, w0)‖
[Hs

p(0,2π)]
2 . From (3.33), we obtain the following estimate

‖Γ(η, w)‖
[C([0,β];Hs

p(0,2π)]
2 ≤ ‖(η0, w0)‖

[Hs
p(0,2π)]

2 + ‖Γ(η, w)− Γ(0, 0)‖[C([0,β];Hs(0,2π)]2

≤ ‖(η0, w0)‖
[Hs

p(0,2π)]
2 +

1

2
‖(η, w)‖

[C([0,β];Hs
p(0,2π)]

2 ≤ R, (3.34)

which allows us to conclude that

Γ : BR(0) ⊆
[
C([0, β];Hs

p(0, 2π)
]2 −→ BR(0).

Hence, Γ : BR(0)→ BR(0) is a contraction and, by Banach �xed-point theorem, we obtain
a unique (η, w) ∈ BR(0) which solves the integral equation (3.31) for all t ∈ (0, β). Since
the choice of β is independent of (η0, w0), the standard continuation extension argument

yields that the solution (η, w) belongs to
[
C([0, T ];H1

p (0, 2π)
]2

(see (1.6)).
Finally, in order to prove that the map F is Lipschitz continuous, we can proceed as

in the proof of (3.33). Indeed, for any (η0,1, w0,1), (η0,2, w0,2) ∈
[
Hs
p(0, 2π)

]2
if we consider

the corresponding solutions (η1, w1) and (η2, w2), respectively, it follows that

‖F(η0,1, w0,1)−F(η0,2, w0,2)‖
[C([0,T ];Hs

p(0,2π)]
2 = ‖(η1, w1)− (η2, w2)‖

[C([0,T ];Hs
p(0,2π)]

2

≤ ‖(η0,1, w0,1)− (η0,2, w0,2)‖
[Hs

p(0,2π)]
2 +

1

2
‖(η1, w1)− (η2, w2)‖

[C([0,T ];Hs
p(0,2π)]

2 .

Since (η1− η2, w1−w2) also solves the problem with initial data (η0,1− η0,2, w0,1−w0,2),
we deduce that

‖F(η0,1, w0,1)−F(η0,2, w0,2)‖
[C([0,T ];Hs

p(0,2π)]
2 ≤ 2‖(η0,1, w0,1)− (η0,2, w0,2)‖

[Hs
p(0,2π)]

2 .

(3.35)

The proof is complete.

In what concerns the stabilization result, the following holds:

Theorem 3.2.2. For any (η0, w0) ∈
[
H1
p (0, L)

]2
, the solution (η, w) of (3.29) given by

Theorem 3.2.1 satis�es

(η(t), w(t))→ (0, 0) weakly in
[
H1
p (0, L)

]2
,

(η(t), w(t))→ (0, 0) strongly in
[
Hs
p(0, L)

]2
, for all s < 1,

as t→∞.



34

Proof. When s = 1, we can use Theorem 3.2.1 and the equations of the system (3.29)
to deduce that ηt = −(1 − b∂2

x)
−1(∂xw + a(x)η) and wt = −(1 − d∂2

x)
−1∂xη belong to

C([0, T ];H2
p (0, 2π)). Consequently, each term of both equations belongs to C([0, T ];L2(0, 2π)).

Thus, we can multiply the �rst equation in (3.29) by η, the second one by w and integrate
by parts to obtain

d

dt
‖(η(t), w(t))‖2

[H1
p(0,2π)]

2 +

∫ 2π

0

a(x)|η(s, x)|2dx = 0. (3.36)

Integrating (3.36), we get

1

2
‖(η(t), w(t))‖2

[H1
p(0,2π)]

2−
1

2
‖(η0, w0)‖2

[H1
p(0,2π)]

2 +

∫ t

0

∫ 2π

0

a(x)|η(s, x)|2dxds = 0. (3.37)

Identity (3.36) shows that the map t 7−→ ‖(η(t), w(t))‖
[H1

p(0,2π)]
2 is nonincreasing and

‖(η(t), w(t))‖
[H1

p(0,2π)]
2 ≤ ‖(η0, w0)‖

[H1
p(0,2π)]

2 , for all t ≥ 0. (3.38)

Hence, there exists l ∈ R+, such that

lim
t→+∞

‖(η(t), w(t))‖
[H1

p(0,2π)]
2 = l.

Moreover, from (3.38) we infer the existence of a sequence tn → +∞, such that

(η(tn), w(tn)) ⇀ (η̃0, w̃0) weakly in
[
H1
p (0, 2π)

]2
, (3.39)

for some (η̃0, w̃0) ∈
[
H1
p (0, 2π)

]2
, and proceeding as in the proof of (3.37) we obtain

‖(η(tn+1), w(tn+1))‖2

[H1
p(0,2π)]

2−‖(η(tn), w(tn))‖2

[H1
p(0,2π)]

2+2

∫ tn+1

tn

∫ 2π

0

a(x)|η(t, x)|2dxdt = 0.

Consequently,

lim
n→+∞

∫ tn+1

tn

∫ 2π

0

a(x)|η(t, x)|2dxdt = 0. (3.40)

On the other hand, from (3.39) and the Sobolev embedding, for any s ∈ [0, 1) we obtain
the following convergence

(η(tn), w(tn))→ (η̃0, w̃0) strongly in
[
Hs
p(0, 2π)

]2
. (3.41)

Since the couple (η(tn + t, x), w(tn + t, x)) is solution of the system (3.29) with initial data
(η(tn), w(tn)), from (3.35) and (3.41) we get

(η(tn + ·), w(tn + ·))→ (η̃, w̃) in
[
C
(
[0, T ];Hs

p(0, 2π)
)]2

, as n→ +∞, (3.42)

where (η̃, w̃) ∈
[
C
(
[0, T ];H1

p (0, 2π)
)]2

denotes the solution with initial data (η̃0, w̃0). The
convergence above combined to (3.40) yields∫ T

0

∫ 2π

0

a(x)|η̃(t, x)|2dxdt = 0. (3.43)
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Thus, (η̃, w̃) ∈
[
C
(
[0, T ];H1

p (0, 2π)
)]2

solves

η̃t + w̃x − bη̃txx = 0 for x ∈ (0, 2π), t ∈ (0, T )
w̃t + η̃x − dw̃txx = 0 for x ∈ (0, 2π), t ∈ (0, T )
η̃(t, 0) = η̃(t, 2π); η̃x(t, 0) = η̃x(t, 2π) for t ∈ (0, T )
w̃(t, 0) = w̃(t, 2π); w̃x(t, 0) = w̃x(t, 2π) for t ∈ (0, T )
η̃(0, x) = η̃0(x) for x ∈ (0, 2π)
w̃(0, x) = w̃0(x) for x ∈ (0, 2π),

(3.44)

and (3.43) allows us to conclude that

η̃(t, x) = 0, in (t, x) ∈ (0, T )× Ω1,

for Ω1 de�ned in (3.30). Finally, from Theorem 3.1.3 we have (η̃0, w̃0) = (0, 0) and, as
t→∞, the following holds

(η(t), w(t))→ (0, 0) weakly in
[
H1
p (0, 2π)

]2
,

(η(t), w(t))→ (0, 0) strongly in
[
Hs
p(0, 2π)

]2
, for all s ∈ [0, 1),

which completes the proof.

3.2.2 Internal stabilization with the feedback Bϕ = (a(x)ϕx)x

We �rst prove that the system (3.29) is well-posed. In order to do that, we argue as in
the proof of Theorem 3.2.1 to obtain the following result:

Theorem 3.2.3. Let s ≥ 0. For any (η0, w0) ∈
[
Hs
p(0, 2π)

]2
, there exists T > 0 and a

unique solution (η, w) of system (3.29) with Bϕ = (a(x)ϕx)x in the class
[
C([0, T ];Hs

p(0, 2π))
]2
.

If s = 1, the solution exists for every T > 0. Moreover, the map

(η0, w0) ∈
[
Hs
p(0, 2π)

]2 −→ (η, w) ∈
[
C([0, T ];Hs

p(0, 2π))
]2

is Lipschitz continuous.

Proof. We proceed as in the proof of Theorem 3.2.1 applying a �xed point argument.

Therefore, for any (η0, w0) ∈
[
Hs
p(0, 2π)

]2
we introduce the operator

Γ(η, w)(t) :=

(η0, w0)−
(∫ t

0

(
1− b∂2

x

)−1
(∂xw + (a(x)ϕx)x)(τ)dτ,

∫ t

0

(
1− d∂2

x

)−1
∂xη(τ)dτ

)
.

In order to prove that Γ contracts in a ball of the space
[
C([0, T ];Hs

p(0, 2π))
]2
, instead of

(3.32), we use the following estimate

‖
(
1− α∂2

x

)−1
∂x(aux)‖Hs

p(0,2π) ≤ C‖u‖Hs
p(0,2π), (3.45)

valid for s ≥ 0 and for any α > 0, where C is a positive constant. Taking (3.45) into
account, the proof can be done arguing as in the proof of Theorem 3.2.1. Therefore, we
omit the details.
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Remark 3.2.1. From Theorem 3.2.3 we have the following conservation laws

d

dt

∫ 2π

0

η(t, x)dx = 0 and
d

dt

∫ 2π

0

w(t, x)dx = 0,

which are obtained by integrating the equations of the system with respect to x. Conse-
quently, ∫ 2π

0

η(t, x)dx =

∫ 2π

0

η0(x)dx and

∫ 2π

0

w(t, x)dx =

∫ 2π

0

w0(x)dx.

With the global wellposedness in hands, we prove the stabilization result.

Theorem 3.2.4. For any (η0, w0) ∈
[
H1
p (0, L)

]2
, the solution (η, w) of (3.29) given by

Theorem 3.2.3 satis�es

(η(t), w(t))→ ([η0], [w0]) weakly in
[
H1
p (0, L)

]2
,

(η(t), w(t))→ ([η0], [w0]) strongly in
[
Hs
p(0, L)

]2
, for all s < 1,

as t→∞, where [f ] :=
1

2π

∫ 2π

0

f(x)dx.

Proof. We �rst remark that, if ϕ ∈ H1
p (0, 2π), from (3.30)

〈−(aϕx)x, ϕx〉H−1
p ×H1

p
= 〈aϕx, ϕx〉L2×L2 .

Thus, we can proceed as in the proof of (3.36), to obtain

d

dt
‖(η(t), w(t))‖2

[H1
p(0,2π)]

2 +

∫ 2π

0

a(x)|ηx(t, x)|2dx = 0. (3.46)

Moreover, arguing as in the proof of Theorem 3.2.2, we obtain (η̃0, w̃0) ∈
[
H1
p (0, 2π)

]2
and a sequence tn → +∞, such that

(η(tn), w(tn)) ⇀ (η̃0, w̃0) in
[
H1
p (0, 2π)

]2
, (3.47)

(η(tn), w(tn))→ (η̃0, w̃0) strongly in
[
Hs
p(0, 2π)

]2
, (3.48)

and
(η(tn + ·), w(tn + ·))→ (η̃, w̃) in

[
C
(
[0, T ];Hs

p(0, 2π)
)]2

, (3.49)

for any s < 1, where (η̃, w̃) ∈
[
C
(
[0, T ];H1

p (0, 2π)
)]2

denotes the solution of (3.29) with
initial data (η̃0, w̃0).

From (3.49) it follows that

(η(tn + ·), w(tn + ·)) is bounded in
[
L2
(
0, T ;Hs

p(0, 2π)
)]2

.

Then, we can extract a subsequence (if necessary), satisfying

(η(tn + ·), w(tn + ·)) ⇀ (η̃, w̃) in
[
L2
(
0, T ;H1

p (0, 2π)
)]2

. (3.50)
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On the other hand, from (3.46) we get

‖(η(tn+1), w(tn+1))‖2

[H1
p(0,2π)]−‖(η(tn), w(tn))‖2

[H1
p(0,2π)]

2

+ 2

∫ tn+1

tn

∫ 2π

0

a(x)|ηx(t, x)|2dxdt = 0,

which leads to

lim
n→+∞

∫ tn+1

tn

∫ 2π

0

a(x)|ηx(t, x)|2dxdt = 0, (3.51)

since ‖ · ‖
[H1

p(0,2π)]
2 is nonincreasing, and therefore has a limit, as t→∞ (see (3.46)). By

combining (3.50) and (3.51), we deduce that∫ T

0

∫ 2π

0

a(x)|η̃x(t, x)|2dxdt ≤ lim inf
n→∞

∫ tn+1

tn

∫ 2π

0

a(x)|ηx(t, x)|2dxdt = 0. (3.52)

Therefore (η̃, w̃) solves

η̃t + w̃x − bη̃txx = 0 for x ∈ (0, 2π), t ∈ (0, T )
w̃t + η̃x − dw̃txx = 0 for x ∈ (0, 2π), t ∈ (0, T )
η̃(t, 0) = η̃(t, 2π); η̃x(t, 0) = η̃x(t, 2π) fort ∈ (0, T )
w̃(t, 0) = w̃(t, 2π); w̃x(t, 0) = w̃x(t, 2π) for t ∈ (0, T )
η̃(0, x) = η̃0(x) for x ∈ (0, 2π)
w̃(0, x) = w̃0(x) for x ∈ (0, 2π),

(3.53)

and (3.52) allows us to conclude that

η̃x(t, x) = 0, ∀ (t, x) ∈ (0, T )× Ω1,

for Ω1 de�ned in (3.30). Thus, from Theorem 3.1.4 we have that (η̃, w̃) = (c1, c2) on
(0, T ) × (0, 2π) for some c1, c2 ∈ R. From the Remark 3.2.1 and (3.47)-(3.48) it follows
that

(c1, c2) = ([η0], [w0]),

and

(η(t), w(t))→ ([η0], [w0]) weakly in
[
H1
p (0, 2π)

]2
,

(η(t), w(t))→ ([η0], [w0]) strongly in
[
Hs
p(0, 2π)

]2
, for all s ∈ [0, 1).

3.3 Boundary stabilization

This section is devoted to study the boundary stabilization of the Boussinesq system
posed on a bounded domain. More precisely, we consider the following initial boundary
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value problem 

ηt + wx − bηtxx = 0 for x ∈ (0, L), t ≥ 0
wt + ηx − dwtxx = 0 for x ∈ (0, L), t ≥ 0

ηxt(t, 0) =
w(t, 0)

2b
+ η(t, 0) for t ≥ 0

ηxt(t, L) =
w(t, L)

2b
− η(t, L) for t ≥ 0

wxt(t, 0) =
η(t, 0)

2d
+ w(t, 0) for t ≥ 0

wxt(t, L) =
η(t, L)

2d
− w(t, L) for t ≥ 0

η(0, x) = η0(x) for x ∈ (0, L)

w(0, x) = w0(x) for x ∈ (0, L).

(3.54)

If we multiply the �rst equation in (3.54) by η, the second one by w and integrate by
parts over (0, L), we obtain (at least formally)

d

dt

1

2
‖(η(t), w(t))‖2

[H1(0,L)]2 = −b
(
|η(t, L)|2 + |η(t, 0)|2

)
− d

(
|w(t, L)|2 + |w(t, 0)|2

)
.

(3.55)

Hence, ‖(η(t), w(t))‖[H1(0,L)]2 is nonincreasing and the boundary conditions play the role
of a feedback damping mechanism.

Before going into the stabilization problem, we �rst establish the following well-
posedness result for (3.54):

Theorem 3.3.1. Let s ∈ (1/2, 5/2) and (η0, w0) ∈ [Hs(0, L)]2. For any (η0, w0) ∈
[Hs(0, 2π)]2, there exists a unique solution (η, w) of system (3.54) in [C([0, T ];Hs(0, 2π))]2.
Moreover, the map

(η0, w0) ∈ [Hs(0, 2π)]2 −→ (η, w) ∈ [C([0, T ];Hs(0, 2π))]2

is Lipschitz continuous.

Proof. The proof will be done by using a �xed point argument. Therefore, in order to
write the problem as an integral equation, we set (η̂, ŵ) = (ηt, wt) and remark that (η̂, ŵ)
solves the elliptic problem((

1− b∂2
x

)
η̂,
(
1− d∂2

x

)
ŵ
)

= (−wx,−ηx), x ∈ (0, L), (3.56)

(η̂x(0), ŵx(0)) = (a1, a2), (3.57)

(η̂x(L), ŵx(L)) = (a3, a4), (3.58)

with

(a1, a2) =

(
w(t, 0)

2b
+ η(t, 0),

η(t, 0)

2d
+ w(t, 0)

)
,

(a3, a4) =

(
w(t, L)

2b
− η(t, L),

η(t, L)

2d
− w(t, L)

)
.
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Note that the solution (η̂, ŵ) of (3.56)-(3.58) may be written as

(η̂, ŵ) = (h1 + g1, h2 + g2),

where

(g1(x), g2(x)) =

(
a1x+

a3 − a1

2L
x2, a2x+

a4 − a2

2L
x2

)
,

and

(h1, h2) =
((

1− b∂2
x

)−1

N
(−wx −

(
1− b∂2

x

)
g1),

(
1− d∂2

x

)−1

N
(−ηx −

(
1− d∂2

x

)
g2)
)

is a solution of((
1− b∂2

x

)
h1,
(
1− d∂2

x

)
h2

)
=
(
−wx −

(
1− b∂2

x

)
g1,−ηx −

(
1− d∂2

x

)
g2

)
(h1,x(0), h2,x(0)) = (h1,x(L), h2,x(L)) = (0, 0),

where, for any α > 0, (1− α∂2
x)N denotes the elliptic operator with Neumann boundary

conditions. Thus,

ηt = η̂ = −
(
1− b∂2

x

)−1

N
(wx) +

(
1−

(
1− b∂2

x

)−1

N

(
1− b∂2

x

))
g1, (3.59)

and
wt = ŵ = −

(
1− d∂2

x

)−1

N
(ηx) +

(
1−

(
1− d∂2

x

)−1

N

(
1− d∂2

x

))
g2. (3.60)

We remark that
(

(1− α∂2
x)
−1
N ◦ ∂x

)
(Hs(0, L)) ⊂ Hs(0, L) for 1/2 < s < 5/2 and

‖
(
1− bα∂2

x

)−1

N
fx‖Hs(0,L) ≤ C‖f‖Hs(0,L), (3.61)

for any α > 0, where C is a positive constant.
Taking the above considerations into account, for any (η0, w0) ∈ [Hs(0, L)]2 we intro-

duce the operator

Γ(η, w)(t) := (Γ1η(t),Γ2w(t)) ,

where

Γ1η(t) :=η0 +

∫ t

0

(
−
(
1− b∂2

x

)−1

N
(wx)(τ)

)
dτ

+

∫ t

0

(
1−

(
1− b∂2

x

)−1

N

(
1− b∂2

x

)) [w(τ, 0)

2b
+ η(τ, 0)

]
xdτ

+

∫ t

0

(
1−

(
1− b∂2

x

)−1

N

(
1− b∂2

x

)) [w(τ, L)

2b
− η(τ, L)− w(τ, 0)

2b
− η(τ, 0)

]
x2dτ



40

and

Γ2w(t) :=w0 +

∫ t

0

(
−
(
1− d∂2

x

)−1

N
(ηx)(τ)

)
dτ

+

∫ t

0

(
1−

(
1− d∂2

x

)−1

N

(
1− d∂2

x

)) [η(τ, 0)

2d
+ w(τ, 0)

]
xdτ

+

∫ t

0

(
1−

(
1− b∂2

x

)−1

N

(
1− b∂2

x

)) [η(τ, L)

2d
− w(τ, L)− η(τ, 0)

2d
− w(τ, 0)

]
x2dτ.

Then, we seek (η, w) as a �xed point of the integral equation

(η, w)(t) = Γ(η, w)(t). (3.62)

Using (3.61), the Sobolev embedding Hs(0, L) ↪→ C([0, L]) and proceeding as in the
proof of Theorem 3.2.1, we have that

‖
(
Γ(η1, w1)− Γ(η2, w2)

)
‖[C([0,T ];Hs(0,L)]2 ≤

1

2
‖(η1, w1)− (η2, w2)‖[C([0,T ];Hs(0,L)]2 , (3.63)

and

‖Γ(η, w)‖[C([0,T ];Hs(0,L)]2 ≤ ‖(η
0, w0)‖[Hs(0,L)]2 +

1

2
‖(η, w)‖[C([0,T ];Hs(0,L)]2 . (3.64)

Then, for the choice R = 2‖(η0, w0)‖[Hs(0,L)]2 , estimates (3.63) and (3.64) allow us to

conclude that Γ : BR(0) ⊆ [C([0, T ];Hs(0, 2π)]2 −→ BR(0) is a contraction, hence it
admits a unique �xed point (η, w) ∈ BR(0) which solves (3.62). If s = 1, from (3.55) we
deduces that the solution exists for every T > 0. The continuity of the �ow map follows
from (3.64). This completes the proof.

The stabilization result reads as follows:

Theorem 3.3.2. For any (η0, w0) ∈ [H1(0, L)]
2
, the solution (η, w) of (3.54) given by

Theorem 3.3.1 satis�es

(η(t), w(t))→ (0, 0) weakly in
[
H1(0, L)

]2
, (3.65)

(η(t), w(t))→ (0, 0) strongly in [Hs(0, L)]2 for all s < 1,

as t→∞.

Proof. From (3.59) and (3.60), we deduce that ηt, wt ∈ C(R;H2(0, L)), so that (3.55) is
valid. Thus, the map t 7→ ‖(η(t), w(t))‖[H1(0,L)]2 is nonincreasing and admits a nonnegative
limit, as t→∞. Proceeding as in the proof of Theorem 3.2.2, we obtain the existence of
(η̃0, w̃0) ∈ [H1(0, L)]

2
and a sequence tn → +∞, such that

(η(tn), w(tn)) ⇀ (η̃0, w̃0) weakly in
[
H1(0, L)

]2
, (3.66)

(η(tn), w(tn))→ (η̃0, w̃0) strongly in [Hs(0, L)]2 , (3.67)
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and
(η(tn + ·), w(tn + ·))→ (η̃, w̃) in [C ([0, T ];Hs(0, L))]2 , (3.68)

for s < 1, where (η̃, w̃) ∈ [C ([0, T ];H1(0, L))]
2
denotes the solution of (3.54) with initial

data (η̃0, w̃0). From (3.55) we obtain

‖(η(tn+1), w(tn+1))‖2
[H1(0,L)]2

− ‖(η(tn), w(tn))‖2
[H1(0,L)]2

=

− 2b

∫ tn+1

tn

(|η(t, L)|2 + |η(t, 0)|2)dt− 2d

∫ tn+1

tn

(|w(t, L)|2 + |w(t, 0)|2)dt,

which allows us to conclude that

lim
n→+∞

(
b

∫ tn+1

tn

(|η(t, L)|2 + |η(t, 0)|2)dt+ d

∫ tn+1

tn

(|w(t, L)|2 + |w(t, 0)|2)dt

)
= 0. (3.69)

Thus,

b

∫ T

0

(|η̃(t, L)|2 + |η̃(t,0)|2)dt+ d

∫ T

0

(|w̃(t, L)|2 + |w̃(t, 0)|2)dt = 0 (3.70)

and therefore
η̃(t, L) = η̃(t, 0) = w̃(t, L) = w̃(t, 0) = 0, t ∈ (0, T ).

Let (η̂, ŵ) be the extension by zero of (η̃, w̃) for x ∈ (−a, a)\(0, L), where (−a, a) ⊃ (0, L)
is a interval. Then, (η̂, ŵ) solves

η̂t + ŵx − bη̂txx = 0 for x ∈ (−a, a), t ∈ (0, T )
ŵt + η̂x − dŵtxx = 0 for x ∈ (−a, a), t ∈ (0, T )
η̂(t,−a) = η̂(t, a) = 0; η̂x(t,−a) = η̂x(t, a) = 0 for t ∈ (0, T )
ŵ(t,−a) = ŵ(t, a) = 0; ŵx(t,−a) = ŵx(t, a) = 0 for t ∈ (0, T )
η̂(0, x) = η̂0(x) for x ∈ (−a, a)
ŵ(0, x) = ŵ0(x) for x ∈ (−a, a),

(3.71)
and satis�es

(η̂(t, x), ŵ(t, x)) = (0, 0) for (t, x) ∈ (0, T )× ((−a, a) \ (0, L)) ,

where

η̂0(x) =

{
η̃0(x) x ∈ (0, L),

0 x ∈ (−a, a) \ (0, L)

and

ŵ0(x) =

{
w̃0(x) x ∈ (0, L),

0 x ∈ (−a, a) \ (0, L).

We remark that Theorems 3.1.3 and 3.1.2 can be proved for a domain of the form (−a, a).
Therefore, since (η̂0, ŵ0) ∈ [H1

0 (−a, a)]2, from Theorem 3.1.2 it follows that (η̂, ŵ) ∈
[Cω([0, T ];H1

0 (−a, a))]
2
, and from Theorem 3.1.3 we deduce that (η̂0, ŵ0) = (0, 0). Hence,

(η̃0, w̃0) = (0, 0).
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Finally, from (3.66) and (3.67) we have that, as t→∞,

(η(t), w(t))→ (0, 0) weakly in
[
H1(0, L)

]2
,

(η(t), w(t))→ (0, 0) strongly in [Hs(0, L)]2 , for all s < 1.



Chapter 4

Stabilization for higher-order

Boussinesq system with generalized

damping on a periodic domain

This chapter is devoted to analyze the following system

ηt + wx − bηtxx + b2ηtxxxx + awxxx + β1Mα1η = −(ηw)x

−(a+ b− 1
3
)(ηwx)x, for x ∈ (0, 2π), t > 0

wt + ηx − dwtxx + d2wtxxxx + cηxxx + β2Mα2w = −wwx − c(wwx)xx
−(ηηxx)x + (c+ d− 1)wxwxx + (c+ d)ηxηxxx for x ∈ (0, 2π), t > 0

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t > 0, 0 ≤ r ≤ 3,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t > 0, 0 ≤ q ≤ 3

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π),

(4.1)

where b, d, b2, d2 > 0, β1, β2 ≥ 0, α1, α2 ∈ [0, 4], a, c < 0 or a = c > 0 andMαj are Fourier
multiplier operators de�ned as follows

Mαj : Hs+4
p (0, 2π)→ Hs

p(0, 2π),

Mαj

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

(1 + k2)
αj
2 âke

ikx (j = 1, 2).
(4.2)

By means of spectral analysis and Fourier expansion, we prove that the solutions of
the linearized system decay uniformly or not to zero, depending on the parameters of the
damping operators. In the uniform decay case, we show that the same property holds for
the nonlinear system.

We �rst study the linearized system.

43
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4.1 The linearized system

The aim of this section is to study the main properties of the linearized model correspond-
ing to (4.1). More precisely, we consider the following system

ηt + wx − bηtxx + b2ηtxxxx + awxxx + β1Mα1η = 0 for x ∈ (0, 2π), t > 0

wt + ηx − dwtxx + d2wtxxxx + cηxxx + β2Mα2w = 0 for x ∈ (0, 2π), t > 0

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t > 0, 0 ≤ r ≤ 3,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t > 0, 0 ≤ q ≤ 3

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π).

(4.3)

We prove the well-posedness and stabilization results.

4.1.1 Well-posedness

Given s ∈ R, let us introduce the Hilbert space

V s = Hs
p(0, 2π)×Hs

p(0, 2π), (4.4)

endowed with the inner product de�ned by

〈(f1, f2), (g1, g2)〉 = (f1, g1)s + (Hf2,Hg2)s, (4.5)

and the operator H de�ned in the following way

H

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

√
w1

w2

âke
ikx,

where w1 = 1−ak2
1+bk2+b2k4

and w2 = 1−ck2
1+dk2+d2k4

. Let us remark that system (4.3) can be
written in the following vectorial form η

w


t

(t) + A

 η

w

 (t) =

 0

0

 ,

 η

w

 (0) =

 η0

w0

 , (4.6)

where A is the linear compact operator in V s de�ned by

A =

 β1 (I − b∂2
x + b2∂

4
x)
−1
p Mα1 (I − b∂2

x + b2∂
4
x)
−1
p (∂x + a∂3

x)

(I − d∂2
x + d2∂

4
x)
−1
p (∂x + c∂3

x) β2 (I − b∂2
x + d2∂

4
x)
−1
p Mα2

 . (4.7)

We pass now to study the existence of solutions to (4.3). If we assume that the initial
data in (4.3) are given by

(η0, w0) =
∑
k∈Z

(
η̂0
k, ŵ

0
k

)
eikx, (4.8)
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then, at least formally, the solution of (4.3) can be written as

(η, w)(t, x) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx, (4.9)

where (η̂k(t), ŵk(t)) ful�lls
(1 + bk2 + b2k

4)(η̂k)t + ik(1− ak2)ŵk + β1(1 + k2)
α1
2 η̂k = 0, t ∈ (0, T ),

(1 + dk2 + d2k
4)(ŵk)t + ik(1− ck2)η̂k + β2(1 + k2)

α2
2 ŵk = 0, t ∈ (0, T ),

η̂k(0) = η̂0
k, ŵk(0) = ŵ0

k.

(4.10)

The following results, whose proof can be found in [1], are needed for this study.

Proposition 4.1.1. Let A a 2× 2 matrix with eigenvalues λ1 6= λ2. If

Q1 =
A− λ2I

λ1 − λ2

; Q2 =
A− λ1I

λ2 − λ1

,

then,

(i) A = λ1Q1 + λ2Q2;

(ii) Q2
1 = Q1 ; Q2

2 = Q2 ; Q2Q1 = Q1Q2 = 0;

(iii) Ak = λk1Q1 + λk2Q2,∀k ∈ N;

(iv) eAt = eλ1tQ1 + eλ2tQ2.

Proposition 4.1.2. Let A a 2× 2 matrix with eigenvalues λ0 = λ1 = λ2, and

Q = A− λ0I.

Then, eAt = (I + tQ) eλ0t.

We have the following result.

Lemma 4.1.1. The eigenvalues of the operator A de�ned by (4.7) are given by

λ±k =
1

2

(
β1(1 + k2)

α1
2

1 + bk2 + b2k4
+

β2(1 + k2)
α2
2

1 + dk2 + d2k4
± 2|k|

√
w1w2

√
e2
k − 1

)
(k ∈ Z∗), (4.11)

where

ek =
1

2k
√

(1− ak2)(1− ck2)
×(

β1(1 + k2)
α1
2

√
1 + dk2 + d2k4

1 + bk2 + b2k4
− β2(1 + k2)

α2
2

√
1 + bk2 + b2k4

1 + dk2 + d2k4

)
(4.12)
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and ζk = ek −
√
e2
k − 1 (k ∈ Z∗). The solution (η̂k(t), ŵk(t)) of (4.10) is given by

η̂k(t) = 1
1−ζ2k

[(
e−λ

+
k t − ζ2

ke
−λ−k t

)
η̂0
k + i

√
w1

w2

ζk

(
e−λ

+
k t − e−λ−k t

)
ŵ0
k

]
,

ŵk(t) = 1
1−ζ2k

[(
e−λ

−
k t − ζ2

ke
−λ+k t

)
ŵ0
k + i

√
w2

w1

ζk

(
e−λ

+
k t − e−λ−k t

)
η̂0
k

]
,

(4.13)

if |ek| 6= 1 and k > 0,


η̂k(t) = 1

1−ζ2k

[(
e−λ

−
k t − ζ2

ke
−λ+k t

)
η̂0
k − i

√
w1

w2

ζk

(
e−λ

+
k t − e−λ−k t

)
ŵ0
k

]
,

ŵk(t) = 1
1−ζ2k

[(
e−λ

+
k t − ζ2

ke
−λ−k t

)
ŵ0
k − i

√
w2

w1

ζk

(
e−λ

+
k t − e−λ−k t

)
η̂0
k

]
,

(4.14)

if |ek| 6= 1 and k < 0,
η̂k(t) =

[(
1− |k|√w1w2t

)
η̂0
k − ikw1tŵ

0
k

]
e−λ

+
k t,

ŵk(t) =
[
−ikw2tη̂

0
k +

(
1 + |k|√w1w2t

)
ŵ0
k

]
e−λ

+
k t,

(4.15)

if |ek| = 1 and k 6= 0, and �nally,
η̂0(t) = η̂0

0e
−β1t,

ŵ0(t) = ŵ0
0e
−β2t.

(4.16)

Proof. It is easy to see that (4.10) is equivalent to η̂k

ŵk


t

(t) + A(k)

 η̂k

ŵk

 (t) =

 0

0

 ,

 η̂k

ŵk

 (0) =

 η̂0
k

ŵ0
k

 ,

where

A(k) =


β1(1+k2)

α1
2

1+bk2+b2k4
ik(1−ak2)

1+bk2+b2k4

ik(1−ck2)
1+dk2+d2k4

β2(1+k2)
α2
2

1+dk2+d2k4

 .

Hence, the solution of (4.10) is given by η̂k

ŵk

 (t) = e−A(k) t

 η̂0
k

ŵ0
k

 . (4.17)



47

The eigenvalues λ±k of the matrix A(k) are

λ±k =
1

2

(
β1(1 + k2)

α1
2

1 + bk2 + b2k4
+

β2(1 + k2)
α2
2

1 + dk2 + d2k4

)
± (4.18)

± 1

2

√√√√( β1(1 + k2)
α1
2

1 + bk2 + b2k4
− β2(1 + k2)

α2
2

1 + dk2 + d2k4

)2

− 4k2(1− ak2)(1− ck2)

(1 + bk2 + b2k4)(1 + dk2 + d2k4)
,

k ∈ Z∗, that can be rewriten as (4.11).
Let us analyze the following cases:

(i) Case |ek| 6= 1 and k 6= 0.

We have that, λ+
k 6= λ−k . Let

Q1 =
A(k)− λ−k I
λ+
k − λ

−
k

. (4.19)

Since

β1(1 + k2)
α1
2

1 + bk2 + b2k4
− λ−k

λ+
k − λ

−
k

=
1

2

(
1 +

sgn(k)ek√
e2
k − 1

)
, (4.20)

β2(1 + k2)
α2
2

1 + dk2 + d2k4
− λ−k

λ+
k − λ

−
k

=
1

2

(
1− sgn(k)ek√

e2
k − 1

)
, (4.21)

ik(1− ak2)

1 + bk2 + b2k4

λ+
k − λ

−
k

= i
sgn(k)

√
w1

w2

2
√
e2
k − 1

, (4.22)

and

ik(1− ck2)

1 + dk2 + d2k4

λ+
k − λ

−
k

= i
sgn(k)

√
w2

w1

2
√
e2
k − 1

, (4.23)
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from (4.20)-(4.23) and (4.19) we obtain that

Q1 =


1
2

(
1 + sgn(k)ek√

e2k−1

)
i
sgn(k)

√
w1
w2

2
√
e2k−1

i
sgn(k)

√
w2
w1

2
√
e2k−1

1
2

(
1− sgn(k)ek√

e2k−1

)
 (4.24)

=



1

1− ζ2
k


1 i

√
w1

w2
ζk

i
√

w2

w1
ζk −ζ2

k

 if k > 0,

1

1− ζ2
k


−ζ2

k −i
√

w1

w2
ζk

−i
√

w2

w1
ζk 1

 if k < 0.

Similarly,

Q2 =


1
2

(
1− sgn(k)ek√

e2k−1

)
−i

sgn(k)
√
w1
w2

2
√
e2k−1

−i
sgn(k)

√
w2
w1

2
√
e2k−1

1
2

(
1 + sgn(k)ek√

e2k−1

)
 (4.25)

=



1

1− ζ2
k


−ζ2

k −i
√

w1

w2
ζk

−i
√

w2

w1
ζk 1

 if k > 0,

1

1− ζ2
k


1 i

√
w1

w2
ζk

i
√

w2

w1
ζk −ζ2

k

 if k < 0,

where ζk = ek −
√
e2
k − 1. On the other hand, from Proposition 4.1.1 we have that

e−A(k)t = e−λ
+
k tQ1 + e−λ

−
k tQ2. (4.26)

Thus, from (4.26) and (4.17) the solution of (4.10) is given by (4.13) and (4.14) in
the respective cases.

(ii) Case |ek| = 1 and k 6= 0.
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In this case,

λ+
k = λ−k =

1

2

(
β1(1 + k2)

α1
2

1 + bk2 + b2k4
+

β2(1 + k2)
α2
2

1 + dk2 + d2k4

)
.

Observe that, from (4.18), we have

1

2

(
β1(1 + k2)

α1
2

1 + bk2 + b2k4
− β2(1 + k2)

α2
2

1 + dk2 + d2k4

)
= |k|

√
w1w2.

Let

Q = λ+
k − A(k) =


1
2

(
β2(1+k2)

α2
2

1+dk2+d2k4
− β1(1+k2)

α1
2

1+bk2+b2k4

)
−ik(1−ak2)
1+bk2+b2k4

−ik(1−ck2)
1+dk2+d2k4

1
2

(
β1(1+k2)

α1
2

1+bk2+b2k4
− β2(1+k2)

α2
2

1+dk2+d2k4

)


(4.27)

=

 −|k|√w1w2 −ikw1

−ikw2 |k|√w1w2

 .

Hence, we infer from (4.27) and Proposition 4.1.2 that

e−A(k)t = e−λ
+
k t (I + tQ) = e−λ

+
k t

 1− t|k|√w1w2 −ikw1t

−ikw2t 1 + |k|√w1w2t

 . (4.28)

Furthermore, from (4.28) and (4.17) we have that the solution of (4.10) is given by
(4.15).

(iii) Case k = 0.

It is a direct consequence of (4.10).

Remark 4.1.1. Firstly, we note that λ±k = λ±−k and the following holds:

• If ek < 1, then the eigenvalues λ±k are complex numbers.

• If ek ≥ 1, then the eigenvalues λ±k are real numbers and λ+
k ≥ λ−k .

Let us analyze more closely the eigenvalues λ±k given by (4.11). In the sequel l, M and
C denote generic positive constant which may change from one row to another.

We have the following result.
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Proposition 4.1.3. Let α1 < 4 or α2 < 4 and |ek| ≥ 1. We suppose that, if αj =
max{α1, α2}, then βj > 0. There exists a constant l1 > 0, such that

λ−k ≥



l1
|k|max{α1, α2} if α1 + α2 ≤ 6, max{α1, α2} > 3,

l1
|k|4−min{α1, α2} if α1 + α2 > 6, max{α1, α2} > 3,

l1
|k|4−max{α1, α2} if max{α1, α2} ≤ 3.

(4.29)

Proof. From (4.18), λ−k can be written as

λ−k =
1

2

√
w1w2

(
r + s−

√
(r − s)2 − 4k2

)
= 2
√
w1w2

(
rs+ k2

r + s+
√

(r − s)2 − 4k2

)
(4.30)

∼ 2

k2

√
ac

b2d2

(
rs+ k2

r + s+
√

(r − s)2 − 4k2

)
,

where

r =
1√

(1− ak2)(1− ck2)
β1(1 + k2)

α1
2

√
1 + dk2 + d2k4

1 + bk2 + b2k4
,

and

s =
1√

(1− ak2)(1− ck2)
β2(1 + k2)

α2
2

√
1 + bk2 + b2k4

1 + dk2 + d2k4
.

From the relations above we obtain that

rs ∼ β1β2

ac
|k|α1+α2−4. (4.31)

Note that (r+ s) has order |k|max{α1, α2}−2 and (r− s)2 has order |k|2(max{α1, α2}−2). Let us
analyze the order of (r − s)2 − 4k2 :

(i) If max{α1, α2} > 3, then 2(max{α1, α2}−2) > 2. Hence, ((r − s)2 − 4k2) has order

|k|2(max{α1, α2}−2). Furthermore,
(
r + s+

√
(r − s)2 − 4k2

)
has order |k|max{α1, α2}−2.

(ii) If max{α1, α2} ≤ 3, then 2(max{α1, α2}− 2) ≤ 2. Thus, ((r − s)2 − 4k2) has order

|k|2 and
(
r + s+

√
(r − s)2 − 4k2

)
has order |k|.

Moreover, from (4.31), if α1 + α2 ≤ 6, we deduce that (rs+ k2) has order |k|2 and, if
α1 +α2 > 6, (rs+ k2) has order |k|α1+α2−4. Therefore, from (4.30), we have the following
cases:
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• If max{α1, α2} > 3 and α1 + α2 ≤ 6, then

λ−k ∼
2

k2

√
ac

b2d2

(
rs+ k2

r + s+
√

(r − s)2 − 4k2

)
∼ l1
k2

(
k2

|k|max{α1, α2}−2

)
(4.32)

= l1
k2

|k|max{α1, α2}
≥ l1
|k|max{α1, α2}

.

• If max{α1, α2} > 3 and α1 + α2 > 6, then

λ−k ∼
2

k2

√
ac

b2d2

(
rs+ k2

r + s+
√

(r − s)2 − 4k2

)
∼ l1
k2

(
|k|α1+α2−4

|k|max{α1, α2}−2

)
(4.33)

=
l1

|k|4+max{α1, α2}−(α1+α2)
=

l1
|k|4−min{α1, α2}

.

• If max{α1, α2} ≤ 3, we obtain that α1 + α2 ≤ 6 and

λ−k ∼
2

k2

√
ac

b2d2

(
rs+ k2

r + s+
√

(r − s)2 − 4k2

)
∼ l1
k2

(
k2

|k|

)
(4.34)

= l1
|k|3−max{α1, α2}

|k|4−max{α1, α2}
≥ l1
|k|4−max{α1, α2}

.

Remark 4.1.2. If α1 = α2 = 4, then limk→∞ λ
−
k = min{β1

b2

,
β2

d2

} and limk→∞<(λ±k ) =

1

2

(
β1

b2

+
β2

d2

)
. In this case,

λ−k ∼
C

k4

(
β1β2

ac
k4 + k2

)
≥


l2
k2

if β1β2 = 0,

l2 if β1β2 > 0,

for some positive constant l2.

Remark 4.1.3. If |ek| < 1, we have that

<(λ±k ) ∼ 1

2

(
β1

b2

|k|α1−4 +
β2

d2

|k|α2−4

)
.

Hence, we obtain the following cases:
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• If α1 < 4 and α2 < 4 (we suppose that, if αj = max{α1, α2}, then βj > 0), there
exists a constant l2 > 0, such that

<(λ±k ) ≥ l2
|k|4−max{α1, α2}

(
β1

b2

|k|α1−max{α1, α2} +
β2

d2

|k|α2−max{α1, α2}
)

≥ l2βj
|k|4−max{α1, α2}

.

• If α1 = α2 = 4, then there exists a constant l2 > 0, such that

<(λ±k ) ≥ l2.

Let us analyze more closely the case of double eigenvalue.

Lemma 4.1.2. With the notation from Lemma 4.1.1, we have that:

(i) There exists only a �nite number of values k ∈ Z with the property that |ek| = 1.

(ii) There exists a subsequence (ekm)m≥1 of (ek)k≥1, such that limkm→∞ |ekm| = 1 if and
only if one of the following cases holds

(C1) α1 = α2 = 3 and
1√
ac

(
β1

√
d
b
− β2

√
b
d

)
= 2,

(C2) 3 = α1 > α2 and β1 = 2
√

acb2
d2

,

(C3) 3 = α2 > α1 and β2 = 2
√

acd2
b2

.

(iii) If limk→∞ |ek| = 1, there exists a positive constant M , such that
1

|k||λ−k |
≤M.

Proof. For the �rst part of the Lemma, let us suppose that we have an in�nite number
of di�erent values (km)m≥1 ⊂ N, such that ekm = 1. Without loss of generality, we may
assume that limm→∞ km =∞. We have the following cases:

• If α1 > α2, then

1 = lim
m→∞

ekm =
β1

2

√
d2

b2

lim
m→∞

(1 + k2
m)

α1
2√

(1− ak2
m)(1− ck2

m)km
,

which implies that α1 = 3 and β1 = 2
√

acb2
d2
. Then,

−β2
(1 + k2

m)
α2
2

2km
√

(1− ak2
m)(1− ck2

m)

√
1 + bk2

m + b2k4
m

1 + dk2
m + d2k4

m

=

1− (1 + k2
m)

3
2

km

√
acb2(1 + dk2

m + d2k4
m)

d2(1 + bk2
m + b2k4

m)
=

lkm − pkm
lkm

1 +

√
pkm
lkm

, (4.35)
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where,

lkm = d2k
2
m(1− ak2

m)(1− ck2
m)(1 + bk2

m + b2k
4
m),

pkm = acb2

(
1 + k2

m

)3
(1 + dk2

m + d2k
4
m).

We have that
lkm − pkm

lkm
=

1

k2
m

∑3
j=0

θ1j

k2jm∑5
j=0

θ2j

k2jm

, where θ1
j , θ

2
j are constants that depend

only on the parameters a, b, d, b2, d2 and c.

Moreover, θ2
0 = acb2d2 6= 0, limm→∞

∑3
j=0

θ1j

k2jm∑5
j=0

θ2j

k2jm

=
θ1

0

θ2
0

and limm→∞

√
pkm
lkm

= 1.

Hence, from (4.35) we obtain

−β2
km (1 + k2

m)
α2
2

2
√

(1− ak2
m)(1− ck2

m)

√
1 + bk2

m + b2k4
m

1 + dk2
m + d2k4

m

=

∑3
j=0

θ1j

kjm∑5
j=0

θ2j

kjm

1 +
√

pkm
lkm

. (4.36)

Furthermore,

lim
m→∞

(
−β2

km (1 + k2
m)

α2
2

2
√

(1− ak2
m)(1− ck2

m)

√
1 + bk2

m + b2k4
m

1 + dk2
m + d2k4

m

)
=

θ1
0

2θ2
0

. (4.37)

Thus , if α2 ≥ 1, (4.37) implies that β2 = θ1
0 = 0. If α2 < 1, from (4.37) we obtain

θ1
0 = 0. Then, from (4.36) we deduce that

lim
m→∞

(
−β2

k3
m (1 + k2

m)
α2
2

2
√

(1− ak2
m)(1− ck2

m)

√
1 + bk2

m + b2k4
m

1 + dk2
m + d2k4

m

)
=

θ1
1

2θ2
0

, (4.38)

which implies that β2 = θ1
1 = 0. However, ekm can be written as

ekm =
(1 + k2

m)
3
2

km
√

(1− ak2
m)(1− ck2

m)

√
acb2(1 + dk2

m + d2k4
m)

d2(1 + bk2
m + b2k4

m)
. (4.39)

Therefore, ekm = 1 is equivalent to a eighth order equation in km which has at most
eight solutions. We have obtain a contradiction and, thus, this case is not possible.

• The case α1 < α2 may be treated as before, and we obtain the same conclusion.

• If α1 = α2 we obtain that limm→∞ ekm = 1 if and only if α1 = α2 = 3 and

1√
ac

(
β1

√
d

b
− β2

√
b

d

)
= 2. However, in this case ekm is given by
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ekm =
(1 + k2

m)
3
2

2km
√

(1− ak2
m)(1− ck2

m)

(
β1

√
1 + dk2

m + d2k4
m

1 + bk2
m + b2k4

m

− β2

√
1 + bk2

m + b2k4
m

1 + dk2
m + d2k4

m

)
.

Therefore, ekm = 1 is equivalent to a fourteenth order equation in km which has
at most fourteen solutions. We have again obtained a contradiction. Hence, there
exists only a �nite number of values k ∈ Z with the property that |ek| = 1.

The second part of the Lemma follows as before, by analyzing the similar three cases.

For the third part of Lemma, we consider the following cases:

• If (C1) holds, α1 = α2 = 3 and
1√
ac

(
β1

√
d
b
− β2

√
b
d

)
= 2. Then, from Proposition

4.1.3, we obtain a constant l1 > 0, such that |λ−k | ≥
l1
|k|
. Thus, there exists M =

1

l1

satisfying
1

|k||λ−k |
≤M.

• For the cases (C2) and (C3) we proceed as in the case above.

Remark 4.1.4. When we have complex eigenvalues, if limk→∞ |ek| = 1, from Remark

4.1.3, there exist a positive constant M , such that
1

|k||<(λ±k )|
≤M.

Since <(λ±k ) ≥ λ−k > 0, for |ek| ≥ 1, in the sequel we consider

|<(λ−k )| := |λ−k |.

We have the following result.

Theorem 4.1.1. There exists a constant M > 0, such that the solution (η̂k(t), ŵk(t)) of
(4.10) veri�es the following estimate,

|η̂k(t)|2 +
w1

w2

|ŵk(t)|2 ≤M

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
e−2t|<(λ−k )| (t ≥ 0, k ∈ Z). (4.40)

Proof. We have to analyze two di�erent cases.

• If there exists no subsequence (ekm)m≥1 of (ek)k≥1, such that limkm→∞ |ekm| = 1,
then

1 + |ζk|+ |ζk|2

|1− ζ2
k |

=
|1− |ζk||2

|1− ζ2
k |

+
3|ζk|
|1− ζ2

k |
=
|1− |ζk||
|1 + |ζk||

+
3|ζk|
|1− ζ2

k |

≤ 1 +
3

2
√
|ek|2 − 1

≤M,
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for some constant M > 0. Thus,

lim sup
|k|→∞

1 + |ζk|+ |ζk|2

|1− ζ2
k |

≤M. (4.41)

Hence, from (4.13)-(4.14) and (4.41) we have that

|η̂k(t)|2 ≤ e−2t|<(λ−k )|

(∣∣∣∣1 + |ζk|2

|1− ζ2
k |

∣∣∣∣2 |η̂0
k)|2 + 2

∣∣∣∣ |ζk||1− ζ2
k |

∣∣∣∣2 w1

w2

|ŵ0
k|2
)

(4.42)

≤M2e−2t|<(λ−k )|
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
,

and

|ŵk(t)|2 ≤ e−2t|<(λ−k )|

(∣∣∣∣1 + |ζk|2

|1− ζ2
k |

∣∣∣∣2 |ŵ0
k|2 + 2

∣∣∣∣ |ζk||1− ζ2
k |

∣∣∣∣2 w2

w1

|η̂0
k|2
)

(4.43)

≤M2e−2t|<(λ−k )|
(
|ŵ0

k|2 +
w2

w1

|η̂0
k|2
)
.

We multiply (4.43) by
w1

w2

and add the resulting estimate, hand to hand, to (4.42)

and obtain (4.40).

• Suppose that exists a subsequence (ekm)m≥1 of (ek)k≥1, such that limkm→∞ |ekm| = 1.

We claim that there exists a constant M > 0, such that∣∣∣∣∣e−λ
+
km

t − e−λ
−
km

t∣∣1− ζ2
km

∣∣
∣∣∣∣∣ ≤Me−t|<(λ−km )|. (4.44)

Suppose that it was proved. Then, from (4.13)-(4.14) we obtain

|η̂km(t)|

≤
∣∣∣∣ 1

1− ζ2
km

((
e−λ

+
km

t − e−λ
−
km

t
)

+
(
1− ζ2

km

)
e−λ

−
km

t
)
η̂0
km

∣∣∣∣
+

∣∣∣∣ i

1− ζ2
km

√
w1

w2

ζkm

(
e−λ

+
km

t − e−λ
−
km

t
)
ŵ0
km

∣∣∣∣
≤
(
Me−t|<(λ−km )| + e−t|<(λ−km )|

)
|η̂0
km|+

√
w1

w2

|ζkm|Me−t|<(λ−km )||ŵ0
km|

≤Me−t|<(λ−km )|
(
|η̂0
km|+

√
w1

w2

|ŵ0
km|
)
.

Hence, from (4.44) it follows that

|η̂km(t)|2 ≤M2e−2t|<(λ−km )|
(
|η̂0
km |

2 +
w1

w2

|ŵ0
km|

2

)
. (4.45)



56

Similarly, from (4.13)-(4.14) we get

|ŵkm(t)|2 ≤M2e−2t|<(λ−km )|
(
|ŵ0

km|
2 +

w2

w1

|η̂0
km |

2

)
. (4.46)

Combining (4.46) and (4.45) we obtain (4.40).

Now, we prove the claim (4.44). Since limk→∞
(
λ+
k − λ

−
k

)
= 0, there exists a positive

constant M , such that

|e−(λ+k −λ
−
k )t − 1| ≤M |λ+

km
− λ−km |t. (4.47)

Thus, from (4.47) we have that∣∣∣∣∣e−λ
+
km

t − e−λ
−
km

t∣∣1− ζ2
km

∣∣
∣∣∣∣∣ ≤ Me−t|<(λ−km )||km|

√
w1w2

∣∣∣√e2
km
− 1
∣∣∣ t∣∣∣√e2

km
− 1

(
ekm −

√
e2
km
− 1
)∣∣∣ (4.48)

∼ Mte−t|<(λ−km )|

|km|
∣∣∣(ekm −√e2

km
− 1
)∣∣∣ ≤ Mte−t|<(λ−km )|

|km|
,

where M is a positive constant. From the L'Hôpital rule we deduce that

te−t|<(λ−km )| ∼ e−t|<(λ−km )|

|<(λ−km)|
.

Hence, from (4.48) we obtain∣∣∣∣∣e−λ
+
km

t − e−λ
−
km

t∣∣1− ζ2
km

∣∣
∣∣∣∣∣ ≤ Me−t|<(λ−km )|

|km||<(λ−km)|
(4.49)

As limkm→∞ |ekm| = 1, from the Lemma 4.1.2, there exists a positive constant M ,

such that
1

|km||<(λ−km)|
≤M. Thus, from (4.49) we have

∣∣∣∣∣e−λ
+
km

t − e−λ
−
km

t∣∣1− ζ2
km

∣∣
∣∣∣∣∣ ≤Me−t|<(λ−km )|,

for some constant M > 0.

The following result gives the semigroup associated to our linear problem.

Theorem 4.1.2. The family of linear operators (S(t))t≥0 de�ned by

S(t)(η0, w0) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

(
(η0, w0) ∈ V s

)
, (4.50)
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where the coe�cients (η̂k(t), ŵk(t)) are given by (4.13)-(4.16), is a semigroup in V s and
veri�es the following estimate, for each s ∈ R,

‖S(t)(η0, w0)‖V s ≤M‖(η0, w0)‖V s
(
(η0, w0) ∈ V s

)
, (4.51)

where M is a positive constant.

Proof. From Theorem 4.1.1, there exists a constant M > 0, such that∥∥∥∥∥∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

∥∥∥∥∥
2

V s

=
∑
k∈Z

(
|η̂k(t)|2 +

w1

w2

|ŵk(t)|2
)

(1 + k2)s

≤M2
∑
k∈Z

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

(1 + k2)s = M2
∥∥(η0, w0

)∥∥2

V s
.

Then, (S(t))t≥0 is a well-de�ned linear and continuous operator and satis�es (4.51). It is
easy to see that S(0) = I, S(t1) ◦ S(t2) = S(t1 + t2) for any t1, t2 ∈ R+ and, in addition,
from (4.13)-(4.16) and the analysis developed in Theorem 4.1.1, we obtain that

‖S(t)(η0, w0)− (η0, w0)‖2
V s ≤ C

∑
k∈Z

Ψ2
k(t)

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

(1 + k2)s,

where

Ψk(t) = max

{∣∣∣∣∣e−λ
+
k t − ζ2

ke
−λ−k t

1− ζ2
k

− 1

∣∣∣∣∣ ,
∣∣∣∣∣e−λ

−
k t − ζ2

ke
−λ+k t

1− ζ2
k

− 1

∣∣∣∣∣ ,
∣∣∣∣∣e−λ

+
k t − e−λ−k t

1− ζ2
k

∣∣∣∣∣ |ζk|
}
.

Consequently limt→0 S(t)(η0, w0) = (η0, w0) in V s and the proof is complete.

Theorem 4.1.3. The in�nitesimal generator of the semigroup (S(t))t≥0 is a bounded
operator (D(−A),−A), where D(−A) = V s and A is given by (4.7).

Proof. We show that

lim
t→0

S(t)(η0, w0)− (η0, w0)

t
= −A(η0, w0), (4.52)

if and only if (η0, w0) ∈ V s.
This is equivalent to show that the derivative in zero of the series

∑
k∈Z(η̂k(t), ŵk(t))e

ikx,
where (η̂k(t), ŵk(t)) is given by (4.13)-(4.16), is convergent to −A(η0, w0) in V s if and only
if (η0, w0) ∈ V s.

If we denote by

SN(t) =
∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx,

a partial sum of the series, a straightforward computation which takes into account (4.10)
shows that

[SN ]t (0) = −A (SN) (0). (4.53)
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Let (D(B), B) the in�nitesimal generator of the semigroup (S(t))t≥0. If (η0, w0) ∈ D(B),
from (4.53) we obtain that

B(η0, w0) = lim
t→0

S(t)(η0, w0)− (η0, w0)

t
=

[∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

]
t

(0) (4.54)

= lim
N→∞

[SN ]t (0) = lim
N→∞

−A (SN) (0) = −A(η0, w0).

Hence, (η0, w0) ∈ D(−A) = V s and B(η0, w0) = −A(η0, w0), for any (η0, w0) ∈ D(B).
On the other hand, let (η0, w0) ∈ D(−A) = V s. We we have to show that the series[∑

k∈Z(η̂k(t), ŵk(t))e
ikx
]
t
(0) is convergent. This is equivalent to show that

[SN ]t (0) =

∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx


t

(0)

is a Cauchy sequence. Indeed,

‖ [SN+p]t (0)− [SN ]t (0)‖2
V s =

∑
N≤|k|≤N+p

(
|η̂k,t(0)|2 +

w1

w2

|ŵk,t(0)|2
)

(1 + k2)s. (4.55)

From (4.10) we deduce that

|η̂k,t(0)|2 =

∣∣∣∣∣ β1(1 + k2)
α1
2

1 + bk2 + b2k4

∣∣∣∣∣
2

|η̂k(0)|2 + k2w2
1|ŵk(0)|2 (4.56)

≤M |η̂k(0)|2 + k2w2
1|ŵk(0)|2

and

|ŵk,t(0)|2 = k2w2
2|η̂k(0)|2 +

∣∣∣∣∣ β2(1 + k2)
α2
2

1 + dk2 + d2k4

∣∣∣∣∣
2

|ŵk(0)|2 (4.57)

≤ k2w2
2|η̂k(0)|2 +M |ŵk(0)|2,

whereM is a positive constant depending only on α1, α2, β1, β2, b, b2, d and d2. Then, from
(4.56) and (4.57) we have that

|η̂k,t(0)|2 +
w1

w2

|ŵk,t(0)|2 ≤ k2w2
1w

2
2

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)

+M

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)

(4.58)

≤M

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)
.

Therefore, from (4.55) and (4.58) we obtain the following estimate,

‖ [SN+p]t (0)− [SN ]t (0)‖2
V s ≤M

∑
N≤|k|≤N+p

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)

(1 + k2)s (4.59)

= M
∑

N≤|k|≤N+p

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

(1 + k2)s,
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and as (η0, w0) ∈ D(−A) = V s,

[SN ]t (0) =

∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx


t

(0)

is a Cauchy sequence. Thus,

−A(η0, w0) = lim
N→∞

−A (SN) (0) = lim
N→∞

[SN ]t (0) =

[∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

]
t

(0)

= lim
t→0

S(t)(η0, w0)− (η0, w0)

t
= B(η0, w0).

Hence, (η0, w0) ∈ D(B) and −A(η0, w0) = B(η0, w0), for any (η0, w0) ∈ D(−A) = V s.

Remark 4.1.5. In fact much more can be said about the regularity of solutions of (4.3).
Since (4.3) is linear and −A is a bounded operator, we can easily deduce that (η, w) ∈
Cw ([0,∞);V s) , where Cw ([0,∞);V s) represents the class of the analytic functions de�ned
in [0,∞) with values in V s. Indeed, for t0 ∈ [0,∞)∥∥∥∥∥

∞∑
n=0

dn

dtn
(η, w)(t0)

(t− t0)n

n!

∥∥∥∥∥
V s

≤
∞∑
n=0

|t− t0|n

n!

∥∥∥∥ dndtn (η, w)(t0)

∥∥∥∥
V s

≤ ‖(η, w)(t0)‖V s
∞∑
n=0

|t− t0|n

n!
‖A‖nL(V s) <∞.

Hence, the series
∑∞

n=0
dn

dtn
(η, w)(t0) (t−t0)n

n!
is (absolutely) convergent and

(η, w)(t) = exp (−A(t− t0)) (η, w)(t0) =
∞∑
n=0

(t− t0)n

n!
(−A)n(η, w)(t0)

=
∞∑
n=0

dn

dtn
(η, w)(t0)

(t− t0)n

n!
.

As a direct consequence of the Theorems 4.1.2 and 4.1.3 and the general theory of the
evolution equations (see, for instance, [11]), we have the following existence and uniqueness
result:

Theorem 4.1.4. Let T > 0 and s ∈ R. For any (η0, w0) ∈ V s and (f, g) ∈ L1 (0, T ;V s),
there exists a unique solution (η, w) ∈ W 1,1 ([0, T ];V s) of the system η

w


t

(t) + A

 η

w

 (t) =

 f

g

 ,

 η

w

 (0) =

 η0

w0

 , (4.60)

which veri�es the constant variation formula(
η
w

)
(t) = S(t)

(
η0

w0

)
+

∫ t

0

S(t− s)
(
f
g

)
(s) ds. (4.61)
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4.1.2 Asymptotic behavior

In this section we study the behavior of the solutions of system (4.3), as the time goes to
in�nity. In order to have a dissipative system, we assume that

β1 ≥ 0, β2 ≥ 0, β2
1 + β2

2 > 0. (4.62)

Multiplying both sides of the �rst equation in (4.10) by η̂k and the second equation

by ŵk if a = c > 0 or by
(

1−ak2
1−k2

)
ŵk if a < 0, c < 0, and then adding the resulting �rst

equation to the conjugate of the resulting second equation, we obtain

d

dt
(1 + bk2 + b2k

4)

(
|η̂k|2 +

w1(k)

w2(k)
|ŵk|2

)
= −2β1(1 + k2)

α1
2 |η̂k|2 − 2β2(1 + k2)

α2
2

(
1− ak2

1− k2

)
|ŵk|2, (4.63)

for k ∈ Z. Thus, if we de�ne

E[η, w](t) =

∫ 2π

0

(∣∣(I − b∂2
x + b4∂

2
x)

1/2η(t, x)
∣∣2 +

∣∣(I − b∂2
x + b4∂

2
x)

1/2Hw(t, x)
∣∣2) dx,

(4.64)

then, from (4.63), we get

d

dt
E[η, w](t) ≤ −C

(
‖η‖2

H
α1
2
p (0,2π)

+ ‖w‖2

H
α2
2
p (0,2π)

)
, (4.65)

for any t ≥ 0 and some positive constant C > 0, depending only on β1, β2, a and c.
Firstly, we analyze the cases in which the solutions of (4.3) decay exponentially to

zero. We recall that the solutions to (4.3) decay exponentially in V s if there exist two
positive constants M and µ, such that

‖S(t)(η0, w0)‖V s ≤Me−µt‖(η0, w0)‖V s
(
t ≥ 0, (η0, w0) ∈ V s

)
. (4.66)

We have the following result.

Theorem 4.1.5. The solutions of (4.3) decay exponentially in V s if and only if α1 =
α2 = 4 and β1, β2 > 0. Moreover, µ from (4.66) is given by

µ = inf
k∈Z

{∣∣<(λ−k )
∣∣} , (4.67)

where the eigenvalues λ−k are given by (4.11).

Proof. Firstly, let α1 = α2 = 4 and β1, β2 > 0. In this case, Remarks 4.1.2 and 4.1.3
ensure that the eigenvalues λ−k are uniformly bounded away from the real axis:

|<(λ−k )| ≥ D > 0 (k ∈ Z),
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where D, is a positive number, depending on the parameters β1, β2, α1, α2, b, d, b2 and
d2. Thus, there exists µ = infk∈Z

{∣∣<(λ−k )
∣∣}, and from the Theorem 4.1.1, we obtain that

|η̂k(t)|2 +
w1

w2

|ŵk(t)|2 ≤M

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
e−2t|<(λ−k )|

≤Me−2tµ

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
,

for some constant M > 0, which implies (4.66).

On the other hand, we suppose that α2 < α1 < 4. Then, from the Proposition 4.1.3, there

exist l > 0 and δ > 0, such that |<(λ−k )| ≥ l

|k|δ
. Thus, from Theorem 4.1.1 we have

that

|η̂k(t)|2 +
w1

w2

|ŵk(t)|2 ≤Me−2t|<(λ−k )|
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

≤Me
−2tl

|k|δ

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
.

Hence, the decay rate cannot be exponential. Similarly, if α1 < α2 < 4. Therefore,
α1 = α2 = 4. Now, we suppose that β1β2 = 0. From Remark 4.1.2, there exists a constant

l > 0, such that |<(λ−k )| ≥ l

|k|2
. We infer that the same conclusion holds. Therefore,

β1, β2 > 0.

Now, we analyze the decay rate of solutions in the remaining cases. Since we know
from Theorem 4.1.5 that we do not have an exponential decay, we can only expect a
polynomial decay if the initial data have additional smoothness properties. We have the
following result:

Theorem 4.1.6. Suppose that (4.62) holds and α1, α2 ∈ [0, 4). Let δ > 0 be de�ned by

δ =


4−max{α1, α2} if max{α1, α2} ≤ 3,

max{α1, α2} if max{α1, α2} > 3, α1 + α2 ≤ 6

4−min{α1, α2} if max{α1, α2} > 3, α1 + α2 > 6.

(4.68)

Then, there exists M > 0, such that the solutions of (4.3) satisfy

‖S(t)(η0, w0)||V s ≤
M

(1 + t)
q
δ

||(η0, w0)||V s+q
(
t ≥ 0, (η0, w0) ∈ V s+q

)
, (4.69)

where s ∈ R and q > 0.
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Proof. We use an argument developed in [21]. Firstly, we remark that it is su�cient to
prove the result for t su�ciently large. From Proposition 4.1.3, there exists a constant
l > 0, such that

|<(λ±k )| ≥ l

|k|δ
(k ∈ Z∗) . (4.70)

From Theorem 4.1.1 and (4.70) we deduce that

||S(t)(η0, w0)||2V s ≤ M2
∑
k∈Z

(1 + k2)se−2tmin{|<(λ+k )|, |<(λ−k )|}
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

= M2

(
e−min{β1,β2}t

(
|η̂0

0|2 +
w1

w2

|ŵ0
0|2
)

+
∑
k∈Z∗

1

(1 + k2)q
e
−2lt

|k|δ (1 + k2)s+q
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
))

. (4.71)

Let us analyze e
−2l

|k|δ . As limk→∞ e
−2l

|k|δ = 1, there exists a constant M > 0, such that

e
−2l

|k|δ ≥M , for all |k| ≥ k0 and some k0 ∈ N. Moreover, if 1 ≤ |k| ≤ k0, then e−2l ≤ e
−2l

|k|δ .
Hence, we obtain that

∑
k∈Z∗

1

(1 + k2)q
e
−2lt

|k|δ (1 + k2)s+q
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

≤ e2l
∑

1≤|k|≤k0

1

(1 + k2)q
e
−2l(t+1)

|k|δ (1 + k2)s+q
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

+
1

M

∑
k0≤|k|

1

(1 + k2)q
e
−2l(t+1)

|k|δ (1 + k2)s+q
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

≤M
∑
k∈Z∗

1

(1 + k2)q
e
−2l(t+1)

|k|δ (1 + k2)s+q
(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)
.

(4.72)

Let us study the term Ek(t) =
1

(1 + k2)q
e
−2l(t+1)

|k|δ for k ∈ Z∗. Firstly, we remark that

x ≤ ex−1 for all x ≥ 0. Then, given ς > 0 the following inequality holds true

xςe−x ≤ c(ς) := ς ςe−ς (x ≥ 0). (4.73)

By using (4.73) with x = 2l(t+1)
|k|δ and ς = 2q

δ
we deduce that, there exists a constant

C(q, δ, l) > 0, such that

e
− 2l(t+1)

|k|δ ≤
(

2q
δ

) 2q
δ e

−2q
δ |k|2q

(2l(t+ 1))
2q
δ

≤ C(q, δ, l)
(1 + k2)q

(t+ 1)
2q
δ

.
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From the last estimate, we obtain for each k ∈ Z∗

|Ek(t)| ≤
C(q, δ, l)

(t+ 1)
2q
δ

(t ≥ 0). (4.74)

Therefore, from (4.71), (4.72) and (4.74) we have that

||S(t)(η0, w0)||2V s ≤M2

(
e−min{β1,β2}t

(
|η̂0

0|2 +
w1

w2

|ŵ0
0|2
)

+
1

(t+ 1)
2q
δ

||(η0, w0)||2V s+q

)
.

4.2 The nonlinear system

We are now in a position to prove the well-posedness and the stabilization for the solutions
of the nonlinear system (4.1) issued from small initial data, when the linearized system is
exponentially stable, i.e., under the hypothesis of Theorem 4.1.5. The proof will be done
by using a �xed point argument. Therefore, the applications of the following lemma,
proved in [5], will be needed:

Lemma 4.2.1. Let s ≥ −1. There exists a constant C > 0, depending only on s, such that

||fg||Hs
p(0,2π) ≤ C||f ||Hs+1

p (0,2π)||g||Hs+1
p (0,2π),

for any f, g ∈ Hs+1
p (0, 2π).

Remark 4.2.1. We write (4.1) in its integral form η

w


t

(t) +A

 η

w

 (t) +N

 η

w

 (t) =

 0

0

 ,

 η

w

 (0) =

 η0

w0

 , (4.75)

where N is de�ned by

N(η, w)

=

 (I − b∂2
x + b2∂

4
x)
−1
p [(ηw)x − b(ηw)xxx + (a+ b− 1)(ηwxx)x]

(I − b∂2
x + d2∂

4
x)
−1
p [wwx + c(wwx)xx + (ηηxx)x − (c+ d− 1)wxwxx − (c+ d)wwxxx]

 ,

(4.76)

and A is the compact operator de�ned by (4.7). Thus, we obtain that the solution of
(4.75) is given by

(η, w)(t) = S(t)(η0, w0)−
∫ t

0

S(t− τ)N(η, w)(τ) dτ, (4.77)

where {S(t)}t≥0 is the semigroup de�ned in Theorem 4.1.2.
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The main result of this section reads as follows:

Theorem 4.2.1. Let s ≥ 0 and suppose that β1, β2 > 0 and α1 = α2 = 4. There exists
r > 0, C > 0 and µ > 0, such that, for any (η0, w0) ∈ V s, satisfying

||(η0, w0)||V s ≤ r,

the system (4.1) admits a unique solution (η, w) ∈ C([0,∞);V s) which veri�es

‖(η(t), w(t))‖V s ≤ Ce−µt‖(η0, w0)‖V s (t ≥ 0) . (4.78)

Moreover, µ may be taken as in (4.67).

Proof. We remark that the hypothesis of Theorem 4.1.5 are veri�ed and there existM,µ >
0, such that (4.66) holds true. In order to use a �xed point argument, we de�ne the space

Ys,µ = {(η, w) ∈ C([0,∞);V s) : eµt(η, w) ∈ C([0,∞);V s)},

with the norm
||(η, w)||Ys,µ := sup

0≤t<∞
||eµt(η, w)(t)||V s ,

and the function Γ : Ys,µ → Ys,µ by

Γ(η, w)(t) = S(t)(η0, w0)−
∫ t

0

S(t− τ)N(η, w)(τ) dτ.

From Lemma 4.2.1, we deduce that

||N(η1, w1)||V s ≤ C||(η1, w1)||2V s , (4.79)

and

||N(η1, w1)−N(η2, w2)||V s ≤ C(||(η1, w1)||V s + ||(η2, w2)||V s)||(η1, w1)− (η2, w2)||V s ,
(4.80)

for any (η1, w1), (η2, w2) ∈ V s and for some C > 0. Then, combining the estimates above
and Theorem 4.1.5, we obtain

||Γ(η, w)(t)||V s ≤Me−µt||(η0, w0)||V s +M

∫ t

0

e−µ(t−τ)||N(η, w)(τ)||V s dτ

≤Me−µt||(η0, w0)||V s +MCe−µt sup
0≤τ≤t

||eµτ (η, w)(τ)||2V s , (4.81)

for any t ≥ 0 and some positive constants M and C. Thus, if we take (η, w) ∈ BR(0)
where

BR(0) =
{

(η, w) ∈ Ys,µ; ||(η, w)||Ys,µ ≤ R
}
,

from (4.81) we conclude that

||Γ(η, w)||Ys,µ ≤M ||(η0, w0)||V s +MC||(η, w)||2Ys,µ ≤Mr +MCR2. (4.82)



65

A similar calculations shows that, for any (η1, w1), (η2, w2) ∈ BR(0), we have that

|| (Γ(η1, w1)− Γ(η2, w2)) (t)||V s ≤Me−µt sup
0≤τ≤t

||eµτ (N(η1, w1)−N(η2, w2)) (τ)||V s

≤MCe−µt sup
0≤τ≤t

((||(η1, w1)(τ)||V s + ||(η2, w2)(τ)||V s)||eµτ ((η1, w1)− (η2, w2)) (τ)||V s)

≤ 2RMC sup
0≤τ≤t

||eµτ ((η1, w1)− (η2, w2)) (τ)||V s .

Therefore,

||Γ(η1, w1)− Γ(η2, w2)||Ys,µ ≤ 2RMC||(η1, w1)− (η2, w2)||Ys,µ . (4.83)

By choosing R = 2Mr and r ≤ 1

8CM2
, from (4.82) and (4.83) we deduce that the map

Γ : BR(0) ⊆ Ys,µ −→ BR(0)

is a contraction, hence it admits a unique �xed point (η, w) ∈ BR(0) which solves the
integral equation (4.75). Moreover,

||eµt(η, w)(t)||V s ≤ R = 2Mr (t ≥ 0).

The proof of the Theorem is complete.



Chapter 5

Controllability for higher-order linear

Boussinesq system on a periodic

domain

Considered in this chapter is a Boussinesq systems of the form{
ηt + wx − bηtxx + b2ηtxxxx + awxxx + a1wxxxxx = f(t, x) for x ∈ (0, 2π), t > 0,
wt + ηx − dwtxx + d2wtxxxx + cηxxx + c1ηxxxxx = g(t, x) for x ∈ (0, 2π), t > 0

(5.1)
with periodic boundary conditions

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t > 0, 0 ≤ r ≤ r0,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t > 0, 0 ≤ q ≤ q0

(5.2)

and initial condition

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π). (5.3)

The number of boundary conditions depends on the values of the parameters.
Its well-posedness in a suitable classical Banach space will be investigated in the next

section. Then, in sections 5.2 and 5.3, considering f and g as control inputs, we will study
its control problems. In particular, exact controllability will be established in section 5.2
with two control inputs while section 5.3 will be devoted to study the system with a single
control acting only on a subdomain ω ⊂ (0, 2π).

5.1 Well-posedness

Assume that the initial data in (5.3) and the forcing terms in (5.1) are given by

(η0, w0) =
∑
k∈Z

(
η̂0
k, ŵ

0
k

)
eikx, (f, g)(t) =

∑
k∈Z

(
f̂k(t), ĝk(t)

)
eikx.

66
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At least formally, the solution of (5.1)-(5.3) may be written as

(η, w)(t, x) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx,

where (η̂k(t), ŵk(t)) ful�ll
(1 + bk2 + b2k

4)(η̂k)t + ik(1− ak2 + a1k
4)ŵk = f̂k, t ∈ (0, T ),

(1 + dk2 + d2k
4)(ŵk)t + ik(1− ck2 + c1k

4)η̂k = ĝk, t ∈ (0, T ),

η̂k(0) = η̂0
k, ŵk(0) = ŵ0

k.

(5.4)

We have the following result.

Lemma 5.1.1. The solution (η̂k(t), ŵk(t)) of (5.4) is given by

η̂k(t) = cos[kσ(k)t]η̂0
k − i

√
w1

w2
sin[kσ(k)t]ŵ0

k +

∫ t

0

cos[kσ(k)(t− s)]
1 + bk2 + b2k4

f̂k(s)ds

−i
√

w1

w2

∫ t

0

sin[kσ(k)(t− s)]
1 + dk2 + d2k4

ĝk(s)ds,

ŵk(t) = −i
√

w2

w1
sin[kσ(k)t]η̂0

k + cos[kσ(k)t]ŵ0
k − i

√
w1

w2

∫ t

0

sin[kσ(k)(t− s)]
1 + bk2 + b2k4

f̂k(s)ds

+

∫ t

0

cos[kσ(k)(t− s)]
1 + dk2 + d2k4

ĝk(s)ds,

(5.5)

where, w1 =
1− ak2 + a1k

4

1 + bk2 + b2k4
, w2 =

1− ck2 + c1k
4

1 + dk2 + d2k4
and σ(k) =

√
w1w2.

Proof. The system (5.4) is equivalent to η̂k

ŵk


t

(t) + ikA(k)

 η̂k

ŵk

 (t) =

 f̂k
1+bk2+b2k4

ĝk
1+dk2+d2k4

 ,

 η̂k

ŵk

 (0) =

 η̂0
k

ŵ0
k

 ,

where

A(k) =

 0 w1

w2 0

 .

Hence, the solution of (5.4) is given by η̂k

ŵk

 (t) = e−iktA(k)

 η̂0
k

ŵ0
k

+

∫ t

0

e−ik(t−s)A(k)

 f̂k(s)
1+bk2+b2k4

ĝk(s)
1+dk2+d2k4

 ds. (5.6)
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The eigenvalues of the matrix A(k) are ±σ(k).
Under the above considerations, let

Q1 =
−ikA(k) + ikσ(k)

2ikσ(k)
=

1

2


1 −

√
w1

w2

−
√

w2

w1
1

 (5.7)

and

Q2 =
−ikA(k)− ikσ(k)

−2ikσ(k)
=

1

2


1

√
w1

w2√
w2

w1
1

 . (5.8)

Then, according to Proposition 4.1.1 given in the Chapter 3, we have that

e−ikA(k)t = eikσ(k)tQ1+e−ikσ(k)tQ2 =


cos[kσ(k)t] −i

√
w1

w2
sin[kσ(k)t]

−i
√

w2

w1
sin[kσ(k)t] cos[kσ(k)t]

 . (5.9)

Consequently, from (5.6) and (5.9), we deduce that the solution of (5.4) is given by (5.5).

Let us introduce the number l ∈ Z with the property that√
w1

w2

∼ C|k|l, when |k| → ∞, (5.10)

where C is a positive constant not depending on k. For each s ∈ R, we de�ne the space

V s = Hs
p(0, 2π)×Hs+l

p (0, 2π),

endowed with the inner product de�ned by

〈(f1, f2), (g1, g2)〉 = (f1, g1)s + (Hf2,Hg2)s,

and the operator H is de�ned in the following way

H

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

√
w1

w2

âke
ikx.

The following result gives the C0 group associated to our problem.

Theorem 5.1.1. The family of linear operators (S(t))t∈R de�ned by

S(t)(η0, w0) =
∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

(
(η0, w0) ∈ V s

)
, (5.11)
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where the Fourier coe�cients (η̂k(t), ŵk(t)) are given by
η̂k(t) = cos[kσ(k)t]η̂0

k − i
√

w1

w2
sin[kσ(k)t]ŵ0

k,

ŵk(t) = −i
√

w2

w1
sin[kσ(k)t]η̂0

k + cos[kσ(k)t]ŵ0
k,

(5.12)

is a group of isometries in V s, for any s ∈ R.
Proof. First, let us prove that S(t) is a well-de�ned linear and continuous operator
for any t ∈ R. If (η0, w0) =

∑
k∈Z (η̂0

k, ŵ
0
k) e

ikx ∈ V s, then we claim that the series∑
k∈Z (η̂k(t), ŵk(t)) e

ikx converges in C([0,∞), V s). This is equivalent to say that the
sequence

P =

∑
|k|≤N

(η̂k(t), ŵk(t)) e
ikx


N≥1

is a Cauchy sequence in C([0,∞), V s). From (5.12), we obtain

sup
t∈[0,∞)

∥∥∥∥∥∥
∑

N≤|k|≤N+p

(η̂k(t), ŵk(t))e
ikx

∥∥∥∥∥∥
2

V s

= sup
t∈[0,∞)

∑
N≤|k|≤N+p

(
|η̂k(t)|2 +

w1

w2

|ŵk(t)|2
)

(1 + k2)s

=
∑

N≤|k|≤N+p

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

(1 + k2)s.

Thus, P is a Cauchy sequence in C([0,∞), V s). Hence, the operator S(t) is well-de�ned
in V s and S(·)(η0, w0) ∈ C([0,∞), V s). Moreover, since∥∥∥∥∥∥

∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx

∥∥∥∥∥∥
2

V s

=
∑
|k|≤N

(
|η̂0
k|2 +

w1

w2

|ŵ0
k|2
)

(1 + k2)s,

we have that (S(t))t∈R is a family of linear and continuous operators which are also
isometries. It easy to see that S(0) = I, S(t) ◦ S(s) = S(t + s) for any t, s ∈ R and
limt→0 S(t)(η0, w0) = (η0, w0) in V s. Therefore, (S(t))t∈R is a group.

Let the number ẽ ∈ Z such that
√
w1w2 ∼ C|k|ẽ, when |k| → ∞, (5.13)

where C is a positive constant not depending on k. Then, we have the following result:

Theorem 5.1.2. The in�nitesimal generator of the group (S(t))t∈R is the bounded operator
(D(−A),−A) in V s, where D(−A) = V s+(1+max{−1,ẽ}) and A is given by

A =

 0 (I − b∂2
x + b2∂

4
x)
−1
p (∂x + a∂3

x + a1∂
5
x)

(I − d∂2
x + d2∂

4
x)
−1
p (∂x + c∂3

x + c1∂
5
x) 0

 .

(5.14)
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Proof. We show that

lim
t→0

S(t)(η0, w0)− (η0, w0)

t
= −A(η0, w0), (5.15)

if and only if (η0, w0) ∈ V s+(1+max{−1,ẽ}). This is equivalent to show that the derivative in
zero of the series

∑
k∈Z(η̂k(t), ŵk(t))e

ikx, where (η̂k(t), ŵk(t)) is given by (5.12), is conver-

gent to −A(η0, w0) in V s if and only if (η0, w0) ∈ V s+(1+max{−1,ẽ}).
If we denote by

SN(t) =
∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx,

a partial sum of the series, a straightforward computation which takes into account (5.12),
shows that

[SN ]t (0) = −A (SN) (0). (5.16)

Let (D(B),B) the in�nitesimal generator of the group (S(t))t∈R. If (η0, w0) ∈ D(B), we
have that

B(η0, w0) = lim
t→0

S(t)(η0, w0)− (η0, w0)

t
=

[∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

]
t

(0) (5.17)

= lim
N→∞

[SN ]t (0) = lim
N→∞

−A (SN) (0) = −A(η0, w0).

Hence, (η0, w0) ∈ D(−A) = V s+(1+max{−1,ẽ}) and B(η0, w0) = −A(η0, w0) for any
(η0, w0) ∈ D(B).

On the other hand, let (η0, w0) ∈ D(−A) = V s+(1+max{−1,ẽ}). We show that the series[∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

]
t

(0)

is convergent. This is equivalent to show that

[SN ]t (0) =

∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx


t

(0)

is a Cauchy sequence. Indeed, from (5.12) we obtain that

‖ [SN+p]t (0)− [SN ]t (0)‖2
V s =

∑
N≤|k|≤N+p

(
|η̂k,t(0)|2 +

w1

w2

|ŵk,t(0)|2
)

(1 + k2)s (5.18)

=
∑

N≤|k|≤N+p

k2σ(k)2

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)

(1 + k2)s

≤ C
∑

N≤|k|≤N+p

k2(1+e)

(
|η̂k(0)|2 +

w1

w2

|ŵk(0)|2
)

(1 + k2)s,
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where C is a positive constant. As (η0, w0) ∈ D(−A) = V s+(1+max{−1,ẽ}), then

[SN ]t (0) =

∑
|k|≤N

(η̂k(t), ŵk(t))e
ikx


t

(0)

is a Cauchy sequence. Thus,

−A(η0, w0) = lim
N→∞

−A (SN) (0) = lim
N→∞

[SN ]t (0) =

[∑
k∈Z

(η̂k(t), ŵk(t))e
ikx

]
t

(0)

= lim
t→0

S(t)(η0, w0)− (η0, w0)

t
= B(η0, w0).

Hence, (η0, w0) ∈ D(B) and −A(η0, w0) = B(η0, w0) for any (η0, w0) ∈ D(−A) =
V s+(1+max{−1,ẽ}).

System (5.1)-(5.3) may be written in the following form η

w


t

(t) +A

 η

w

 (t) =

 f ∗

g∗

 ,

 η

w

 (0) =

 η0

w0

 , (5.19)

where (f ∗, g∗)(t) =
∑

k∈Z

(
f̂k(t)

1+bk2+b2k4
, ĝk(t)

1+dk2+d2k4

)
eikx.

As a direct consequence of the Theorems 5.1.1 and 5.1.2 and the general theory of the
evolution equations (see, for instance, [11]), we have the following existence and uniqueness
result:

Theorem 5.1.3. Let T > 0 and s ∈ R. If (η0, w0) ∈ V s and (f ∗, g∗) ∈ L1 (0, T ;V s), then
(5.19) admits a unique solution

(η, w) ∈ C1([0, T ];V s+(1+max{−1,ẽ})) ∩ C ([0, T ];V s) .

Moreover, there exists a positive constant C > 0, depending only on s, such that

‖(η, w)‖C([0,T ];V s) ≤ C
(
‖(f ∗, g∗)‖L1(0,T ;V s) + ‖(η0, w0)‖V s

)
. (5.20)

5.2 Linear systems with two control inputs

In this section we study the controllability properties of the following linear system with
two control inputs:
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ηt + wx − bηtxx + b2ηtxxxx + awxxx + a1wxxxxx = f(t, x) for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx − dwtxx + d2wtxxxx + cηxxx + c1ηxxxxx = g(t, x) for x ∈ (0, 2π), t ∈ (0, T ),

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π).
(5.21)

We assume throughout this section that

b = d, b2 = d2, a = c, a1 = c1. (5.22)

Consider the change of variables

η = v + u and w = v − u.

In terms of these new variables, the equations in (5.21) become



vt + vx − bvtxx + b2vtxxxx + avxxx + a1vxxxxx = f ∗(t, x) for x ∈ (0, 2π), t ∈ (0, T ),

ut + ux − butxx + b2utxxxx + auxxx + a1uxxxxx = g∗(t, x) for x ∈ (0, 2π), t ∈ (0, T ),

∂rv

∂xr
(t, 0) =

∂rv

∂xr
(t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qu

∂xq
(t, 0) =

∂qu

∂xq
(t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

v(0, x) = v0(x), u(0, x) = u0(x) for x ∈ (0, 2π),
(5.23)

with

f ∗ =
f + g

2
, g∗ =

f − g
2

.

Let a ∈ C∞p (0, 2π) with a 6= 0. We take f ∗(t, x) in (5.23) to have the following form

f ∗(t, x) = a(x)h(t, x)

where

h(t, x) = a(x)
∞∑

j=−∞

fjqj(t)e
ijx, (5.24)

with fj and qj(t) to be determined later. Then, we have the following result that will be
needed in our proofs:
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Lemma 5.2.1. Let mj,k =
1

2π

∫ 2π

0

a2(x)ei(j−k)xdx, j, k = ±1,±2, · · ·. For any given

�nite sequence of nonzero integers kj, j = 1, 2, 3, . . . n, let

An =


mk1,k1 · · · mk1,kn

mk2,k1 · · · mk2,kn
...

...
...

mkn,k1 · · · mkn,kn

 . (5.25)

Then, An is an invertible n× n hermitian matrix.

Proof. (See also [25].) Let αj ∈ C, j = 1, 2, 3, . . . n, such that

n∑
j=1

αjmkj ,kl = 0, for l = 1, 2, 3, . . . n. (5.26)

Since

mkj ,kl =
1

2π

〈
a(·)eikj(·), a(·)eikl(·)

〉
,

where 〈, 〉 denote the inner product in the space L2(0, 2π), from (5.26) we obtain that〈
n∑
j=1

αja(·)eikj(·), a(·)eikl(·)
〉

= 0, for l = 1, 2, 3, . . . n.

Thus, 〈
n∑
j=1

αja(·)eikj(·),
n∑
l=1

αla(·)eikl(·)
〉

= 0,

which implies that

n∑
j=1

αja(x)eikjx = 0.

Since
{
eikjx

}n
j=1

form an orthonormal basis of Span
{
eikjx

}
in L2(0, 2π) and a 6= 0, we

get αj = 0, for j = 1, 2, 3, . . . n.

Now we return to the study of the controllability of system (5.23). Consider the
following equation: vt + vx − bvtxx + b2vtxxxx + avxxx + a1vxxxxx = a(x)h for x ∈ (0, 2π), t ∈ (0, T ),

v(0, x) = v0(x), for x ∈ (0, 2π).
(5.27)

Then, the solution v of the equation in (5.27) can be written as

v(t, x) =
∞∑

k=−∞

v̂k(t)e
ikx,
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where v̂k(t) solves

d

dt
v̂k(t) + ikσ(k)v̂k(t) =

1

1 + bk2 + b2k4

∞∑
j=−∞

fjqj(t)mj,k, (5.28)

with σ(k) =
1− ak2 + a1k

4

1 + bk2 + b2k4
and mj,k given by Lemma 5.2.1.

Let λk = ikσ(k) the eigenvalues of the operator
(

(I − b∂2
x + b2∂

4
x)
−1
p (∂x + a∂3

x + a1∂
5
x)
)

and γ > 0 satisfying

lim inf
k→∞

|λk+1 − λk| ≥ γ. (5.29)

We have the following controllability result for (5.27).

Proposition 5.2.1. Assume that the parameter a1 6= 0 and T > 2π
γ
, for γ given in (5.29).

Let s ∈ R and n1 given by

n1 =

 2, if b2 = 0, b 6= 0,
0, if b2 = b = 0,
4, if b2 6= 0.

(5.30)

Then, for any given initial state v0 ∈ Hs
p(0, 2π) and the terminal state vT ∈ Hs

p(0, 2π),
there exists a control h ∈ L2(0, T ;Hs−n1

p (0, 2π)), such that (5.27) admits a unique solution
v ∈ C([0, T ];Hs

p(0, 2π)) satisfying

v(T, x) = vT (x).

Moreover, there exists a constant C > 0, depending only on T and s, such that

‖h‖
L2(0,T ;H

s−n1
p (0,2π))

≤ C
(
‖v0‖Hs

p(0,2π) + ‖vT‖Hs
p(0,2π)

)
. (5.31)

Proof. From (5.28) we have that

v̂k(T )eikσ(k)T − v̂k(0) =
1

1 + bk2 + b2k4

∞∑
j=−∞

fjmj,k

∫ T

0

eikσ(k)τqj(τ)dτ. (5.32)

It may occur that the eigenvalues

λk = ikσ(k), k ∈ Z,

are not all di�erent. If we count only the distinct values, we obtain the sequence (λk)k∈I,
where I ⊂ Z has the property that λk1 6= λk2 for any k1, k2 ∈ I with k1 6= k2. For each
k1 ∈ Z set

I(k1) = {k ∈ Z; kσ(k) = k1σ(k1)}

and m(k1) = |I(k1)| (the number of elements in I(k1)). We have the following properties
of m(k1):
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• m(k1) ≤ 5. This is a consequence of the fact that m(k1) is less that the number of
entire roots of the equation xσ(x) = α, where α is an arbitrary real number.

• If a1 6= 0, then kσ(k) → ±∞ as k → ±∞. Hence, there exists k∗ ∈ N, such that
k ∈ I for |k| > k∗. This is a consequence of the fact that the function xσ(x) is
strictly increasing for |x| large enough.

Thus, there are only �nite many integers in I, saying kj, j = 1, . . . n, such that one can
�nd another integer k 6= kj with λk = λkj . Let

Ij =
{
k ∈ Z; k 6= kj, λk = λkj

}
, j = 1, . . . n.

Then,

Z = I ∪ I1 ∪ . . . ∪ In.

Note that Ij contains at most four integers, for m(kj) ≤ 5. We write

Ij =
{
kj,1, kj,2, kj,3, kj,m(kj)−1

}
, j = 1, . . . n

and rewrite kj as kj,0. Let

pk(t) := e−ikσ(k)t, k = 0,±1,±2, . . .

Then, the set
P := {pk(t); k ∈ I}

forms a Riesz basis for PT = SpanP , in L2(0, T ) if

T >
2π

γ
.

Let L := {qj(t); j ∈ I} be the unique dual Riesz basis for P in PT ; that is, the functions
in L are the unique elements of PT such that

〈qj, pk〉 =

∫ T

0

qj(t)pk(t)dt = δkj, k, j ∈ I.

In adition, we choose
qk = qkj,0 if k ∈ Ij.

For any k ∈ Z, we obtain that:

• If k ∈ I \ {k1, ..., kn}, then∑
r∈Z

frmr,k

∫ T

0

eikσ(k)τqr(τ)dτ (5.33)

=
∑

r∈I\{k1,...,kn}

frmr,k 〈qr, pk〉+
n∑
l=1

fkl,0mkl,0,k

〈
qkl,0 , pk

〉
+

n∑
j=1

m(kj)−1∑
l=1

fkj,lmkj,l,k

〈
qkj,l , pk

〉
= fkmk,k + 0 + 0 = fkmk,k.
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Thus, from (5.32) and (5.33) it follows that

v̂k(T )eikσ(k)T − v̂k(0) =
1

1 + bk2 + b2k4
fkmk,k for k ∈ I \ {k1, ..., kn}. (5.34)

• If k = kj,0, j = 1, ..., n, then

∑
r∈Z

frmr,kj,0

∫ T

0

eikj,0σ(kj,0)τqr(τ)dτ (5.35)

=
∑

r∈I\{k1,...,kn}

frmr,kj,0

〈
qr, pkj,0

〉
+

n∑
l=1

fkl,0mkl,0,kj,0

〈
qkl,0 , pkj,0

〉
+

n∑
s=1

m(ks)−1∑
l=1

fks,lmks,l,kj,0

〈
qks,l , pkj,0

〉
= 0 + fkj,0mkj,0,kj,0 +

m(kj)−1∑
l=1

fkj,lmkj,l,kj,0 =

m(kj)−1∑
l=0

fkj,lmkj,l,kj,0 .

Hence, from (5.32)and (5.35) we have that

v̂kj,0(T )eikj,0σ(kj,0)T − v̂kj,0(0) =
1

1 + bk2
j,0 + b2k4

j,0

m(kj)−1∑
l=0

fkj,lmkj,l,kj,0 , (5.36)

since k = kj,0, j = 1, ..., n.

• Now, suppose that k = kj,q, for j = 1, ..., n, and q = 1, ..,m(kj)− 1.

Since kj,q ∈ Ij, then λkj,q = λkj,0 . Thus,

eiλkj,qσ(λkj,q ) = eiλkj,0σ(λkj,0 ), j = 1, ..., n, q = 1, ..,m(kj)− 1.

Therefore, ∑
r∈Z

frmr,kj,q

∫ T

0

eikj,qσ(kj,q)τqr(τ)dτ = (5.37)

=
∑

r∈I\{k1,...,kn}

frmr,kj,q

〈
qr, pkj,0

〉
+

n∑
l=1

fkl,0mkl,0,kj,q

〈
qkl,0 , pkj,0

〉
+

n∑
s=1

m(ks)−1∑
l=1

fks,lmks,l,kj,q

〈
qks,l , pkj,q

〉
= 0 + fkj,0mkj,0,kj,q +

m(kj)−1∑
l=1

fkj,lmkj,l,kj,q =

m(kj)−1∑
l=0

fkj,lmkj,l,kj,q .
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From (5.32) and (5.37), we deduce that

v̂kj,q(T )eikj,0σ(kj,0)T − v̂kj,q(0) =
1

1 + bk2
j,q + b2k4

j,q

m(kj)−1∑
l=0

fkj,lmkj,l,kj,q , (5.38)

since k = kj,q, j = 1, ..., n, and q = 1, ..,m(kj)− 1.

Hence, from (5.34), (5.36) and (5.38) we have the following system

v̂k(T )eikσ(k)T − v̂k(0) =
1

1 + bk2 + b2k4
fkmk,k if k ∈ I \ {k1, ..., kn},

v̂kj,q(T )eikj,0σ(kj,0)T − v̂kj,q(0) =
1

1 + bk2
j,q + b2k4

j,q

m(kj)−1∑
l=0

fkj,lmkj,l,kj,q ,

if k = kj,q, j = 1, ..., n, and q = 0, ..,m(kj)− 1.

(5.39)

Finally, for given initial state v0 =
∑

k∈Z v̂
0
ke
ikx and terminal state vT =

∑
k∈Z v̂

T
k e

ikx,
with v̂0

k and v̂Tk replaced by v̂k(0) and v̂k(T ), respectively, from Lemma 5.2.1, system

(5.39) admits a unique solution
−→
f (. . . , f−2, f−1, f0, f1, f2, . . .). Since

mk,k =
1

2π

∫ 2π

0

a2(x)dx =: µ 6= 0,

from the �rst identity of (5.39), we get

fk =
1 + bk2 + b2k

4

µ

(
v̂k(T )eikσ(k)T − v̂k(0)

)
if k ∈ I \ {k1, ..., kn}.

Moreover, from the second identity of (5.39), for any j = 1, ..., n, it follows that

F j =
[
Bj
]−1 Vj,

where

F j =



fkj,0

fkj,1

...

fkj,m(kj)−1


,
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Vj =



(
1 + bk2

j,0 + b2k
4
j,0

) (
v̂kj,0(T )eikj,0σ(kj,0)T − v̂kj,0(0)

)
(
1 + bk2

j,1 + b2k
4
j,1

) (
v̂kj,1(T )eikj,0σ(kj,0)T − v̂kj,1(0)

)
...(

1 + bk2
j,m(kj)−1 + b2k

4
j,m(kj)−1

)(
v̂kj,m(kj)−1

(T )eikj,0σ(kj,0)T − v̂kj,m(kj)−1
(0)
)


,

Bj =



mkj,0,kj,0 mkj,1,kj,0 · · · mkj,m(kj)−1,kj,0

mkj,0,kj,1 mkj,1,kj,1 · · · mkj,m(kj)−1,kj,1

...
...

...
mkj,0,kj,m(kj)−1

mkj,1,kj,m(kj)−1
· · · mkj,m(kj)−1,kj,m(kj)−1


.

Observe that the existence of [Bj]−1
is guaranteed by Lemma 5.2.1.

Therefore, from (5.24) and (5.30), the following estimate holds

‖h‖2

L2(0,T ;H
s−n1
p (0,2π))

=

∫ T

0

‖a(x)
∑
k∈Z

fkqk(t)e
ikx‖2

H
s−n1
p (0,2π)

dt (5.40)

≤ C

∫ T

0

∑
k∈Z

|fkqk(t)|2(1 + k2)s−n1dt = C
∑
k∈Z

|fk|2‖qk‖2
L2(0,T )(1 + k2)s−n1

≤ C

∑
|k|≤k∗

|fk|2(1 + k2)s−n1 +
∑
|k|>k∗

|fk|2(1 + k2)s−n1


≤ C

∑
|k|≤k∗

‖
[
Bj
]−1 ‖2

∣∣(1 + bk2 + b2k
4)
(
v̂k(T )eikjσ(kj)T − v̂k(0)

)∣∣2 (1 + k2)s−n1

+ C
∑
|k|>k∗

∣∣∣∣1 + bk2 + b2k
4

µ

(
v̂k(T )eikσ(k)T − v̂k(0)

)∣∣∣∣2 (1 + k2)s−n1

≤ C
∑
k∈Z

|1 + bk2 + b2k
4|2
(
|v̂k(T )|2 + |v̂k(0)|2

)
(1 + k2)s−n1

≤ C
(
‖v0‖2

Hs
p(0,2π) + ‖vT‖2

Hs
p(0,2π)

)
.

Remark 5.2.1. Similarly, for given initial state u0 and terminal state uT in Hs
p(0, 2π),

we obtain the same result for the second equation of (5.23). Indeed, choose

g∗(t, x) = a2(x)
∞∑

j=−∞

gjq−j(t)e
ijx.
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Hence, system (5.23) admits a unique solution (v(t, x), u(t, x)) satisfying

(v(T, x), u(T, x)) = (vT (x), uT (x)),

for x ∈ (0, 2π).

Proposition 5.2.1 and Remark 5.2.1 lead to the following controllability result for the
system (5.21).

Theorem 5.2.1. Assume that the parameter a1 6= 0 and T > 2π
γ
, for γ given in (5.29).

Let s ∈ R and we de�ne n1 by

n1 =

 2, if b2 = 0, b 6= 0,
0, if b2 = b = 0,
4, if b2 6= 0.

Then, for any given initial state (η0, w0) and the terminal state (η1, w1) in [Hs
p(0, 2π)]2,

there exist (f, g) ∈ [L2(0, T ;Hs−n1
p (0, 2π))]2, such that the system (5.21) admits a unique

solution (η, w) ∈ [C([0, T ];Hs
p(0, 2π))]2 satisfying

η(T, ·) = η1(·) and w(T, ·) = w1(·) in Hs
p(0, 2π).

Proof. It is immediate, since (η, w) = (v+u, v−u) and (f, g) =

(
f ∗ + g∗

2
,
f ∗ − g∗

2

)
.

5.3 Linear systems with a single control input

In this section we study the control of the following system with a single control input:

ηt + wx + awxxx + a1wxxxxx = Qh for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx + c1ηxxxxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw

∂xq
(t, 0) =

∂qw

∂xq
(t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π),

(5.41)

where the operator Q is de�ned by

[Qh] (t, x) = q(x)h(t, x),

and q ∈ L2(0, 2π) is a given non-negative function supported in ω, and such that q(x) > C
on a (nonempty) open set ω′ ⊂ ω, C > 0 being some constant.
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The control problem will be solved by using the Hilbert Uniqueness Method (HUM)
introduced by J.-L. Lions [20]. Therefore, we consider the following backward initial
boundary value problem of the homogeneous adjoint system of (5.41):

ξt + ux + cuxxx + c1uxxxxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

ut + ξx + aξxxx + a1ξxxxxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rξ

∂xr
(t, 0) =

∂rξ

∂xr
(t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qu

∂xq
(t, 0) =

∂qu

∂xq
(t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

ξ(T, x) = ξT (x), u(T, x) = uT (x) for x ∈ (0, 2π).

(5.42)

Let
w̃1 = w̃1(k) = 1− ck2 + c1k

4, w̃2 = w̃2(k) = 1− ak2 + a1k
4.

We note that the eigenvalues of the state operator are given by λk = ikσ(k), where
σ(k) =

√
w1w2. Then, if c1 6= 0 and a1 6= 0, it follows that there exists γ > 0, such that

lim inf
k→∞

|λk+1 − λk| ≥ γ. (5.43)

Introduce the number l̃ ∈ Z with the property that√
w̃1

w̃2

∼ C|k|l̃, as |k| → ∞,

where C is a positive constant not depending on k. For each s ∈ R, we de�ne the space

Ṽ s = Hs
p(0, 2π)×Hs+l̃

p (0, 2π),

endowed with the inner product de�ned by

〈(f1, f2), (g1, g2)〉 = (f1, g1)s + (H̃f2, H̃g2)s,

and the operator H is de�ned in the following way

H̃

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

√
w̃1

w̃2

âke
ikx.

Letting t′ = T − t, x′ = 2π − x, one can easily see that (5.42) is (5.1)-(5.3) with f and
g being zero and a and a1 changed by c and c1, respectively. Consequently, we have the
following result.
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Theorem 5.3.1. Let T > 0 and s ∈ R. If (ξT , uT ) ∈ Ṽ s, then (5.42) admits a unique

solution (ξ, u) in C1([0, T ]; Ṽ s+(1+max{−1,ẽ})) ∩ C
(

[0, T ]; Ṽ s
)
. Moreover, there exists a

positive constant C > 0, depending only on s, such that

‖((ξ, u)‖C([0,T ];Ṽ s) ≤ C‖(ξT , uT )‖Ṽ s . (5.44)

If

(ξT , uT ) =
∑
k∈Z

(ξ̂Tk , û
T
k )eikx,

then the solution of (5.42) may be written as

(ξ, u)(t, x) =
∑
k∈Z

(ξ̂k(t), ûk(t))e
ikx,

where


ξ̂k(t) = 1

2

(
ξ̂T−k −

√
w̃1

w̃2
ûT−k

)
eikσ(k)(T−t) + 1

2

(
ξ̂T−k +

√
w̃1

w̃2
ûT−k

)
e−ikσ(k)(T−t),

ûk(t) = 1
2

(
ûT−k −

√
w̃2

w̃1
ξ̂T−k

)
eikσ(k)(T−t) + 1

2

(
ûT−k +

√
w̃2

w̃1
ξ̂T−k

)
e−ikσ(k)(T−t).

(5.45)

If we de�ne


V =

{
(η, w) ∈ L2(0, 2π)×H l

p(0, 2π) : ŵ0 = 0
}
,

Ṽ 0
∗,0 =

{
(ξ, u) ∈ L2(0, 2π)×H l̃

p(0, 2π) : û0 = 0
}
,

(5.46)

we obtain that V and Ṽ 0
∗,0 are closed subspaces of V 0 and Ṽ 0, respectively. Then, from

Theorem 5.1.1, the group (S(t))t∈R is well-de�ned in those spaces.
We also de�ne the duality product

〈(η, w), (ξ, u)〉V,Ṽ 0
∗,0

=
∑
k∈Z

(
η̂kξ̂k + ŵkûk

)
=

∫ 2π

0

η(x)ξ(x)dx+ 〈w, u〉l , (5.47)

that will play on important role in our approach. Taking (5.47) into account, the following
proposition presents an equivalent condition for the controllability of (5.41).

Proposition 5.3.1. The initial data (η0, w0) ∈ V is controllable to zero in time T > 0
with control h ∈ L2((0, T )× (0, 2π)) if and only if

〈
(η0, w0), (ξ(0), u(0))

〉
V,Ṽ 0
∗,0

+

∫ T

0

∫ 2π

0

[Qh] (t, x)ξ(t, x)dxdt = 0, (5.48)

for any (ξT , uT ) ∈ Ṽ 0
∗,0, where (ξ, u) is the solution of (5.42).
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Proof. We �rst prove (5.48) for regular data. Multiplying the �rst and the second equation
in (5.41) by ξ and u respectively, integrating by parts over the domain (0, T ) × (0, 2π)
and adding the resulting relations we have that∫ T

0

∫ 2π

0

[Qh] (t, x)ξ(t, x)dxdt =

∫ T

0

∫ 2π

0

[ηt + wx + awxxx + a1wxxxxx] ξdxdt

+

∫ T

0

∫ 2π

0

[wt + ηx + cηxxx + c1ηxxxxx]udxdt

=

∫ 2π

0

[
ηξ + wu

]T
0
dx =

〈
(η(T ), w(T )), (ξT , uT )

〉
V,Ṽ 0
∗,0
−
〈
(η0, w0), (ξ(0), u(0))

〉
V,Ṽ 0
∗,0
.

Hence, by a density argument we conclude that (η0, w0) ∈ V is controllable to zero in
time T > 0 if and only if (5.48) holds.

The variational equality (5.48) has a solution if and only if there exists a constant

C > 0, such that the following observation inequality holds for any (ξT , uT ) ∈ Ṽ 0
∗,0

‖(ξ(0), u(0))‖2
Ṽ 0
∗,0
≤ C

∫ T

0

∫ 2π

0

[Qξ] (t, x)ξ(t, x)dxdt. (5.49)

Then, we have the following result:

Theorem 5.3.2. There exist a time T > 0 and a constant C > 0, such that, for any
(ξT , uT ) ∈ Ṽ 0

∗,0, the corresponding solution (ξ, u) of (5.42) satis�es the inequality

‖(ξT , uT )‖2
Ṽ 0
∗,0
≤ C

∫ T

0

∫
ω′
|ξ(t, x)|2dxdt. (5.50)

Proof. Let (ξT , uT ) =
∑

k∈Z(ξ̂Tk , û
T
k )eikx. The corresponding solution of (5.42) is given by

(ξ, u)(t, x) =
∑
k∈Z

(ξ̂k(t), ûk(t))e
ikx,

with (ξ̂k(t), ûk(t)) satisfying (5.45). On the other hand,

ξ(t, x) =
1

2

∑
k∈Z

ξ̂T−k −
√
w̃1

w̃2

ûT−k

 eikσ(k)(T−t)eikx +
∑
k∈Z

ξ̂T−k +

√
w̃1

w̃2

ûT−k

 e−ikσ(k)(T−t)eikx


=

1

2

∑
k∈Z

ξ̂T−k −
√
w̃1

w̃2

ûT−k

 eikx +

ξ̂Tk +

√
w̃1

w̃2

ûTk

 e−ikx

 eikσ(k)(T−t)

=
1

2

∑
k1∈I

∑
k∈I(k1)

ξ̂T−k −
√
w̃1

w̃2

ûT−k

 eikx +

ξ̂Tk +

√
w̃1

w̃2

ûTk

 e−ikx

 eik1σ(k1)(T−t),
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where I ⊂ Z has the property that λk1 6= λk2 for any k1, k2 ∈ I with k1 6= k2, and for each
k1 ∈ Z

I(k1) = {k ∈ Z; kσ(k) = k1σ(k1)}

and m(k1) = |I(k1)|. By using a generalization of Inghams's inequality (see [2] and [18]),
from (5.43), we deduce that, for any T > 2π

γ
, there exists a constant C > 0, such that

∫
Ω′

∫ T

0

|ξ(t, x)|2dtdx ≥ C

∫
Ω′

∑
k1∈I

∣∣∣∣∣∣
∑

k∈I(k1)

(
ake
−ikx + bke

ikx
)∣∣∣∣∣∣

2

dx, (5.51)

where ak = ξ̂Tk +
√

w̃1

w̃2
ûTk , bk = ξ̂T−k −

√
w̃1

w̃2
ûT−k. As, lim inf |k|→∞ |λk| = ∞, there exists

k∗ ∈ N, large enough, such that m(k1) = 1 for all |k1| > k∗. Hence, we obtain that∑
k∈I(k1)

(
ake
−ikx + bke

ikx
)

= ak1e
−ik1x + bk1e

ik1x, for all |k1| > k∗.

Thus, if we set Ω′ = (α, β), the following holds:

∫
Ω′

∑
k1∈I
|k1|>k∗

∣∣∣∣∣∣
∑

k∈I(k1)

(
ake
−ikx + bke

ikx
)∣∣∣∣∣∣

2

dx =

∫
Ω′

∑
k1∈I
|k1|>k∗

∣∣ak1e−ik1x + bk1e
ik1x
∣∣2 dx (5.52)

=
∑
k1∈I
|k1|>k∗

[∫
Ω′

(
|ak1e−ik1x|2 + |bk1eik1x|2

)
dx+ 2

∫ β

α

<
(
ak1bk1e

2ik1x
)
dx

]

=
∑
k1∈I
|k1|>k∗

{
|Ω′|

(
|ak1|2 + |bk1|2

)
+ 2<

[
ak1bk1

(
e2ik1β − e2ik1α

2ik1

)]}

≥
∑
k1∈I
|k1|>k∗

[
|Ω′|

(
|ak1|2 + |bk1|2

)
− 1

k∗
(
|ak1|2 + |bk1|2

)]
≥ C

∑
k1∈I
|k1|>k∗

(
|ak1|2 + |bk1|2

)
= C

∑
k1∈I
|k1|>k∗

∑
k∈I(k1)

(
|ak|2 + |bk|2

)
,

for some positive constant C > 0. For |k1| ≤ k∗, let us consider the seminorm on the
sequences of numbers (ak, bk)k∈I(k1) given by

∣∣(ak, bk)k∈I(k1)

∣∣
∗ =

∫
Ω′

∣∣∣∣∣∣
∑

k∈I(k1)

(
ake
−ikx + bke

ikx
)∣∣∣∣∣∣

2

dx

1/2

. (5.53)
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Observe that (5.53) is a norm. Indeed, suppose that
∣∣(ak, bk)k∈I(k1)

∣∣
∗ = 0. Then,∑

k∈I(k1)

(
ake
−ikx + bke

ikx
)

= 0 in Ω′,

and by analytic continuation, we have that∑
k∈I(k1)

(
ake
−ikx + bke

ikx
)

= 0 in [0, 2π].

By using the orthogonality of
{
eikx
}
and

{
e−ikx

}
in [0, 2π], we deduce that ak = bk = 0,

for any k ∈ I(k1). Therefore, we obtain that |(, )|∗ is a norm on the sequences of numbers
(ak, bk)k∈I(k1). Moreover, as m(k1) = |I(k1)| ≤ 10 and |k1| ≤ k∗, we obtain that there
exists a constant C > 0, such that

C
∑
k1∈I
|k1|≤k∗

∑
k∈I(k1)

(
|ak|2 + |bk|2

)
= C

∑
k1∈I
|k1|≤k∗

∥∥(ak, bk)k∈I(k1)

∥∥2
(5.54)

≤
∑
k1∈I
|k1|≤k∗

∣∣(ak, bk)k∈I(k1)

∣∣2
∗ =

∑
k1∈I
|k1|≤k∗

∫
Ω′

∣∣∣∣∣∣
∑

k∈I(k1)

(
ake
−ikx + bke

ikx
)∣∣∣∣∣∣

2

dx.

From (5.51)-(5.54), we have that there exists a constant C > 0, such that∫
Ω′

∫ T

0

|ξ(t, x)|2dtdx ≥ C
∑
k1∈I

∑
k∈I(k1)

(
|ak|2 + |bk|2

)
(5.55)

= C
∑
k∈Z

|ξ̂Tk +

√
w̃1

w̃2

ûTk |2 + |ξ̂T−k −

√
w̃1

w̃2

ûT−k|2


≥ C
∑
k∈Z

|ξ̂Tk +

√
w̃1

w̃2

ûTk |2 + |ξ̂Tk −

√
w̃1

w̃2

ûTk |2


≥ C
∑
k∈Z

(
|ξ̂Tk |2 +

w̃1

w̃2

|ûTk |2
)

= C‖(ξT , uT‖2
Ṽ 0
∗,0

Since system (5.41) is conservative and time reversible, the null controllability is equiv-

alent to the exact controllability. Moreover, since (S(t))t∈R is a group of isometries in Ṽ 0
∗,0,

from Theorem 5.3.2 and the de�nition of the operator Q we obtain (5.49). Hence, the
following result holds:

Theorem 5.3.3. There exists a time T > 0, such that, for given

(η0, w0) ∈ V , (ηT , wT ) ∈ V ,
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one can �nd a control input h ∈ L2((0, T ) × (0, 2π)), such that (5.41) admits a unique
solution

(η, w) ∈ C([0, T ];V)

satisfying

(η(0, ·), w(0, ·)) = (η0, w0) (η(T, ·), w(T, ·)) = (ηT , wT ) in V .

Moreover, there exists a constant C > 0, such that

‖h‖L2((0,T )×(0,2π)) ≤ C
(
‖(η0, w0)‖V + ‖(ηT , wT )‖V

)
.



Chapter 6

Appendix

The results presented in this section were obtained in [26]. For the sake of completeness,
they are included in this work.

6.1 Study of some initial value problems

This section is devoted to present some explicit formulae and properties of a family of
initial value problems depending on several parameters. These results allow us to obtain
the asymptotic behavior of the eigenvalues and eigenfunctions of the di�erential operator
associated to (1.3) in Chapter 1. Firstly, we study the properties of the following simple
initial value problem, where σ ∈ C∗ is a complex nonzero parameter:

−bϕxx + σ1vx = f, x ∈ (0, 2π)
−dvxx + σ1ϕx = g, x ∈ (0, 2π)
ϕ(0) = ϕ0, ϕx(0) = ϕ1

v(0) = v0, vx(0) = v1.

(6.1)

In (6.1) and in the remaining part of the thesis b and d denote two positive real numbers.
We have the following result.

Lemma 6.1.1. Given


ϕ0

ϕ1

v0

v1

 ∈ C4 and

(
f
g

)
∈ (L2(0, 2π))2 there exists a unique

86
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solution

(
ϕ
v

)
of problem (6.1) given by the following formula

 ϕ(x)

v(x)

 =


ϕ0 +

√
bd

σ
sinh

(
σx√
bd

)
ϕ1 +

d

σ

(
cosh

(
σx√
bd

)
− 1

)
v1

v0 +
b

σ

(
cosh

(
σx√
bd

)
− 1

)
ϕ1 +

√
bd

σ
sinh

(
σx√
bd

)
v1

−

−


1

σ

∫ x

0

[√
d

b
sinh

(
σ(x− s)√

bd

)
f(s) +

(
cosh

(
σ(x− s)√

bd

)
− 1

)
g(s)

]
ds

1

σ

∫ x

0

[(
cosh

(
σ(x− s)√

bd

)
− 1

)
f(s) +

√
b

d
sinh

(
σ(x− s)√

bd

)
g(s)

]
ds

 .

(6.2)

In the remaining part of the thesis C denotes a positive constant that may change
from one line to another, but it is independent of the parameter σ and the initial data.
We de�ne the set

Z =

{
z ∈ C : |z| ≥ 1

2
, |<(z)| ≤ 1

}
, (6.3)

and we show that the following estimates for the solution

(
ϕ
v

)
of (6.1) hold if σ ∈ Z.

Lemma 6.1.2. Let

(
ϕ
v

)
be the solution of (6.1). There exists a positive constant C > 0

such that the following estimates hold for any x ∈ (0, 2π) and σ ∈ Z:

|ϕ(x)| ≤ |ϕ0|+ C

|σ|

[
|ϕ1|+ |v1|+

∫ x

0

|f(s)| ds +

∫ x

0

|g(s)| ds
]
,

|v(x)| ≤ |v0|+ C

|σ|

[
|ϕ1|+ |v1|+

∫ x

0

|f(s)| ds +

∫ x

0

|g(s)| ds
]
,

max {|ϕx(x)|, |vx(x)|} ≤ C

[
|ϕ1|+ |v1|+

∫ x

0

|f(s)| ds+

∫ x

0

|g(s)| ds
]
.

(6.4)

Now, we consider system (6.1) with f ≡ g ≡ 0
−bϕxx + σvx = 0, x ∈ (0, 2π)
−dvxx + σϕx = 0, x ∈ (0, 2π)
ϕ(0) = ϕ0, v(0) = v0

ϕx(0) = ϕ1, vx(0) = v1,

(6.5)
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and the following system 
ξ − bξxx + σζx = 0, x ∈ (0, 2π)
ζ − dζxx + σξx = 0, x ∈ (0, 2π)
ξ(0) = ξ0, ξx(0) = ξ1,
ζ(0) = ζ0, ζx(0) = ζ1,

(6.6)

for which we have he following result:

Proposition 6.1.1. There exists a positive constant C > 0 such that, for any σ ∈ Z and

any

(
ξ
ζ

)
and

(
ϕ
v

)
solutions of (6.6) and (6.5), respectively, with the same initial

condition


ξ0

ξ1

ζ0

ζ1

, the following estimate holds

‖ξ − ϕ‖L∞ + ‖ζ − v‖L∞ ≤
C

|σ|

[
|ξ0|+ |ζ0|+

1

|σ|
(|ξ1|+ |ζ1|)

]
. (6.7)

Finally, the di�erence between the solutions of (6.6) and (6.1) are given by the following
result.

Proposition 6.1.2. Let

(
ϕ
v

)
and

(
ξ
ζ

)
solutions of (6.1) and (6.6), respectively,

with f ≡ g ≡ 0. Then, there exists a positive constant C > 0, such that

|ξx(x)− ϕx(x)|+ |ζx(x)− vx(x)| ≤ C

|σ1|
(|ξ1|+ |ζ1|) + C|σ1 − σ|

(
|ϕ1|+ |v1|

)
+

(6.8)

+ C
[
|ξ1 − ϕ1|+ |ζ1 − v1|+ |ξ0|+ |ζ0|

]
.

6.2 Spectral analysis of the operator A introduced in the Chapter

2

Given b, d > 0, we de�ne the operators A, B : (H1
0 (0, 2π))2 → (H1

0 (0, 2π))2 given by

A = −

 0 (I − b∂2
x)
−1
∂x

(I − d∂2
x)
−1
∂x 0

 , B = −

 0 (−b∂2
x)
−1
∂x

(−d∂2
x)
−1
∂x 0

 .

(6.9)
Recall that, for α > 0, the operator (I − α∂2

x)
−1 is de�ned in the following way:

(I − α∂2
x)
−1ϕ = v ⇔

{
v − αvxx = ϕ

v(0) = v(2π) = 0.
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Then, if ϕ ∈ L2(0, 2π), we have that there exists a unique v ∈ H2(0, 2π) ∩ H1
0 (0, 2π)

verifying the above equation and (I − α∂2
x)
−1 : L2(0, 2π) → L2(0, 2π) is a well-de�ned,

compact operator. Similarly, for α > 0, the operator (−α∂2
x)
−1 : L2(0, 2π) → L2(0, 2π)

de�ned by

(−α∂2
x)
−1ϕ = v ⇔

{
−αvxx = ϕ

v(0) = v(2π) = 0,

is a well-de�ned, compact operator in L2(0, 2π).
In this section and the rest of the paper, µ ∈ C is called eigenvalue of the operator

A (B) if there exists a nontrivial vector Φ =

(
ϕ
v

)
∈ (H1

0 (0, 2π))2, called eigenfunction

corresponding to µ, such that µAΦ = Φ (µBΦ = Φ, respectively). The following two
theorems are devoted to the spectral analysis of theses operators.

Theorem 6.2.1. The eigenvalues of the operator B are µ̃n =
√
bdn i with n ∈ Z∗. Each

eigenvalue µ̃n is double and has two independent eigenfunctions given by

Φ̃1
n =

b

µ̃n


√
d

b
sinh

(
µ̃nx√
bd

)
cosh

(
µ̃nx√
bd

)
− 1

 , Φ̃2
n =

d

µ̃n

 cosh

(
µ̃nx√
bd

)
− 1√

b
d

sinh
(
µ̃nx√
bd

)
 (n ∈ Z∗). (6.10)

Moreover, the sequence (Φ̃j
n)n∈Z∗, j∈{1,2} forms an orthonormal basis of (H1

0 (0, 2π))2.

Proof. By using Lemma 6.1.1, with ϕ0 = v0 = 0 and f = g = 0, we deduce that

(
ϕ
v

)
is an eigenfunction of B corresponding to the eigenvalue µ if and only if

 ϕ(x)

v(x)

 =


√
bd

µ
sinh

(
µx√
bd

)
ϕ1 +

d

µ

(
cosh

(
µx√
bd

)
− 1

)
v1

b

µ

(
cosh

(
µx√
bd

)
− 1

)
ϕ1 +

√
bd

µ
sinh

(
µx√
bd

)
v1

 , (6.11)

and ∣∣∣∣∣∣∣∣∣∣

√
bd

µ
sinh

(
2πµ√
bd

)
d

µ

(
cosh

(
2πµ√
bd

)
− 1

)
b

µ

(
cosh

(
2πµ√
bd

)
− 1

) √
bd

µ
sinh

(
2πµ√
bd

)
∣∣∣∣∣∣∣∣∣∣

= 0. (6.12)

From (6.12) it follows that the eigenvalues (µ̃n)n∈Z∗ are the roots of the equation

exp

(
2πµ√
bd

)
= 1

and Φ̃1
n and Φ̃2

n given by (6.10) are two independent eigenfunctions corresponding to
µ̃n.
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We pass to analyze the spectral properties of the operator A. The main di�erence
with respect to B is that we do not have an explicit representation formula as (6.10) for
the eigenfunctions of A. In order to complete the task, we use a strategy which combines
two dimensional versions of the shooting method and Rouché's Theorem.

Theorem 6.2.2. The eigenvalues of the operator A are purely imaginary numbers (µjn)n∈Z∗, j∈{1,2}
with the property that

µjn = µ̃n +O
(

1

|n|

)
(n ∈ Z∗, j ∈ {1, 2}) . (6.13)

Moreover, to each eigenvalue µjn corresponds an eigenfunction Φj
n given by

Φj
n = Φ̃j

n +O
(

1

|n|2

)
(n ∈ Z∗, j ∈ {1, 2}) , (6.14)

with the property that the sequence (Φj
n)n∈Z∗, j∈{1,2} forms an orthogonal basis of (H1

0 (0, 2π))2.

Proof. Let us �rst remark that A is a compact skew-adjoint operator in (H1
0 (0, 2π))2.

Indeed, this follow immediately by taking into account the de�nition of A in (6.9) and
that the following relations hold for any ϕj, vj ∈ D(0, 2π) and j = 1, 2,〈
A
(
ϕ1

v1

)
,

(
ϕ2

v2

)〉
H1

0

= −
∫ 2π

0

∂x(I−b∂2
x)
−1v1,xϕ2,x dx−

∫ 2π

0

∂x(I−d∂2
x)
−1ϕ1,xv2,x dx

=

∫ 2π

0

(I − b∂2
x)
−1v1,xϕ2,xx dx+

∫ 2π

0

(I − d∂2
x)
−1ϕ1,xv2,xx dx

=

∫ 2π

0

v1,x∂x(I−b∂2
x)
−1ϕ2,x dx+

∫ 2π

0

ϕ1,x∂x(I−d∂2
x)
−1v2,x dx = −

〈(
ϕ1

v1

)
,A
(
ϕ2

v2

)〉
H1

0

.

It follows that A has a sequence of purely imaginary eigenvalues tending to in�nity. In
order to localize these eigenvalues, let us de�ne, for given δ > 0 and N ∈ N, the sets

Dn(δ) =

{
(µ, γ) ∈ C2

∣∣∣∣ |µ− µ̃n|2 + |γ|2 ≤ δ2

n2

}
, Γn(δ) = ∂Dn(δ) (|n| > N),

DN =

{
(µ, γ) ∈ C2

∣∣∣∣ |<µ| ≤ 1, |=µ| ≤
√
bd

(
N +

1

2

)
, |γ| ≤ 1

}
, ΓN = ∂DN .

Also, let us de�ne the maps F j, Gj : C2 → C2, j ∈ {1, 2}, given by

F j(µ, γ) =

(
ϕj(µ, γ, 2π)
vj(µ, γ, 2π)

)
, Gj(µ, γ) =

(
ϕ̃j(µ, γ, 2π)
ṽj(µ, γ, 2π)

)
, (6.15)

where

(
ϕ1(µ, γ, · )
v1(µ, γ, · )

)
,

(
ϕ2(µ, γ, · )
v2(µ, γ, · )

)
,

(
ϕ̃1(µ, γ, · )
ṽ1(µ, γ, · )

)
and

(
ϕ̃2(µ, γ, · )
ṽ2(µ, γ, · )

)
are solu-

tions of the following initial values problems
ϕ1 − bϕ1

xx + µv1
x = 0, x ∈ (0, 2π)

v1 − dv1
xx + µϕ1

x = 0, x ∈ (0, 2π)
ϕ1(0) = 0, ϕ1

x(0) = 1
v1(0) = 0, v1

x(0) = γ,

(6.16)
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ϕ2 − bϕ2

xx + µv2
x = 0, x ∈ (0, 2π)

v2 − dv2
xx + µϕ2

x = 0, x ∈ (0, 2π)
ϕ2(0) = 0, ϕ2

x(0) = γ
v2(0) = 0, v2

x(0) = 1,

(6.17)


−bϕ̃1

xx + µṽ1
x = 0, x ∈ (0, 2π)

−dṽ1
xx + µϕ̃1

x = 0, x ∈ (0, 2π)
ϕ̃1(0) = 0, ϕ̃1

x(0) = 1
ṽ1(0) = 0, ṽ1

x(0) = γ,

(6.18)


−bϕ̃2

xx + µṽ2
x = 0, x ∈ (0, 2π)

−dṽ2
xx + µϕ̃2

x = 0, x ∈ (0, 2π)
ϕ̃2(0) = 0, ϕ̃2

x(0) = γ
ṽ2(0) = 0, ṽ2

x(0) = 1,

(6.19)

respectively.
According to Theorem 6.2.1, µ̃ is an eigenvalue of B if and only if G1

0(µ̃, 0) = 0 or
G2

0(µ̃, 0) = 0. Moreover, from de�nition (6.15) and (6.16)-(6.17), we deduce that µ is an
eigenvalue of A if and only if there exists γ ∈ C such that F 1

0 (µ, γ) = 0 or F 2
0 (µ, γ) = 0.

Hence, we have reduced the problem of �nding the eigenvalues of A to the problem of
determining the zeros of the maps (F j)j=1,2. We'll analyze only the zeros of the map F 1,
for those of F 2 the study being similar. Firstly note that the maps F 1 and G1 are analytic
and the following estimates hold∣∣F 1(µ, γ)−G1(µ, γ)

∣∣ ≤ C1

|µ|2

(
|<µ| ≤ 1, |γ| ≤ 1, |µ| ≥ 1

2

)
, (6.20)

∣∣G1(µ, γ)
∣∣ ≥ C2δ

|µ|2
((µ, γ) ∈ Γn(δ)) , (6.21)

for some positive constants C1, C2 and |n| > N . Indeed, since µ ∈ Z and |γ| ≤ 1, (6.20)
is a consequence of Proposition 6.1.1. On the other hand, (6.21) follows from the fact
that there exists C > 0 such that the following estimate holds

min

{∣∣∣∣sinh

(
2πµ√
bd

)∣∣∣∣ , ∣∣∣∣cosh

(
2πµ√
bd

)
− 1

∣∣∣∣} ≥ Cδ

|µ|

(
µ ∈ C, |µ−

√
bdn i| = δ

|n|

)
,

(6.22)
which is a direct consequence of Lemma 6.1.1. It follows from the multidimensional version
of Rouché's Theorem [22, Theorem 1] (see, also, [23, Theorem 3]) that there exists δ > 0
and N ∈ N such that the maps F 1 and G1 have the same number of zeros in Dn(δ) for
each |n| > N . Since G1 vanishes once in (µ̃n, 0) in Dn(δ), it follows that F 1 has a unique
zero (µ1

n, γ
1
n) in Dn(δ). Thus, we have proved the existence of the eigenvalues (µ1

n)|n|>N
of A and the corresponding asymptotic estimates (6.13). From the analysis of the map
F 2, we get the existence of a family of zeros (µ2

n, γ
2
n)|n|>N from which we obtain the other

sequence of eigenvalues (µ2
n)|n|>N of A and the corresponding asymptotic estimate. The

existence of the eigenvalues (µ1
n)|n|≤N and (µ2

n)|n|≤N is obtained in a similar way, therefore
we omit the details.

Let us pass to the analysis of the eigenfunctions. To each eigenvalues µjn corresponds
a unique normalized eigenfunction Φj

n which veri�es (2.29) with γ = γ1
n or (6.17) with
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γ = γ2
n, respectively. Since |γ1

n| ≤ δ
n
, |γ2

n| ≤ δ
n
and |µjn − µ̃n| ≤ δ

n
, for any |n| > N , from

Proposition 6.1.1 and Lemma 6.1.2, we deduce that (6.14) is veri�ed. Finally, since A is
a skew-adjoint operator, these eigenfunctions are orthogonal in (H1

0 (0, 2π))2. The proof
of the theorem is complete.
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