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Introduction

Throughout this work, moving us in various scenarios di�erent problems are
boarded, some of them are solved, but even the unsuccessful ones are pre-
sented. All of them related with the existence of �rst integrals (meromorphic
in one case, holomorphic in the remaining ones) for holomorphic foliations
under di�erent conditions.

In the �rst chapter we start the path that will drive us to our �rst main re-
sult. With the purpose of contextualize this chapter remember an important
tool in the study of foliations (real and holomorphic), the holonomy group,
two clear examples (among many others) of its importance are the stability
theorems of Reeb (see Camacho and Lins Neto [10] chap. IV) and the theo-
rem of existence and uniqueness of �rst integrals of Mattei and Moussu [30].
In the context of holomorphic foliations, the holonomy groups are �nitely
generated groups of germs of di�eomorphisms in Cn �xing the origin. Those
groups have been highly studied for many authors and important results have
been achieved both in dimension 1 and in general dimension (for a survey
of results in this area see Abate [3], Bracci [7, 8], Raissy [38]). In particu-
lar in Chapter 1, aiming to �nd conditions for their periodicity, we analyze
groups of germs of di�eomorphisms in dimension n ≥ 2, �nitely generated
and having in�nitely many invariant curves. The following is the �rst result
we present, note that it is quite similar to Theorem 3.1 in Brochero Martínez
[9] (we properly explain in Chapter 1 why we use one instead the other ),

Theorem A. Let G ∈ Diff(Cn, 0). Then G generates a �nite group if and
only if, there exists a neighborhood U of 0 such that |OU(x,G)| < ∞ for all
x ∈ U and G leaves invariant non-enumerable many analytic varieties at 0
of dimension n− 1.

To see the importance of Theorem A in this work, is necessary to jump
to Chapter 4, where is obtained the following result, where �Gen (X(C3, 0))�
stands for generic vector �eld, see De�nition 3.1.1, and condition (?) means
that the eigenvalues of the vector �eld can be rotated in a such way that one
of them has positive real part and the others negative (see De�nition 3.1.4).
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Theorem B. Let F(X ) be the germ of a holomorphic foliation with X ∈
Gen (X(C3, 0)) and satisfying condition (?). Then F(X ) has a holomorphic
�rst integral if, and only if, the leaves of F(X ) are closed o� the singular-
ity and there exist non-enumerable many X -invariant analytic hypersurfaces
passing through 0 and in general position.

In Chapter 2 properties of formal series and di�eomorphisms, which are
the machinery needed in Chapter 3, are presented. With the aim of motivate
the next result, remember that in Mattei and Moussu [30] besides showing
that the germ of a holomorphic foliation of codimension 1 in a neighborhood
of 0 ∈ Cn with an isolated singularity at the origin, closed leaves o� the sin-
gularity and �nitely many separatrices possesses a holomorphic �rst integral.
The authors also manage to prove that having a formal �rst integral there
is way to obtain from it a holomorphic one. A similar step is given in Mal-
grange [27] where some other results about the existence of a holomorphic
�rst integral are found (see also Cerveau and Lins Neto [17]).

Our main motivation comes from Câmara and Scárdua [14] where condi-
tions are given for the existence of a holomorphic �rst integral for a generic
germ of foliation of dimension one in (C3, 0) but it is missing the �formal to
holomorphic step� letting open the question: Does in this scenario the exis-
tence of a formal �rst integral implies the existence of a holomorphic one?. It
turns out that there is a positive answer that we resume in the next theorem:

Theorem C. Let F(X ) be a germ of holomorphic foliation with
X ∈ Gen (X(C3, 0)). If F(X ) has a formal �rst integral then it also has
a holomorphic one.

Up to here we were focused in dimension 3, though some results are valid
in greater dimension. Changing to dimension two, in Chapter 5 is presented
the following stability theorem:

Theorem 5.2.2. Let F be a holomorphic foliation of codimension 1 on a
compact, connected and complex surface M . Suppose that there is an invari-
ant divisor D ⊂M such that:

(i) The virtual holonomy of the components of D is �nite.

(ii) The elements in D ∩ sing(F) are isolated singularities of F .

(iii) If a singularity p ∈ D ∩ sing(F) is non dicritical then D contains all
the separatrices of F through p.

(iv) If a singularity q ∈ D ∩ sing(F) is dicritical then for its separatrices
Lq in D the closure of L̃q = E−1(Lq \ {q}), where E : M̃ → M is
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the resolution map (�nite composition of blow-ups), cuts a dicritical
component of Dq (its exceptional divisor).

Then F has a meromorphic �rst integral.

Finally, in Chapter 6 we unsuccessfully sought a way of proof the main
result of Câmara and Scárdua [14] but with the technique of Moussu [31].
We explain there the technique and the limitations we found.

Maybe less important but possibly useful there are results obtained while
working in the previous ones. For instance, the same methods used to prove
Theorem A allowed us to show the following

Theorem 1.2.7. Let G ∈ Diff(Cn, 0). The group generated by G is �nite if
and only if, there exists a neighborhood U of 0 such that |OU(x,G)| <∞ for
all x ∈ U , and G leaves invariant non-enumerable many analytic varieties
of complex dimension 1, in general position, arbitrarily close to 0, and each
one intersecting the set C = CCn de�ned as in Lemma 1.1.5.

and

Theorem 1.3.2. Let G ∈ Diff(Cn, 0). The group generated by G is �nite
if and only if, it exists m ∈ N such that for an arbitrary neighborhood of 0,
G leaves invariant in�nitely many analytic varieties of complex dimension
1, in general position and each one having a convergent sequence of periodic
points of order at most m.

Also, as a �rst step in the proof of Theorem B we proof

Theorem 4.2.3. Let X be a germ of homogeneous vector �eld in 0 ∈ C3.
Suppose that X leaves invariant in�nitely many hypersurfaces passing through
0 and in general position. Then, there exists a rational map f : CP (2) →
CP (1) that is F(X )-invariant (i. e., X (f) ≡ 0) this map is also call it a
weak �rst integral of F(X ).

Obviously, we got propositions and lemmas along the way.
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Chapter 1

Groups of germs di�eomorphisms

In this chapter, after introducing some de�nitions and notations, we will
mention some results that although interesting on their own, the way how
they intervene throughout this work is what transform them in a fundamental
piece of this thesis.

Sections two and three are based on Theorem 3.1 in [9]. Theorem A is
its generalization to dimension n > 2 (as the author points out in [9]) and
Theorem 1.2.3 is its version for �nite generated groups. In Theorems 1.3.1
and 1.3.2 we make a few changes in its hypothesis, maintaining valid the
original conclusion, obtaining in this way two new versions of it.

It is worth to say that only small changes in the original proof in [9] are
needed to demonstrate the previous theorems. Nevertheless, we will write
down each one of the proofs in order to make easy to note the di�erence
among them. After this, we present some recent results in this topic (see
[39, 43])

We end this chapter with some comments on Theorem 3.1 in [9].

1.1 Preliminaries

Let Di�(Cn, 0) be the group of germs of di�eomorphisms at 0 ∈ Cn. The
germ G ∈ Diff(Cn, 0) will be represented by the map G in a domain U where
G(U) and G−1(U) are well de�ned, and U is an open neighborhood of the
origin with compact closure. We will use the following notation,

OU(x,G) = {Gp(x) |G(x), . . . , Gp(x) ∈ U}∪
{G−q(x) |G−1(x), . . . , G−q(x) ∈ U} ∪ {x}

6



for the G-orbit of x in U , |OU(x,G)| for the number of elements in its G-orbit
and

µU(x,G) = sup{p > 0 |Gp(x) ∈ OU(x,G)}+
sup{p > 0 |G−p(x) ∈ OU(x,G)}+ 1,

for the number of iterates of x in U . If µU(x,G) = ∞ and |OU(x,G)| < ∞
we say that the point x is periodic in U , if µU(x,G) is �nite then it is equal to
|OU(x,G)|. We say that G has �nite orbits if |OU(x,G)| <∞ for all x ∈ U .

Regarding the �niteness of groups generated by germs of di�eomorphisms
Mattei-Moussu gave in [30] p. 477 the following criteria for the one dimen-
sional case.

Theorem 1.1.1. An element G ∈ Diff(C, 0) is periodic if and only if it has
�nite orbits.

Another proof of this theorem (using Pérez-Marco's work) is given in
[31].

It is easy to see that Theorem 1.1.1 is not true in dimension grater than
one (consider for example the map G(x, y) = (x + y2, y) whose orbits are
�nite but is not periodic). However, with an additional hypothesis, Theorem
1.1.2 (which is Theorem 3.1 in [9]) attempts to generalize this criterion. The
reason we say �attempts� is because the proof presented in [9] is inaccurate.
We believe in the result but our attempt to prove it did not succeed. For
this reason we put an additional hypothesis that allows us to prove it, as we
do below in Theorem A.

Theorem 1.1.2 (Brochero). Let G ∈ Diff(C2, 0). Then G generates a �nite
group if and only if there exists a neighborhood V of 0 such that |OV (x,G)| <
∞ for all x ∈ V and G leaves invariant in�nitely many analytic varieties at
0.

In fact, in the previous two theorems we can change the di�eomorphism
G by a �nite generated group G ⊂ Diff(C, 0) (or Diff(C2, 0) respectively)
taking into account the second a�rmation of Lemma 3.3 in [42] that says:

Lemma 1.1.3. Let G ⊂ Diff(Ck, 0) be a �nitely generated subgroup. Assume
that there is an invariant connected neighborhood W of the origin in Ck such
that each point x is periodic for each element G ∈ G. Then G is a �nite
group.

The following topological lemma is a modi�cation of the Lewowicz's
Lemma and plays an important role throughout this chapter.
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Lemma 1.1.4. Let M , be a complex analytic variety in Cn, with 0 ∈ M ,
and K be the connected component of 0 in Br(0) ∩M . Suppose that f is a
homeomorphism from K to f(K) ⊂M such that f(0) = 0. Then there exists
x ∈ ∂K such that the number of iterations fm(x) ∈ K is in�nite.

Proof. Denote by µ = µ|K and µ = µ| ◦
K
the number of iteration in K and

◦
K.

It is easy to see that µ is upper semicontinuous, µ is lower semicontinuous
and µ(x) ≥ µ(x) for all x ∈

◦
K. Suppose by contradiction that µ(x) <∞ for

all x ∈ ∂K, therefore there exists n ∈ N such that µ(x) < n for all x ∈ ∂K.
Let A = {x ∈ K |µ(x) < n} ⊃ ∂K and B = {x ∈

◦
K |µ(x) ≥ n} 3 0. They

are open sets satisfying and A ∩B = ∅ since µ(x) ≥ µ(x).
Using the fact that K is a connected set, there exists x0 ∈ K \ (A ∪ B) i.e
µ(x0) ≥ n > µ(x0). Then the orbit of x0 intersects the border of K, which
is a contradiction since ∂K ⊂ A would give that x0 ∈ A. To see clearer this
last point, note that if Gm′(x0) ∈ ∂K for some m′ ∈ Z, then Gm′(x0) ∈ A, i.
e., µ(Gm′(x0)) < n but by de�nition µ(Gm′(x0)) = µ(x0) thus x0 ∈ A X

In our framework Lemma 1.1.4 implies:

Lemma 1.1.5. Let G ∈ Diff(Cn, 0) andM be a G-invariant complex analytic
variety passing through 0 ∈ Cn. There exist a compact, connected, and non-
enumerable set CM such that 0 ∈ CM and, for all x ∈ CM and n ∈ N, we have
Gn(x) ∈M ∩ U for a domain U where G(U) and G−1(U) are well de�ned.

Proof. Without loss of generality we suppose that U = Br(0). Let M be
a G-invariant complex analytic variety and K = M ∩ U be the connected
component of M ∩ U in 0. Let A1 = K, Aj+1 = K ∩ G−1(Aj) and Cn be
the connected component of An in 0. It is clear, by construction, that An is
the set of points of K with n or more G-iterates in K. Moreover, since An
is compact and Cn is compact and connected, it follows that CM =

⋂
nCn

is compact and connected too, and therefore either CM = {0} or CM is
non-enumerable.

We claim that CM ∩ ∂K 6= ∅ and then it is non-enumerate. In fact, if
CM ∩ ∂K = ∅ then there would exist j such that Cj ∩ ∂K = ∅. Let B
be a compact connected neighborhood of Cj such that (Aj \ Cj) ∩ B = ∅.
Therefore for all x ∈ ∂B we have µB(x,G) < j, that is a contradiction by
the Lemma 1.1.4. X

The previous lemma is part of the proof of Theorem 1.1.2 in [9], but due
to its importance and constant use throughout this chapter, we decided to
write it as an independent result.
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1.2 Groups of di�eomorphisms in dimension n

�xing 0

We start by presenting a proof of Theorem 1.1.2 in dimension n. In this proof
we follow the original one, although adapting some arguments to our case
and changing one of the hypothesis in order to avoid an imprecision found
in the original proof (later on we will discuss this topic).

The following well known proposition is the analytic case of Proposition
3.1 in [9], it is also true in the formal case (the demonstration is the same)
and it will be use in the proof of the Theorem A.

Proposition 1.2.1. Let G be a �nite subgroup of Diff(Cn, 0) then G is ana-
lytic linearizable, and it is isomorphic to a �nite subgroup of Gl(n,C).

Proof. If G = {G1, . . . , Gr}, let h−1(x) =
∑r

j=1(dGj)
−1
0 Gj(x), Note that h−1

is a di�eomorphism because dh−1(0) = rI and

h−1
(
Gi(x)

)
=

r∑
j=1

(dGj)
−1
0 Gj

(
Gi(x)

)
= (dGi)0

r∑
j=1

(dGi)
−1
0 (dGj)

−1
0 Gj

(
Gi(x)

)
= (dGi)0

r∑
j=1

(
(dGj)0(dGi)0

)−1

0
Gj

(
Gi(x)

)
= (dGi)0

r∑
j=1

(
d
(
Gj ◦Gi

))−1

0
Gj

(
Gi(x)

)
= (dGi)0h

−1(x).

Thus h−1 ◦ Gi ◦ h(x) = (dGi)0(x). In fact, we obtain an injective group
homomorphism

Λ : G −→ Gl(n,C)

G −→ (h−1 ◦G ◦ h)′(0). X

Furthermore, in [9] it is proved (after the proposition above) that the group
Λ(G) ⊂ Gl(n,C) of linear parts of the di�eomorphisms in G is diagonalizable.

The following theorem is the generalization of Theorem 1.1.2 to dimension
n but, as we mention above, it is necessary to change one of the hypothesis.
To be precise, instead of �G leaves invariant in�nitely many analytic varieties
at 0� we put �G leaves invariant non-enumerable many analytic varieties at
0�. In order to clarify this point, after Theorem 1.2.3 we write down the
proof of Theorem 1.1.2 as spears in [9] and we explain why this change was
necessary.
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Theorem A. Let G ∈ Diff(Cn, 0). Then G generates a �nite group if and
only if there exists a neighborhood U of 0 such that |OU(x,G)| < ∞ for all
x ∈ U and G leaves invariant non-enumerable many analytic varieties at 0
of dimension n− 1.

Proof. (⇒) If the group generated by G is G = {G,G2, . . . , Gr} obviously,
for all x in a neighborhood U where Gi is de�ned for all i, we have that
OU(x,G) is �nite. In fact, OU(x,G) = {G(x), . . . , Gr(x)}.

Now, consider, as in Proposition 1.2.1, h−1(x) =
∑r

j(dG
j)−1

0 Gj(x) which
is such that h−1 ◦ Gi ◦ h(x) = (dGi)0(x) for all i, where (dGi)ni0 = I for
some ni. This implies that (dGi)0 is diagonalizable, we then suppose that
(dGi)0 is diagonal, in fact h can be de�ned as a di�eomorphism which also
diagonalizes the group, since in our case the group is cyclic then the linear
parts are simultaneously diagonalizable. In the de�nition of h−1 is su�cient
to change (dGj)0 to P−1(dGj)0P , where P is the matrix that diagonalizes
the group of linear parts, it is easy to see that the proof of Proposition 1.2.1
works. With this, we de�ne

Mc =
{
y = h(x) ∈ U

∣∣ c1x
m
1 + · · ·+ cnx

m
n = 0

}
, (1.1)

where m = n1 · · ·nr and c = (c1, . . . , cn) ∈ Cn. Mc is a G-invariant complex
analytic variety of dimension n−1 for each c ∈ Cn. In order to see this, take
y ∈Mc which, by de�nition, is equal to h(x) for some x ∈ U satisfying (1.1)
then we have to prove that Gi(y) ∈Mc for i = 1, . . . , r,

Gi(y) = Gi(h(x)) = h
(
h−1 ◦Gi ◦ h(x)

)
,

= h
(
(dGi)0x

)
,

and using that (dGi)0 is diagonal, we have (in multi index notation)(
(dGi)0x

)m
= (dGi)

m

0 x
m = xm.

Therefore, if y = h(x) ∈Mc then Gi(y) = h
(
(dGi)0x

)
∈Mc.

(⇐) Consider M = Cn in Lemma 1.1.5. Then C = CCn is the compact,
connected and non-enumerable set of points in U such that µU(x,G) = ∞
and therefore every point in C is periodic. If we denote Dm =

⋃
{x ∈

C |Gm!(x) = x}, it is clear that Dm is a closed set and Dm ⊂ Dm+1, moreover
C =

⋃
Dm. Fix m ∈ N and consider F = Gm!, which is well de�ned in some

neighborhood U ′ of 0 ∈ Cn, observe that C is in the domain U ′ of F and
take L = {x ∈ U ′|F (x) = x}. Since L is a complex analytic variety of U ′

then it can be written as a �nite union of them, with dimensions ranging
from 1 to n. Even if all of them were of dimension n − 1, using Lemma
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1.1.5 for every invariant analytic variety W we conclude that there are non-
enumerable CW ⊂ C not contained in the decomposition of L, since m is
arbitrary and C is the enumerable union of the Dm, it can be deduced that
there exists an m such that L is of dimension n. It follows that Gm!(x) = x
for all x ∈ U ′ by the identity theorem (see [22] pag 5), hence the group
generated by G is �nite. X

The version of the previous theorem for �nitely generated groups of di�eo-
morphisms is immediate,

Theorem 1.2.3. Let G = 〈{G1, . . . , Gm}〉 ≺ Diff(Cn, 0) be a �nitely gener-
ated subgroup of di�eomorphisms. Then G is �nite if and only if there exists
a neighborhood U of 0 such that |OU(x,G)| < ∞ for all x ∈ U and each Gi

leaves invariant non-enumerable many analytic varieties at 0 of dimension
n− 1.

Proof. (⇒) This part is the same as the previous theorem. Note that in
the hypothesis each generator of the group leaves invariant in�nitely many
analytic varieties, then we can apply the same construction for each one.

(⇐) Using Theorem A we have that every element in G has �nite order and,
since G is �nitely generated, we can apply Lemma 1.1.3 in order to conclude
that G is �nite. X

The following is the proof of Theorem 1.1.2 as can be seen in [9] page 7.

Proof of Theorem 1.1.2. (⇒) Let N = #〈F 〉 and h ∈ Diff(C2, 0) such that
h◦F ◦h−1(x, y) = (λ1x, λ2y) where λN1 = λN2 = 1. It is clear than |O(x, F )| ≤
N for all x in the domain of F , and Mc = {h(x, y) |xN − cyN = 0} is a
complex analytic variety invariant by F for all c ∈ C.

(⇐) Consider Lemma 1.1.5 withM = C2, then C = CC2 is a set of point with
in�nite orbits in a domain U = Br(0) where F and F−1 are well de�ned and
therefore every point in C is periodic. If we denote Dm = {x ∈ C |Fm!(x) =
x}, it is clear that Dm is a closed set and Dm ⊂ Dm+1. Moreover, since
C = ∪m=1Dm, there exists m ∈ N such that C = Dm. Let G = Fm!, which
is well de�ned in some neighborhood U of 0 ∈ Cn, observe that C is in the
domain U of G and C ⊂ {x ∈ U |G(x) = x} = L. Since L is a complex
analytic variety of U that contains C, its dimension is 1 or 2. The case
dimL = 1 is impossible because CM ⊂ C ⊂ L for all F -invariant analytic
variety M , contradicting that fact that O2 is Noetherian ring. In the case
dimL = 2 follows that Fm!(x) = x for all x ∈ U , therefore 〈F 〉 is �nite. X

The problem with the proof above is in the statement:

11



�. . . , there exists m ∈ N such that C = Dm�.

which is not always true because the sets Dn may have empty interior. In
fact if one of them happens to have interior the proof ends by the Identity
Theorem. Another way of see the problem with this statement is to note that
the increasing sequence of analytic sets Dn ⊂ Dn+1 generates a decreasing
sequence of ideals, and even in Noetherian rings (as On) decreasing sequences
of ideals do not always stabilize. They do when they are prime which is
equivalent to the Dn being irreducible (see [23] pag. 15). Now, if they are
irreducible and of dimension 1 all of them are the same one and the set C
consists of a single analytic curve which contradicts the hypothesis that there
are in�nitely many G-invariant analytic varieties at 0, and we are done. It
would remain the case where the sequence of ideals does not stabilize.

We could not get a di�erent proof of Theorem 1.1.2. We have advances in
this direction though (see Section 1.5), but its importance in our work forces
us to change the hypothesis to those of Theorem A.

We close this section by noting that Theorem A is valid, as the author [9]
mentions, if we consider analytic varieties of complex dimension 1 in general
position instead of analytic varieties of complex dimension n− 1,

De�nition 1.2.4. We say that in�nitely many analytic varieties of complex
dimension 1 are in general position if they are not contained in �nitely many
analytic varieties of complex dimension n− 1.

The only change in the proof is in the �if� part, where it is necessary
one more step. Note that choosing n − 1 linearly independent constants
c, the intersection of the corresponding Mc has a component of dimension
1 passing through 0. In this way we can obtain a non-enumerable set in
general position. We state the theorem in terms of analytic varieties of
complex dimension n− 1 because it is more natural and it does not require
to add more conditions. However, it can be useful to think in dimension one
as we see next.

The following lemma follows from an analysis similar to the one made in the
proof of the Theorem A, but in order to make further reference, it is more
appropriate to state it on its own.

Lemma 1.2.5. Let G ∈ Diff(Cn, 0). The group generated by G is �nite if
and only if there exist m ∈ N such that for an arbitrary neighborhood of
0 ∈ Cn, Gm has in�nitely many �xed analytic varieties of complex dimension
1, in general position.

Proof. Consider F = Gm, which is well de�ned in some neighborhood U of
0 ∈ Cn and take L = {x ∈ U |F (x) = x}. Since L is a complex analytic
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variety of U then it can be written as a �nite union of them, with dimen-
sions ranging from 1 to n. But, that �nite union can not contain in�nitely
many analytic varieties of complex dimension 1 in general position, unless
the dimension of L (i.e., the supreme of he dimensions of its connected com-
ponents) be equal to n. It follows that F (x) = x for all x ∈ U by the identity
theorem (see [22] pag 5), hence the group generated by G is �nite. X

Remark 1.2.6. Observe that in Lemma 1.2.5 we are not asking for the analytic
varieties that they contain zero. What we need is that in�nitely many of them
cut the neighborhood U where F is de�ned.

In Theorems 1.2.7 and 1.3.2 we basically �nd a way to obtain the in-
�nitely many �xed analytic varieties of complex dimension 1 that Lemma
1.2.5 requires.

Theorem 1.2.7. Let G ∈ Diff(Cn, 0). The group generated by G is �nite if
and only if there exists a neighborhood U of 0 such that |OU(x,G)| <∞ for
all x ∈ U , and G leaves invariant non-enumerable many analytic varieties
of complex dimension 1, in general position, arbitrarily close to 0, with each
one intersecting the set C = CCn de�ned in Lemma 1.1.5.

Proof. Consider M = Cn in Lemma 1.1.5. Then C = CCn is the compact,
connected and non-enumerable set of points in U such that µU(x,G) =∞ and
therefore every point in C is periodic. If we denoteDm =

⋃
{x ∈ C |Gm!(x) =

x}, it is clear that Dm is a closed set and Dm ⊂ Dm+1, moreover C =
⋃
Dm.

Now, if some invariant analytic variety W intersects C in a periodic point
q ∈ U ′ of order k, then Lemma 1.1.5 can be applied to the map Gk in some
neighborhood of q contained in W and we obtain a compact, connected and
non-enumerable set CW ⊂ W which is �xed for some iterate of Gk (see
Remark 1.2.8.), observe that CW belongs to C. Therefore, there exist non-
enumerable many curves CW in C, this implies that in�nitely many belongs
to some Dm, because C is the enumerable union of them. We conclude
that Gm! has in�nitely many �xed analytic varieties of complex dimension
1, in general position. Hence the group generated by G is �nite by Lemma
1.2.5. X

Remark 1.2.8. CW ⊂ W is �xed for some iterate of Gk because, by Lemma
1.1.5 and the �niteness of the orbits of G, it is the set of Gk-periodic points.
Since CW is non-enumerable, there exist in�nitely many periodic points of
some order k′ = km, for an m ∈ N. The compactness of CW implies that
those periodic points have an accumulation point. The dimension of W is
one hence the Identity Theorem implies that CW is Gk′-�xed.
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1.3 Conditions over the set of periodic points

The second part of the proof of Theorem A make us think that what we
really need is a su�cient amount of periodic points, but even in dimension
one in�nitely many of them accumulating at the origin is not enough. To
be precise, according to Perez-Marco in [33], it is possible to construct map
germs in Di�(C, 0) exhibiting a sequence of periodic points converging to
0 ∈ C and not linearizable. Obviously the orders of points in that sequence
goes to in�nity because if some subsequence had bounded order by some
m then after m! iterates the function could have a sequence of �xed points
accumulating 0 ∈ C. By the identity theorem that iteration could be identity
and the map periodic. However, in dimension greater than 1, the existence
of of a convergent sequence of �xed points is not enough to guarantee that a
map is the identity. That is why we asked for a dense set of periodic points
while keeping the bound over the order.

Proposition 1.3.1. Let G ∈ Diff(Cn, 0). The group generated by G is �nite
if and only if there exist m ∈ N such that for an arbitrary neighborhood of 0
the set of periodic orbits of period at most m is dense.

Proof. (⇒) Suppose 〈G〉 = {id, . . . , Gr−1} for r ∈ N and G well de�ned in a
neighborhood U of 0. Consider U the connected component of U ∩G−1(U)∩
· · · ∩Gr−1(U) at 0 then every point in U , which is an open set, is periodic.

(⇐) Consider F = Gm! de�ned in some neighborhood U of 0 and L = {x ∈
U |F (x) = x}. Since L is a complex analytic variety of U then it can be
written as a �nite union of analytic varieties with dimensions ranging from 1
to n. It can not be 0 because it contains in�nitely many points accumulating
0 ∈ Cn. However, the union of �nitely many analytic varieties, can not
contain a dense set of points accumulating 0 ∈ Cn. Therefore dimL = n and
we have that Gm!(x) = x for all x ∈ U and we are done. X

The following theorem shows that we do not need a dense set of periodic
points as long as we have in�nitely many, let us say, �well located� points.

Theorem 1.3.2. Let G ∈ Diff(Cn, 0). The group generated by G is �nite
if and only if there exist m ∈ N such that for an arbitrary neighborhood
of 0 ∈ Cn, G leaves invariant in�nitely many analytic varieties of complex
dimension 1, in general position and each one having a convergent sequence
of periodic points of order at most m.

Proof. (⇒) The same as Theorem A. And we obtain in�nitely many analytic
varieties of complex dimension 1 passing through 0, and the periodicity of
the group implies that every point on them is periodic of same order.

14



(⇐) First, take F = Gm! de�ned in some neighborhood U of 0, with m as
in the statement. Take a G-invariant analytic variety M in U which, by
hypothesis, has a convergence sequence of periodic points of order at most
m converging to some point q ∈ M . We can apply Lemma 1.1.5 taking F
as the map, M as the F -invariant complex analytic variety, q as the F -�xed
point and Kq as the connected component of M containing q. Then there
exists a CM (compact, connected and non-enumerable) containing q and a
sequence of F -�xed points converging to it, by the identity theorem (the one
dimensional version because we are restricted toM) Kq is formed by F -�xed
points. Therefore, there exist non-enumerable many F -�xed curves Kq in U .
Hence the group generated by G is �nite by Lemma 1.2.5. X

If in Theorem 1.3.2 we take the analytic varieties passing through 0 ∈ Cn,
we get as a corollary a version of Theorem A changing the �nite many orbits
hypothesis to the existence of periodic points of bounded order accumulating
0.

Corollary 1.3.3. Let G ∈ Diff(Cn, 0). The group generated by G is �nite
if and only if there exist m ∈ N such that G leaves invariant in�nitely many
analytic varieties of complex dimension 1 in general position, each one having
a sequence of periodic points of order at most m accumulating 0 ∈ Cn.

1.4 Advances found in the literature

The �nal part of this chapter is devoted to present some recent generalizations
of Theorem 1.1.1. Their proofs can be found in the referenced articles

The �rst one we mention is taken from [39] ,

Theorem 1.4.1. Let G ⊂ Diff(Cn, 0) be a �nitely generated pseudogroup on
a small neighborhood of the origin in Cn. Given G ∈ G, let Dom(G) denote
the domain of de�nition of G as an element of the pseudogroup in question.
Suppose that for every G ∈ G and p ∈ Dom(G) satisfying G(p) = p, one of
the following holds: either p is an isolated �xed point of G or G coincides
with the identity on a neighborhood of p. Then the pseudogroup G has �nite
orbits on a neighborhood of the origin if and only if G itself is �nite.

This theorem is consequence of the following proposition (Proposition 4.
in [39]) and an argument like Lemma 1.1.3.

Proposition 1.4.2. Suppose that G ⊂ Diff(Cn, 0) is a group satisfying the
condition of isolated �xed points of Theorem 1.4.1. Let G be an element of
G and assume that G has only �nite orbits. Then G is periodic.
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As the authors observe, this proposition is obtained by repeating the
proof of Theorem 1.1.1 in [30] p. 477, noting that the isolated �xed points
condition replaces the argument that in dimension one is a consequence of
the Identity Theorem.

The next generalization of Theorem 1.1.1 moves in another direction.
Instead of changing the dimension it deals with the hypothesis of �all orbits
be �nite�, analyzing the case where a di�eomorphism has a set of closed orbits
of positive measure. This result can be found in [43] and in its proof is used
the work of Perez-Marco ([33, 34, 35]).
We �rst introduce some notations:

Expand a germ of a complex di�eomorphism f at the origin 0 ∈ C as

f(z) = e2πiλz + ak+1z
k+1 + . . . .

The multiplier f ′(0) = e2πiλ does not depend on the coordinate system. We
shall say that the germ f ∈ Diff(C, 0) is non-resonant if λ ∈ C \Q.

De�nition 1.4.3. A map germ f ∈ Diff(C, 0) is called a Cremer map germ
if it is non-linearizable and non-resonant.

Cremer gave the �rst proof of the existence of such a map in [18].

De�nition 1.4.4. We call (PCO) Cremer map germ a Cremer map germ.
Whose representatives exhibit sets of closed orbits of positive measure, in
arbitrarily small neighborhoods of the origin. We shall say that a subgroup
G ⊂ Diff(C, 0) has the (PCO) property if for any su�ciently small neighbor-
hood U of the origin 0 ∈ C, the set of points having closed pseudo-orbit has
positive measure in U .

Lemma 1.4.5. Let G ⊂ Diff(C, 0) be a �nitely generated subgroup with the
(PCO) property. Then either G is a cyclic �nite (resonant) group or it is an
abelian formally linearizable group, containing some (PCO) Cremer di�eo-
morphism.

1.5 About a possible proof of theorem 1.1.2

In this section we present some partial results in the direction of 1.1.2. They
do not form a proof of this statement but they may shed some light in the
construction of a complete proof of it. In addition, in this section we start
working in the �formal world�, which plays and important role throughout
this thesis.
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Some of the de�nitions and notation we introduce next are taken from [2]
(or [38]).
We are interested in the local dynamics of a germ of di�eomorphism G ∈
Di�(Cn, 0) of the form

G(z) = z + Pν(z) + Pν+1(z) + · · · , (1.2)

where z = (z1, . . . , zn) ∈ Cn and Pν is the �rst non-zero term in the homo-
geneous expansion of G. In this case (i.e., when dG0 = id) we say that G is
tangent to the identity

De�nition 1.5.1. If G ∈ Di�(Cn, 0) is of the form (1.2), the number ν ≥ 2
is the order of G and is denoted ord(G).

Note that we are always assuming that G 6≡ id.

De�nition 1.5.2. Let G ∈ Di�(Cn, 0) be tangent to the identity and of
order ν. A characteristic direction for G is a non-zero vector v ∈ Cn \ {0}
such that Pν(v) = λv for some λ ∈ C. If Pν(v) = 0 (that is, λ = 0) we
shall say that v is a degenerate characteristic direction; otherwise, (that is,
if λ 6= 0) we shall say that v is non-degenerate.

De�nition 1.5.3. We shall say that an orbit {Gk(z0)} converges to the
origin tangentially to a direction [v] ∈ CP (n − 1) if Gk(z0) → 0 in Cn and
[Gk(z0)] → [v] in CP (n − 1), where [·] : Cn \ {0} → CP (n − 1) denotes the
canonical projection.

De�nition 1.5.4. A parabolic curve for G ∈ Di�(Cn, O) tangent to the
identity is an injective holomorphic map ϕ : ∆ → Cn \ {0} satisfying the
following properties:

(a) ∆ is a simply connected domain in C with 0 ∈ ∂∆;

(b) ϕ is continuous at the origin, and ϕ(0) = 0;

(c) ϕ(∆) is G-invariant, and (G|ϕ(∆))
k → 0 uniformly on compact subsets

as k → +∞.

Furthermore, if [ϕ(ζ)] → [v] in CP (n − 1) as ζ → 0 in ∆, we shall say that
the parabolic curve ϕ is tangent to the direction [v] ∈ CP (n− 1).

Theorem 1.5.5 (Abate [1]). Let G ∈ Di�(C2, 0) be a germ of di�eomorphism
tangent to the identity, with an isolated �xed point at 0. Then there exist
ord(G)− 1 disjoint parabolic curves for G at the origin.
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Denote the ring of formal series on (Cn, 0) by Ôn, its maximal ideal,
denoted by M̂n, corresponds to the elements in Ôn whose constant coe�cient
is zero. An element F̂ ∈ Ô2 is written as F̂ (x, y) =

∑
i,j Fi,jx

iyj, where
Fi,j ∈ C for all i, j ∈ Z≥0.

A formal curve γ̂ through zero is de�ned as the zero set of some F̂ ∈ M̂2

given in Puiseux parametrization, i.e.,

γ̂(T ) =
(∑
k≥k1

γ1,kT
k,
∑
k≥k2

γ2,kT
k
)
and F̂ (γ̂(T )) ≡ 0,

where the constants and the variable in γ are complex numbers. If a formal
curve γ̂ and a di�eomorphism G ∈ Diff(C2, 0) satisfy the relationship G◦ γ̂ =
γ̂, where this notation means that id(G ◦ γ̂) = id(γ̂) := {F̂ ∈ Ô2 | F̂ (γ̂) ≡ 0};
we say that γ̂ is G-invariant. Note that this de�nition implies F̂ (Gm ◦ γ̂) ≡ 0
for m ∈ Z.

Our analysis is divided in two parts according to whether the linear part
of the di�eomorphism we are taking is a diagonal matrix or a Jordan block(
λ 1
0 λ

)
.

Diagonal linear part. Let G ∈ Diff(C2, 0) be a di�eomorphism whose
linear part is diagonal i.e., dG0(x, y) = (λ1x, λ2y) where λ1, λ2 ∈ C∗, our
objective is to show that λ1 and λ2 are roots of unity. If this is the case, we
have that, for some integer m, the map Gm is tangent to the identity and
Theorem 1.5.5 implies the existence of a parabolic curve. This, together with
the hypothesis of �nite orbits, would imply Theorem 1.1.2.

Suppose there exists a G-invariant formal curve γ̂. Then the condition
F̂ (G ◦ γ̂(T )) ≡ 0 in series form is

F̂ (G ◦ γ̂(T )) =
∑
i,j

Fi,j
(
λ1

∑
k≥k1

γ1,kT
k + · · ·

)i(
λ2

∑
k≥k2

γ2,kT
k + · · ·

)j
=
∑
i,j

Fi,j
(
λ1γ1,k1 + T (· · · )

)i(
λ2γ2,k2 + T (· · · )

)j
T ik1+jk2 ≡ 0.

Now, de�ne the sets

ν = min{ik1 + jk2 |Fi,j 6= 0} and J = {(i, j) | ik1 + jk2 = ν}.

Therefore, the �rst element of F̂ (G◦γ̂(T )) ≡ 0, in other words, the coe�cient
of T ν , is

0 =
∑

(i,j)∈J

Fi,jγ
i
1,k1

γj2,k2λ
i
1λ

j
2. (1.3)
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Moreover, since F̂ (γ̂(T )) ≡ 0, we have 0 =
∑

(i,j)∈J Fi,jγ
i
1,k1

γj2,k2 . We can
get a more general version of (1.3) using Gm(x, y) = (λm1 x, λ

m
2 x) + h.o.t. and

observing that F̂ (Gm ◦ γ̂(T )) ≡ 0, which gives

0 =
∑

(i,j)∈J

Fi,jγ
i
1,k1

γj2,k2λ
mi
1 λmj2 . (1.4)

Supposing that #J = K, (1.4) is equal to

0 = Fi1,j1γ
i1
1,k1

γj12,k2
(λi11 λ

j1
2 )m + · · ·+ FiK ,jKγ

iK
1,k1

γjK2,k2(λ
iK
1 λjK2 )m. (1.5)

if we set Ar = Fir,jrγ
ir
1,k1

γjr1,k2 and Xr = λir1 λ
jr
2 , we can write (1.5) as

A1X
m
1 + · · ·+ AKX

m
K = 0.

Besides, this is true for m ∈ Z≥0, which allows us to construct the system

A1 + . . . + AK = 0,
A1X1 + . . . + AKXK = 0,
...

...
...

...
A1X

K−1
1 + . . . + AKX

K−1
K = 0,

whose matrix form is

XA =


1 · · · 1
X1 · · · XK
... · · · ...

XK−1
1 · · · XK−1

K



A1

A2
...
AK

 =


0
0
...
0

 .
The matrix X is a Vandermonde matrix. It is clearly singular because Ai 6= 0
for all i. The determinant of X is the product

∏
1≤i<j≤k(Xi −Xj). Thus at

least one of the factors has to be zero. Suppose Xr = Xs for r, s ∈ {1, . . . , K}
and r 6= s. Hence λir1 λ

jr
2 = λis1 λ

js
2 . Because of the identities

irk1 + jrk2 = ν
isk1 + jsk2 = ν

=⇒ (ir − is)k1 + (jr − js)k2 = 0

we know that (ir − is) and (jr − js) have di�erent sign, suppose ir − is > 0
and jr − js < 0 with this λir−is1 = λjs−jr2 .

In order to conclude that λ1 and λ2 are roots of the unity, the only thing
we need is another pair or couples (iα, jα), (iβ, jβ) such that λ

iα−iβ
1 = λ

jβ−jα
2

and at least one of the following occurs ir − is 6= iα − iβ or js − jr 6= jβ − jα.
It looks like something reasonable. In fact the same curve can give you the
second pair of couples you need. But even if you say �there are in�nitely many
G-invariant formal curves� the precise condition needed to guarantee the
existence of the second pair of couples required is not immediately satis�ed.
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Jordan block. Let G ∈ Diff(C2, 0) be a di�eomorphism whose linear part
is a Jordan block

(
λ 1
0 λ

)
i.e., dG0(x, y) = (λx+ y, λy) where λ ∈ C∗, suppose

that there exists a G-invariant formal curve γ̂. Our aim in this part is to
show that this case does not happen. However, as before, we have to impose
some conditions on γ̂.
As in the previous paragraph, we start by writing F̂ (Gm ◦ γ̂(T )) ≡ 0 in series
for. Observe that Gm(x, y) = (λmx+mλm−1y, λmy) + h.o.t. . The expression
F̂ (Gm ◦ γ̂(T )) ≡ 0 gives∑
i,j

Fi,j
(
λm
∑
k≥k1

γ1,kT
k +mλm−1

∑
k≥k2

γ2,kT
k + · · ·

)i(
λm
∑
k≥k2

γ2,kT
k + · · ·

)j
=∑

i,j

Fi,j
(
λmγ1,k1T

k1 +mλm−1γ2,k2T
k2 + · · ·

)i(
λmγ2,k2T

k2 + · · ·
)j

= 0.

We consider three di�erent cases:

Case 1: k1 < k2

We have

F̂ (Gm ◦ γ̂(T )) =
∑
i,j

Fi,j
(
λmγ1,k1 + T (· · · )

)i(
λmγ2,k2 + T (· · · )

)j
T ik1+jk2

≡0.

De�ning, as before,

ν = min{ik1 + jk2 |Fi,j 6= 0} and J = {(i, j) | ik1 + jk2 = ν}.
the coe�cient of T ν is

0 =
∑

(i,j)∈J

Fi,jγ
i
1,k1

γj1,k2λ
(i+j)m for m ∈ Z≥0.

Take #J = K, analogously to the previous paragraph, denote

Ar = Fir,jrγ
ir
1,k1

γjr1,k2 , Xr = λir+jr

and varying m from 0 to K − 1, we construct the system

XA =


1 · · · 1
X1 · · · XK
... · · · ...

XK−1
1 · · · XK−1

K



A1

A2
...
AK

 =


0
0
...
0

 ,
Again, X has to be singular. Therefore there exists 1 ≤ r < s ≤ K − 1 such
that Xr = Xs, which means λir+jr = λis+js . As a conclusion, λ is a root of
unity. We were expecting a contradiction in order to prove this case can not
occurs, so for our purpose this is a case we have to eliminate.
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Case 2: k1 = k2 = k.

We have

F̂ (Gm◦γ̂(T )) =
∑
i,j

Fi,j
(
λmγ1,kT

k +mλm−1γ2,kT
k + · · ·

)i(
λmγ2,kT

k + · · ·
)j

=
∑
i,j

Fi,j
(
λmγ1,k +mλm−1γ2,k + T (· · · )

)i(
λmγ2,k + T (· · · )

)j
T (i+j)k

≡0

In this case,

ν = min{i+ j |Fi,j 6= 0} and J = {(i, j) | i+ j = ν}.

The coe�cient of T νk is∑
(i,j)∈J

Fi,j(λ
mγ1,k +mλm−1γ2,k)

i(λmγ2,k)
j

=
∑

(i,j)∈J

Fi,j(λγ1,k +mγ2,k)
iγj2,kλ

i(m−1)+jm = 0.

As i + j = ν then i(m − 1) + jm = νm − i, and the equation above can be
written as

ν∑
i

Fi,ν−i(λγ1,k +mγ2,k)
iγν−i2,k λ

νm−i = 0.

Multiplying by λν−νm this gives

F0,νγ
ν
2,kλ

ν + F1,ν−1(λγ1,k +mγ2,k)γ
ν−1
2,k λ

ν−1 + · · ·+ Fν,0(λγ1,k +mγ2,k)
ν = 0.

By varying m from 1 to ν + 1, we form the system
1 λγ1,k + γ2,k · · · (λγ1,k + γ2,k)

ν

1 λγ1,k + 2γ2,k · · · (λγ1,k + 2γ2,k)
ν

...
... · · · ...

1 λγ1,k + (ν + 1)γ2,k · · · (λγ1,k + (ν + 1)γ2,k)
ν




F0,νγ
ν
2,kλ

ν

F1,ν−1γ
ν−1
2,k λ

ν−1

...
Fν,0

=


0
0
...
0


Since the left side matrix has to be singular, because not all the Fi,ν−i can
be zero, then there exists 1 ≤ r < s ≤ (ν + 1) such that λγ1,k + rγ2,k =
λγ1,k + sγ2,k hence γ2,k = 0, which contradicts our hypothesis k2 = k. We
conclude that, for this case, there does not exist a G-invariant curve.
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Case 3: k1 > k2.

We have

F̂ (Gm ◦ γ̂(T )) =∑
i,j

Fi,j
(
λmγ1,k1T

k1 +mλm−1γ2,k2T
k2 + · · ·

)i(
λmγ2,k2T

k2 + · · ·
)j

=
∑
i,j

Fi,j
(
mλm−1γ2,k2 + T (· · · )

)i(
λmγ2,k2 + T (· · · )

)j
T (i+j)k2

≡ 0.

De�ning ν and J , as in the previous case,

ν = min{i+ j |Fi,j 6= 0} and J = {(i, j) | i+ j = ν}.

We �nd, ∑
(i,j)∈J

Fi,jγ
ν
2,k2

miλi(m−1)+jm = 0 where γ2,k2 6= 0.

Taking j = ν − i, we have
ν∑
i

Fi,ν−im
iλνm−i = 0

Multiplying by λν−νm this gives

F0,νλ
ν + F1,ν−1mλ

ν−1 + · · ·+ Fν,0m
ν = 0.

By varying m from 1 to ν + 1 once again we form the system
1 1 · · · 1
1 2 · · · 2ν

...
... · · · ...

1 ν + 1 · · · (ν + 1)ν




F0,νλ
ν

F1,ν−1λ
ν−1

...
Fν,0

 =


0
0
...
0


Since the matrix of coe�cients is not singular, we get F0,ν = F1,ν−1 = · · · =
Fν,0 = 0 and, as in Case 2, we conclude that for this case there does not exist
a G-invariant curve.

Summarizing, we need at least two pairs of couples of exponents (maybe
given by the same curve) with the condition mentioned at the end of the
diagonal case in order to conclude that the di�eomorphism with diagonal
linear part is tangent to the identity, and a curve with k1 ≥ k2 (in the
notation used above) to discard the linear part in the form

(
λ 1
0 λ

)
.
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The problem is, whether the existence of in�nitely many (formal) invari-
ant curves guarantees the existence of one or two with the properties required.
Presumably the answer would be given in terms of a blow-up process, but
this is precisely what we are trying to avoid. This technique is currently
being explored by some mathematicians.
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Chapter 2

Groups of formal di�eomorphisms

and formal series

This chapter is devoted to the study of formal difeomorphisms and formal
series. Here we obtain some useful properties for our upcoming work.

2.1 Preliminaries

Let us introduce (or recapitulate) some standard notation. Denote the ring
of formal series on (Cn, 0) by Ôn, its maximal ideal denoted by M̂n and the
group of formal di�eomorphisms of (Cn, 0) by D̂iff(Cn, 0). The convergent
versions of the previous sets are, the ring of germs of holomorphic functions
on (Cn, 0) denoted by On, its maximal ideal denoted byMn and the group
of di�eomorphisms of (Cn, 0) by Diff(Cn, 0).

The �rst step is to study the properties we can get from the relationship f̂ ◦
Ĝ = f̂ , where f̂ ∈ Ôn and Ĝ ∈ D̂iff(Cn, 0). In this case we say that Ĝ leaves
f̂ invariant. As we state in propositions 2.2.1 and 2.2.3 this relationship
characterizes both maps. Our work will guarantee that we only need to
analyze the case where Ĝ is linearizable.

We start with the following de�nitions:

De�nition 2.1.1. Let Λ ∈ Cn. We say that a multi-index Q = (q1, . . . , qn) ∈
Nn, with |Q| = q1 + · · ·+ qn ≥ 1, gives a multiplicative resonant relation for
Λ if

ΛQ := λq11 · · ·λqnn = 1.

If there exists a Q giving this property we say that Λ is multiplicative reso-
nant.
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Observe that this de�nition is a particular case of the usual de�nition
of multiplicative resonant that can be seen for example in [4] pp. 192-193.
There you can also see that the existence of these kinds of resonances is the
obstruction to formal linearization. Recent results on this topic can be found
in [37].

De�nition 2.1.2. We shall say that a monomial xQ := xq11 · · ·xqnn is resonant
with respect to Λ = (λ1, . . . , λn) ∈ Cn

(
or simply (λ1, . . . , λn)-resonant

)
if

|Q| ≥ 1 and ΛQ = 1.

2.1.1 Formal chain rule

The aim of this paragraph is to show that the Chain Rule holds in the formal
case.

Lemma 2.1.3. Let F̂ ∈ Ôn and Ĝ ∈ D̂iff(Cn, 0) be given. Then

d(F̂ ◦ Ĝ) = dF̂ · dĜ.

Proof. We start with n = 1. Let f̂ ∈ Ô1 given by f̂(x) =
∑∞

i=1 aix
i, de�ne

fn ∈ O1 by fn(x) =
∑n

i=1 aix
i and take g ∈ O1. We want to show that

d(f̂ ◦ g) = df̂g dg.
We already have that d(fn ◦ g) = (dfn)g dg, because they are holomor-

phic functions. Besides, by the de�nition of derivative of a formal series,
we have limn→∞ dfn = df̂ . Therefore, what we need to justify is that
limn→∞(dfn)g = (df̂)g and limn→∞ d(fn ◦ g) = d(f̂ ◦ g). Both are con-
sequence of the equality limn→∞ fn ◦ g = f̂ ◦ g and for this, think in the
coe�cient ck of xk in f̂ ◦ g(x) =

∑∞
i=1 cix

i =
∑∞

i=1 ai(
∑∞

j=1 bjx
j)i, where

g(x) =
∑∞

j=1 bjx
j. This coe�cient is formed after algebraic computation by

some of the coe�cients in
∑k

i=1 ai(
∑k

j=1 bjx
j)i. Indeed after i, j = k all the

elements in
∑∞

i=1 ai(
∑∞

j=1 bjx
j)i are of order greater than k. Thus the same

coe�cients of xk belongs to both sides of limn→∞ fn ◦ g = f̂ ◦ g.
Hence

d(f̂ ◦ g) = df̂g dg,

as we wanted.
Consider now g ∈ O2 and the same f̂ as before. In this case the chain

rule is consequence of the previous one, because if we �x one of the variables,
for example y = y0, then g(·, y0) ∈ O1 and ∂

∂x
(f̂ ◦ g) = df̂g(x,y0)

∂
∂x
g|(x,y0) by

the previous case.
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The two dimensional case works in a similar way, by taking F̂ ∈ Ô2 and
G(x, y) = (g1(x, y), g2(x, y)) given by F̂ (x) =

∑
I aIx

iyj and g1, g2 ∈ O2.
Denoting F̂i(x) =

∑
j ai,jx

j. Then we have

F̂ ◦G(x, y) =
∑
I

aI
(
g1(x, y)

)i(
g2(x, y)

)j
=
∑
i

(g1(x, y))i
(∑

j

ai,j
(
g2(x, y)

)j)
=
∑
i

(g1(x, y))iF̂i
(
g2(x, y)

)
.

So, F̂ ◦G can be written as a sum of products of two formal series (g1(x, y))i

and F̂i
(
g2(x, y)

)
, whose derivatives are known by the previous case. Now,

note that if F̂ ◦G is a formal series then is derivation is made term by term,
and in the previous paragraph we only rearrange those terms. Thus

∂

∂x

(
F̂ ◦G

)
(x, y) =

∑
i

∂

∂x

(
(g1(x, y))iF̂i

(
g2(x, y)

))
=
∑
i

(
igi−1

1

∂g1

∂x
F̂i(g2) + gi1

∂F̂i
∂x

∣∣∣
g2

∂g2

∂x

)
(x, y)

=
∑
i

(
igi−1

1

∂g1

∂x

∑
j

ai,jg
j
2 + gi1

(∑
j

jai,jg
j−1
2

)∂g2

∂x

)
(x, y)

=
∑
i,j

(
iai,j

(
g1(x, y)

)i−1(
g2(x, y)

)j ∂g1

∂x
+ jai,j

(
g1(x, y)

)i(
g2(x, y)

)j−1
)∂g2

∂x

=
∂F̂

∂x

∣∣∣
G

∂G

∂x
(x, y).

Now consider f̂, ĝ ∈ Ô1, by the previous step d(f̂ ◦ gn) = df̂gndgn where gn is
the truncated series, and the chain rule is consequence of limn→∞ f̂◦gn = f̂◦g,
as before just note that the coe�cient of xr of f̂ ◦ g appear in f̂ ◦ gn for all
n > N for some N . The case f̂ ∈ Ô2, Ĝ ∈ D̂iff(C2, 0) is the same as above.

As a conclusion, for the case F̂ ∈ Ô2 and Ĝ ∈ D̂iff(C2, 0) the chain rule,
d(F̂ ◦ Ĝ) = dF̂ · dĜ, holds and the process above is easily generalized to
higher dimension. X
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2.2 Invariance relationship

TakeG(x) = ax with a ∈ C\0 and let f̂ be the formal series f̂(x) =
∑

i≥1 aix
i.

Suppose that f̂ ◦ G = f̂ and that f̂ is not a power, meaning by this that if
f̂ = fp11 · · · fprr , where f1, . . . fr are r di�erent irreducible factors of f̂ , then
gcd(p1, . . . , pr) = 1. We have

f̂(x) =
∑
i≥1

aix
i = f̂ ◦G(x) =

∑
i≥1

ai(ax)i,

which implies aiai = ai for all i = 1, 2 . . . . If f̂ 6≡ 0 there is a coe�cient
aν 6= 0 so, aν = 1 (i.e. a is a root of unity). Besides, supposing that a is a
ν-th root of unity, we �nd that ai = 0 if i 6= mν where m ∈ Z+. Then

G(x) = e2πi/νx and f̂(x) = l̂(xν) where l̂ ∈ Ô1.

Moreover, f̂ is not a power, then l̂ is invertible i.e., l̂′(0) 6= 0 and we have
that (l̂−1 ◦ f̂)(x) = xν . To see this, suppose that l̂ is not invertible, write
l̂(x) = apx

p + ap+1x
p+1 + · · · where p > 1 and ap 6= 0. Then

f̂(x) = l̂(xν) = apx
pν + ap+1x

(p+1)ν + · · ·
= xpν(ap + ap+1x

ν + · · · )
=
(
g(xν)

)p
, where g(x) = x(ap + ap+1x+ · · · )1/p.

Since ap 6= 0, g is well de�ned and this contradicts the fact that f̂ is not a
power. Therefore, if a formal series f̂ is invariant by a rotation, there exists
an invertible formal series l̂ such that l̂−1 ◦ f̂ is holomorphic.
The result described above is a portion of the Proposition 1.2. in [30] and
our intention is to generalize it to arbitrary dimensions. In order to do that
we start with the following,

Proposition 2.2.1. Let f̂ ∈ Ôn and Ĝ ∈ D̂iff(Cn, 0) formally linearizable
such that Ĝ leaves f̂ invariant. If the linear part of Ĝ is a diagonal matrix,

dĜ0 = diag(λ1, . . . , λn),

then (λ1, . . . , λn) is multiplicative resonant and f̂ , after a formal change of
coordinates, is the sum of (λ1, . . . , λn)-resonant monomials.

Proof. We consider �rst the linear case taking G(x) = Ax and f̂(x) =∑
|I|≥1 aIx

I , where A is a non-singular, diagonal (n × n)-matrix and x =

(x1 . . . , xn),
G(x1, . . . , xn) = (λ1x1, . . . , λnxn).
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Thus

f̂ ◦G(x1, . . . , xn) =
∑
|I|≥1

aI(λ1x1)i1 · · · (λnxn)in =
∑
|I|≥1

aIx
i1
1 · · ·xinn ,

which means that

λi11 · · ·λinn = 1, for all I such that aI 6= 0,

This is, Λ = (λ1, . . . , λn) is multiplicative resonant. If f̂ 6≡ 0 then it is formed
only by resonant monomials. Furthermore there exist at most n independent
(as vectors in Cn) n-tuples I = (i1, . . . , in) ∈ Nn\0 such that λi11 · · ·λinn = 1.
In case we have n independent n-tuples, all λi's are roots of the unity as we
explain in the proposition below.

Finally, suppose that Ĝ ∈ D̂iff(Cn, 0) is formally diagonalizable, i.e., there
is a formal change of coordinates such that g−1◦Ĝ◦g(x) = dĜ(0)x. We make
the previous analysis on its linear part G(x) = dĜ(0)x, concluding that, it
has to be a diagonal matrix with multiplicative resonant entries. X

Proposition 2.2.2. Let Λ = (λ1, . . . , λn) ∈ Cn and I1, . . . , In ∈ Nn\0 be n
independent n-tuples such that ΛIj = 1, for j = 1, . . . , n, then for each λj
there exist a nj ∈ N\0 such that λnjj = 1.

Proof. By hypothesis we have n equalities of the form λi1 1
1 · · ·λ

i1,n
n = 1. Tak-

ing logarithm in each one of them we can form the following linear systemi1 1 . . . i1,n
...

. . .
...

in 1 . . . in,n


log λ1

...
log λn

 =

2πik1
...

2πikn

 ,
its real part is a homogeneous linear system whose solution implies that
log |λj| = 0 for all j and, from the imaginary part of the system we obtain
that the argument of each λj is a rational factor of 2π. X

Proposition 2.2.3. Let f̂ ∈ Ôn and Ĝ ∈ D̂iff(Cn, 0) be formally linearizable
such that Ĝ leaves f̂ invariant. If the linear part of Ĝ in its Jordan form has
a block (

λ 1
0 λ

)
,

i.e, dĜ0(x1, . . . , xn) = (. . . , λxj + xj+1, λxj+1, . . . ) after a linear change of
coordinates, then λm = 1 for some m ∈ Z+. Besides, after a formal change
of coordinates, in the variables related to that block, f̂ is a formal series in
the m-th power of the second variable, that is

f̂(0, . . . , 0, xj, xj+1, 0, . . . , 0) = l(xmj+1) for l ∈ Ô1.
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Observe that, if the block is bigger, its upper sub matrix 2× 2 is like the
previous one, thus the proposition is true also in this case.

Proof. We only need to consider the two dimensional case. Let G(x1, x2) =
(λx1 + x2, λx2) and f̂(x1, x2) =

∑
|I|≥1 aIx

i
1x

j
2. Then the condition f̂ ◦G = f̂

implies

f̂ ◦G(x1, x2) =
∑
|I|≥1

aI(λx1 + x2)i(λx2)j =
∑
|I|≥1

aIx
i
1x

j
2.

Thus ai,j =
∑j

k=0Ci+k,kλ
i+j−kai+k,j−k where Cl,m =

(
l
m

)
. If λj 6= 1 for all

j ∈ N then ai,0 = ai,0λ
i implies ai,0 = 0 and ai,1 = λi+1ai,1 + Ci+1,1λ

iai+1,0

implies ai,1 = 0. Repeating this we get that f ≡ 0. Therefore, λi = 1 for
some i such that ai,0 6= 0. First consider the case λ = 1. We have

ai,0 = ai,0,

ai,1 = ai,1 + Ci+1,1ai+1,0 =⇒ ai,0 = 0 for i > 0,

ai,2 = ai,2 + Ci+1,1ai+1,1 =⇒ ai,1 = 0 for i > 0,

by induction, suppose that ai,j = 0 for i > 0 and j ≤ n then

ai,n+2 = ai,n+2 + Ci+1,1ai+1,n+1 =⇒ ai,n+1 = 0 for i > 0,

hence the only remaining terms are of the form a0,j and then f(x1, x2) = l(x2)
as we wanted. In a similar way, if λm = 1 but λn 6= 1 for 0 < n < m with
m,n ∈ N. Since ai,0 = ai,0λ

i then ai,0 = 0 when m 6 | i. The next term is
calculated in the expansion ai,1 = ai,1λ

i+1 + Ci+1,1ai+1,0λ
i.

If m | i+ 1 we have that ai+1,0 = 0 and, using the previous step, ai,0 = 0 for
all i. If m 6 | i+ 1 we have that ai,1 = 0, using the next expansion

ai,2 = ai,2λ
i+2 + Ci+1,1ai+1,1λ

i+1,

we can repeat the analysis. If m | i+ 2 we have that ai+1,1 = 0 and using the
previous step ai,1 = 0 for all i. We proceed by induction. Suppose that ai,j
for j ≤ n and i > 0 then

ai,n+1 = ai,n+1λ
i+n+1, if m 6 | (i+ n+ 1) then ai,n+1 = 0.

As above consider the next term

ai,n+2 = ai,n+2λ
i+n+2 + Cr+1,1ai+1,n+1λ

i+n+1,

if m | (i + n + 2) then ai+1,n+1 = 0 and using the previous step (where we
show that if m does not divide the sum of the sub-indices of ai,n+1 then
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ai,n+1 = 0 ), we have ai,n+1 = 0 for all i. Finally, for the case i = 0 note that
a0,j = a0,jλ

j and we can not argue like above, therefore f̂(x1, x2) = l̂(xm2 ) for
l ∈ Ô1.

The higher dimensional case works in the same way, because some part
of Ĝ will be of the form (. . . , λxj +xj+1, . . . , λxj+k−1 +xj+k, λxj+k, . . . ), for a
eigenvalue λ, and making all xi = 0 except for xj+k−1 and xj+k we can apply
the same analysis. Then, f̂(0, . . . , 0, xj+k−1, xj+k, 0, . . . , 0) = l̂(xmj+k) for l̂ ∈
Ô1 .

Finally, if Ĝ ∈ D̂iff(Cn, 0) is formally linearizable then, there is a formal
change of coordinates such that ĝ−1 ◦ Ĝ ◦ ĝ(x) = dĜ(0)x and we make the
previous analysis over its linear part G(x) = dĜ(0)x. X

De�nition 2.2.4. Let f̂1 . . . , f̂n ∈ Ôn.

• We say that f̂1 . . . , f̂n are generically transverse if df̂1 ∧ · · · ∧ df̂n 6≡ 0.

• We say that f̂1 . . . , f̂n are transversal at the origin if (df̂1∧· · ·∧df̂n)0 6=
0.

An immediate consequence of this de�nition is:

Proposition 2.2.5. Let f̂1, . . . , f̂n ∈ Ôn be n generically transverse for-
mal series, written in series form as f̂j(x) =

∑
I aj,Ix

I , then there exist n
independent multi-indexes I1, . . . , In ∈ Nn, i.e., there exist n multi-indexes
Ik = (ik,1, . . . , ik,2) such that the matrix [ik,l], where 1 ≤ k, l ≤ n, is no
singular and such that for each Ik at least one aj,Ik , for 1 ≤ j ≤ n, is not
zero.

Proof. By hypothesis we have that df̂1 ∧ · · · ∧ df̂n 6≡ 0. The associativity of
the wedge product allows us to work in couples. Note that

df̂1 ∧ · · · ∧ df̂n 6≡ 0 =⇒ df̂1 ∧ df̂2 6≡ 0

and df̂j =
∂f̂j
∂x1

dx1 + · · ·+ ∂f̂j
∂xn

dxn where

∂f̂j
∂xr

=
∑
Ik

ik,raj,Ikx
ik,1
1 · · ·xik,r−1

r · · ·xik,nn =
∑
Ik

ik,raj,Ikx
Ik−er
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using the notation Ik − er = (ik,1, . . . , ik,r − 1, . . . , ik,n). We have

df̂1 ∧ df̂2 =
∑
r<s

(∂f̂1

∂xr

∂f̂2

∂xs
− ∂f̂1

∂xs

∂f̂2

∂xr

)
dxr ∧ dxs

=
∑
r<s

[(∑
I1

i1,ra1,I1x
I1−er

)(∑
I2

i2,sa2,I2x
I2−es

)
−
(∑

I1

i1,sa1,I1x
I1−es

)(∑
I2

i2,ra2,I2x
I2−er

)]
dxr ∧ dxs.

This becomes

df̂1∧df̂2 =
∑
r<s

[∑
I1 I2

a1,I1a2,I2(i1,ri2,s− i1,si2,r)xI1+I2−(er+es)
]
dxr ∧dxs. (2.1)

Therefore, there exist r, s such that i1,ri2,s − i1,si2,r 6= 0 with a1,I1a2,I2 6= 0
or a1,I2a2,I1 6= 0, i.e., (i1,r, i1,s) and (i2,r, i2,s) are independent multi-indexes.
Hence

I1 = (i1,1, . . . , i1,r, . . . , i1,s, . . . , i1,n) and I2 = (i2,1, . . . , i2,r, . . . , i2,s, . . . , i2,n)

are linearly independent. We continue by doing the wedge product of (2.1)
with df̂3.

df̂1 ∧ df̂2 ∧ df̂3 =
(∑
r<s

[∑
I1 I2

a1,I1a2,I2

∣∣∣∣i1,r i1,s
i2,r i2,s

∣∣∣∣xI1+I2−(er+es)
]
dxr ∧ dxs

)
∧
(∑

I3

i3,1a3,I3x
I3−e1dx1 + · · ·+

∑
I3

i3,na3,I3x
I3−endxn

)
=
(∑
r<s

[∑
I1 I2

a1,I1a2,I2

∣∣∣∣i1,r i1,s
i2,r i2,s

∣∣∣∣xI1+I2−(er+es)
]
dxr ∧ dxs

)
∧
(∑

j

∑
I3

i3,ja3,I3x
I3−ejdxj

)
.

This can be written as

df̂1 ∧ df̂2 ∧ df̂3 =∑
j 6=r,s

∑
r<s

∑
I1 I2 I3

a1,I1a2,I2a3,I3

∣∣∣∣i1,r i1,s
i2,r i2,s

∣∣∣∣ i3,jxI1+I2+I3−(er+es+ej)dxr ∧ dxs ∧ dxj.

(2.2)
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Fixing r < s < j. The following terms appear in (2.2)

a1,I1a2,I2a3,I3

[ ∣∣∣∣i1,r i1,s
i2,r i2,s

∣∣∣∣ i3,jdxr ∧ dxs ∧ dxj +

∣∣∣∣i1,s i1,j
i2,s i2,j

∣∣∣∣ i3,rdxs ∧ dxj ∧ dxr

+

∣∣∣∣i1,r i1,j
i2,r i2,j

∣∣∣∣ i3,sdxr ∧ dxj ∧ dxs

]
=

a1,I1a2,I2a3,I3

[ ∣∣∣∣i1,r i1,s
i2,r i2,s

∣∣∣∣ i3,j +

∣∣∣∣i1,s i1,j
i2,s i2,j

∣∣∣∣ i3,r − ∣∣∣∣i1,r i1,j
i2,r i2,j

∣∣∣∣ i3,s]dxr ∧ dxs ∧ dxj

= a1,I1a2,I2a3,I3

∣∣∣∣∣∣
i1,r i1,s i1,j
i2,r i2,s i2,j
i3,r i3,s i3,j

∣∣∣∣∣∣ dxr ∧ dxs ∧ dxj

Hence (2.2) can be written as

df̂1 ∧ df̂2 ∧ df̂3 =∑
r<s<j

∑
I1 I2 I3

a1,I1a2,I2a3,I3

∣∣∣∣∣∣
i1,r i1,s i1,j
i2,r i2,s i2,j
i3,r i3,s i3,j

∣∣∣∣∣∣xI1+I2+I3−(er+es+ej)dxr ∧ dxs ∧ dxj

Therefore, there exist r, s, j such that
∣∣∣ i1,r i1,s i1,ji2,r i2,s i2,j
i3,r i3,s i3,j

∣∣∣ 6= 0 such that for each Ik

at least one aj,Ik , for 1 ≤ j ≤ 3, is not zero, i.e., (i1,r, i1,s, i1,j), (i2,r, i2,s, i2,j)
and (i3,r, i3,s, i3,j) are independent multi-indexes. Hence

I1 = (i1,1, . . . , i1,r, . . . , i1,s, . . . , i1,j, . . . , i1,n)

I2 = (i2,1, . . . , i2,r, . . . , i2,s, . . . , i2,j, . . . , i2,n)

I3 = (i3,1, . . . , i3,r, . . . , i3,s, . . . , i3,j, . . . , i3,n)

are linearly independent. This process can be continued until we obtain n
independent multi-indexes I1, . . . , In ∈ Nn. X

Remark 2.2.6. Observe that in dimension 2 there can not exist f̂1 and f̂2

generically transverse such that f̂i◦Ĝ = f̂i with Ĝ as in the Proposition 2.2.3.
In a similar way for dimension n, there can not exist f̂1, . . . , f̂n transversal
at the origin such that f̂i ◦ Ĝ = f̂i with Ĝ as in the proposition above. This
is because each one satis�es

f̂i(0, . . . , 0, xj, xj+1, 0, . . . , 0) = li(x
m
j+1) for some li ∈ Ô1,

and then df̂1 ∧ · · · ∧ df̂n is 0 when restricted to the plane {xj, xj+1}. In
particular (df̂1 ∧ · · · ∧ df̂n)0 = 0.
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We will apply the propositions above in order to study groups of formal
di�eomorphisms leaving invariant a set of generically transverse formal series.

De�nition 2.2.7. The invariance group of f̂ ∈ Ôn is de�ned as

H(f̂) = {Ĝ ∈ D̂iff(Cn, 0) | f̂ ◦ Ĝ = f̂}.

The invariance group of {f̂1 . . . , f̂n}, where f̂1, . . . , f̂n ∈ Ôn, is

H(f̂1 . . . , f̂n) = {Ĝ ∈ D̂iff(Cn, 0) | f̂i ◦ Ĝ = f̂i for i = 1, . . . , n}.

The following proposition is one of the key parts of our work.

Proposition 2.2.8. Let f̂1 . . . , f̂n ∈ Ôn be generically transverse. Then the
group H(f̂1 . . . , f̂n) is periodic (in particular linearizable and �nite).

The proof of Proposition 2.2.8 requires algebraic properties of groups of
di�eomorphisms. In Appendix A we give part of the supporting material and
a sketch of the proof. Using the theory we have built so far, we can give a
proof of the following particular case:

Proposition 2.2.9. Let f̂1 . . . , f̂n ∈ Ôn be transversal at the origin. Then
the group H(f̂1 . . . , f̂n) is periodic (in particular linearizable and �nite).

For the proof of Proposition 2.2.9 we need the following result from [9],
whose demonstration we put here to emphasize that it is also valid in the
formal case:

Proposition 2.2.10. A group G ⊂ D̂iff(Cn, 0) is linearizable if and only if
there exists a vector �eld X = R+ · · · , where R is a radial vector �eld, such
that X is invariant for every Ĝ ∈ G, i.e. Ĝ∗X = X .

Proof.

(=⇒) Suppose that G is linearizable, i.e. there exists g : (Cn, 0) → (Cn, 0)
such that g◦G◦g−1 = {dĜ0 | Ĝ ∈ G}. Since (A(·))∗R = R for all A ∈ Gl(n,C)
(by a direct calculation, (A(·))∗Rz = dA(·)A−1zRA−1z = z), in particular for
every element Ĝ ∈ G we have

Rz = (g ◦ Ĝ ◦ g−1)∗Rz = d(g ◦ Ĝ ◦ g−1)(g◦Ĝ−1◦g−1)(z)R((g ◦ Ĝ−1 ◦ g−1)(z)),

z = dgg−1(z)dĜĜ−1◦g−1(z)dg
−1

(g◦Ĝ−1◦g−1)(z)
(g ◦ Ĝ−1 ◦ g−1)(z).

Taking z = g(y) and multiplying by dg−1
g(y), we have

dg−1
g(y)(g(y)) = dĜĜ−1(y)dg

−1

(g◦Ĝ−1(y))
(g ◦ Ĝ−1(y)).
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Denoting X = dg−1
g(·)(g(·)), we have Ĝ∗X = X . It is easy to see that X =

R+ · · · . For this, suppose that

g(z) = Az + Pl(z) + Pl+1(z) + · · · ,
g−1(z) = A−1z +Qν(z) +Qν+1(z) + · · · ,

where A ∈ Mn(C) and Pl, Qν are polynomial vector �elds of degrees l and
ν, then

dg−1
z = A−1 + dQν(z) + dQν+1(z) + · · · ,

dg−1
g(z) = A−1 + dQν(z)g(z) + dQν+1(z)g(z) + · · · ,

which gives

Xz = dg−1
g(z)g(z) =

(
A−1 + dQν(z)g(z) + · · ·

)(
Az + Pl(z) + · · ·

)
= z + A−1

(
Pl(z) + Pl+1(z) + · · ·

)
+

+ dQν(z)g(z)
(
Az + Pl(z) + Pl+1(z) + · · ·

)
+ · · ·

The terms after z, if not 0, are of degree greater than one, thus X = R+ · · ·
as we wanted.

(⇐=) Since every eigenvalue of the linear part of X is 1, then X is in the
Poincaré domain without resonances (additive resonances), therefore using
Poincaré linearization theorem ([24] Theorem 4.3) there exists a formal di�eo-
morphism g : (Cn, 0)→ (Cn, 0) such that g∗X = R, i.e. X = (dg(·))−1g(·).

We claim that g ◦ Ĝ ◦ g−1(y) = dĜ0(y) for every Ĝ ∈ G. In fact, using
the same procedure as before we can observe that

Rz = (g ◦ Ĝ ◦ g−1)∗Rz.

For this, note that Ĝ∗X = X means that dĜĜ−1(y)XĜ−1(y) = Xz, which gives

dĜĜ−1(y)dg
−1

g◦Ĝ−1(y)
g ◦ Ĝ−1(y) = dg−1

g(y)g(y). Taking z = g(y), we have

dĜĜ−1◦g−1(z)dg
−1

g◦Ĝ−1◦g−1(z)
g ◦ Ĝ−1 ◦ g−1(z) = dg−1

z (z).

Therefore,

(g ◦ Ĝ ◦ g−1)∗Rz = d(g ◦ Ĝ ◦ g−1)g◦Ĝ−1◦g−1(z)R(g ◦ Ĝ−1 ◦ g−1(z))

= dgg−1(z)dĜĜ−1◦g−1(z)dg
−1

g◦Ĝ−1◦g−1(z)
g ◦ Ĝ−1 ◦ g−1(z)

= dgg−1(z)dg
−1
z (z) (by the the previous computation)

= z.
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Now, if we suppose that g ◦ Ĝ ◦ g−1(z) = Az + Pl(z) + Pl+1(z) + · · · , where
Pj(z) is a polynomial vector �eld of degree j, then it is easy to prove that

(g ◦ Ĝ ◦ g−1)∗R = Az + lPl(z) + (l + 1)Pl+1(z) + · · · ,

In order to prove it, observe that (g ◦ Ĝ ◦ g−1)∗Rz = Rz implies

d(g ◦ Ĝ ◦ g−1)g◦Ĝ−1◦g−1(y)R(g ◦ Ĝ−1 ◦ g−1(y)) = R(y)

taking y = g ◦ Ĝ ◦ g−1(z) then

d(g ◦ Ĝ ◦ g−1)zR(z) = R(g ◦ Ĝ ◦ g−1(z)),

which implies d(g◦Ĝ◦g−1)zz = g◦Ĝ◦g−1(z). By hypothesis d(g◦Ĝ◦g−1)z =
A+ d(Pl)z + d(Pl+1)z + · · · . Then we have

d(g ◦ Ĝ ◦ g−1)zz = Az + lPl(z) + (l + 1)Pl+1(z) + · · · ,
= Az + Pl(z) + Pl+1(z) + · · · .

and therefore Pj(z) ≡ 0 for every j ≥ 2. X

Proof of Proposition 2.2.9. The idea is to �nd an invariant vector �eld X
and then use the above proposition. First, consider the formal map H =
(f̂1, . . . , f̂n). For each Ĝ ∈ G we have by hypothesis f̂i ◦ Ĝ = fi and then
H ◦ Ĝ = H. Note that H ∈ D̂iff(Cn, 0) because (df̂1 ∧ · · · ∧ df̂n)0 6= 0. This
implies that H ◦ Ĝ−1 = H, Ĝ ◦H−1 = H−1 and dĜH−1(·)dH

−1
(·) = dH−1

(·) .

Let us de�ne X = (dH)−1H = dH−1
H(·)H(·), which satis�es Ĝ∗X = X , as

shown below:

Ĝ∗Xz = dĜĜ−1(z)XĜ−1(z)

= dĜĜ−1(z)dH
−1

H(Ĝ−1(z))
H(G−1(z))

= dĜĜ−1(z)dH
−1
H(z)H(z)

= dH−1
H(z)H(z), because dĜH−1(H◦Ĝ−1(z))dH

−1

H◦Ĝ−1(z)
= dH−1

H◦G−1(z),

= Xz.

Besides, by the proof of Proposition 2.2.10, we have that X = R+ · · · .
Then, by Proposition 2.2.10, we have that G is linearizable. Furthermore,

this implies that G is in fact diagonalizable by Propositions 2.2.1 and 2.2.3,
and Remark 2.2.6. In addition its diagonal form is made of roots of unity
by Proposition 2.2.2, since the transversality condition of {f̂i} implies the
existence of n independent multi-indexes by Proposition 2.2.5.
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Indeed, the previous analysis is more subtle, because we have to consider
(f̂i ◦ Ĝ)(g) = (f̂i ◦ g)(g−1 ◦ Ĝ ◦ g) = (f̂i ◦ g)(G) = (f̂i ◦ g) where g is a formal
di�eomorphism that diagonalizes G. The result is the same because the f̂i ◦g
are generically transverse.

Therefore, there exists N ∈ N such that GN = I and then 〈Ĝ〉 (i.e. the
group generated by Ĝ) is �nite. It remains to note that G is commutative.
Consider Ĝ1, Ĝ2 ∈ G and denote by G1, G2 their linear parts, then

Ĝ1 ◦ Ĝ2 = g(g−1 ◦ Ĝ1 ◦ g)(g−1 ◦ Ĝ2 ◦ g)g−1

= g(G1 ◦G2)g−1

= g(G2 ◦G1)g−1

= Ĝ2 ◦ Ĝ1.

Where we know that G1 and G2 commute because they are diagonal di�eo-
morphisms. X
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Chapter 3

On formal �rst integrals

In this chapter we will show that the existence of a formal �rst integral in our
framework, implies the existence of a holomorphic one. We use the notation
and results of [14, 15]

3.1 Preliminaries

Given a germ of a holomorphic vector �eld X ∈ X(Cn, 0) we shall denote by
F(X ) the germ of a one-dimensional holomorphic foliation on (Cn, 0) induced
by X .

De�nition 3.1.1. We shall say that F(X ) is non-degenerate generic if dX (0)
is non-singular, diagonalizable and, after some suitable change of coordinates,
X leaves invariant the coordinate planes. Denote the set of germs of non-
degenerate generic vector �elds on (Cn, 0) by Gen

(
X(Cn, 0)

)
. Such vector

�elds, after a change of coordinates, can be written in the form

X (x) = λ1x1(1 + a1(x))
∂

∂x1

+ · · ·+ λnxn(1 + an(x))
∂

∂xn
, (3.1)

where ai ∈Mn for i = 1, . . . , n.

De�nition 3.1.2. We say that a germ of one-dimensional holomorphic folia-
tion F(X ) has a holomorphic �rst integral if there is a germ of a holomorphic
map F : (Cn, 0)→ (Cn−1, 0) such that:

(a) F is a submersion outside some proper analytic subset. Equivalently if
we write F = (f1, . . . , fn−1) in coordinate functions, then the (n − 1)-
form df1 ∧ · · · ∧ dfn−1 is non-identically zero.

(b) The leaves of F(X ) are contained in level curves of F .
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Further, a germ f of a meromorphic function at the origin 0 ∈ Cn is called
F(X )-invariant if the leaves of F(X ) are contained in the level sets of f .
This can be precisely stated in terms of representatives for F(X ) and f , but
can also be written as iX (df) = X (f) ≡ 0.

We start with the following de�nition inspired in the concept of holomor-
phic �st integral (De�nition 3.1.2);

De�nition 3.1.3 (formal �rst integral). We say that a germ of a holomorphic
foliation F(X ), were X ∈ X(Cn, 0), has a formal �rst integral if there is a
formal map F̂ = (f̂1, . . . , f̂n−1), with f̂1, . . . , f̂n−1 ∈ Ôn, such that:

(a) The formal (n− 1)-form df̂1 ∧ · · · ∧ df̂n−1 is non-identicaly zero.

(b) X (F̂ ) ≡ 0, (i.e. the fi are F(X )-invariant, X (f̂i) ≡ 0 for all f̂i, i =
1, . . . , n− 1 ).

De�nition 3.1.4 (condition (?)). Let X be a germ of a holomorphic vector
�eld at the origin such that 0 ∈ Cm,m ≥ 3, is a non-degenerate singularity of
X (i.e. dX (0) is non-singular). We say that X satis�es condition (?) if there
is a real line L ⊂ C through the origin separating some eigenvalue λ(X ) from
the others. If X satis�es (?) we denote by SX the smooth invariant curve
associated to λ(X ).

Although the methods we use in this chapter are in general independent
of the dimension, our work will imply directly condition (?) only when n = 3.
In the remaining cases we have to include it as a hypothesis. This condition,
together with the generic conditions of the vector �eld X , is what allows to
use the following well known result (see [20]) whose demonstration can also
be found in [40].

Theorem 3.1.5. Let X and Y be two vector �elds in Gen (X(Cn, 0)) with
an isolated singularity at the origin satisfying condition (?). Let hX and hY
be the holonomies of X and Y relatively to SX and SY , respectively. Then
X and Y are analytically equivalent if and only if the holonomies hX and hY
are analytically conjugate.

This theorem is basically the heart of the proof of the equivalence (3)⇔
(4) in Theorem 1 of [14], whose statement is:

Theorem 3.1.6. Suppose that X ∈ Gen(X(C3, 0)) satis�es condition (?) and
let SX be the axis associated to the separable eigenvalue of X .

Then, Hol(F(X ), SX ,Σ) is periodic (in particular linearizable and �nite)
if and only if F(X ) has a holomorphic �rst integral.
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We can state now the main result in this chapter.

Theorem C. Let F(X ) be a germ of holomorphic foliation with
X ∈ Gen (X(C3, 0)). If F(X ) has a formal �rst integral then it also has
a holomorphic one.

In order to prove this result result we show that having a formal �rst
integral, gives enough properties to the vector �eld that Theorem 3.1.6 can
be used.

3.2 Algebraic criterion

In this section we show that we can restrict ourselves to a vector �elds written
in a particular way.

The following lemma and proposition are, at �rst glance, essentially n
dimensional versions of Lemma 1 and Proposition 1 in [14]. Nevertheless,
there is a di�erence which turns out to be an important property, as we
explain after the following lemma.

Lemma 3.2.1. Let Λ = (λ1, . . . , λn) ∈ Cn \ 0 and Nn−1×n be a matrix with
entries in N and linearly independent lines satisfying

NΛt = 0 ∈ Cn−1.

Then there are k1 . . . , kn ∈ Z and λ ∈ C∗ such that

(λ1, . . . , λn) = (k1 . . . , kn)λ.

Proof. The proof consists in the solution of a linear system. Take

N =

 n1 1 . . . n1n−1 n1n
...

. . .
...

...
nn−1 1 . . . nn−1n−1 nn−1n

 and A =

 n1 1 . . . n1n−1
...

. . .
...

nn−1 1 . . . nn−1n−1

 .
The independence allows to take n− 1 independent columns, which we sup-
pose to be the �rst ones. Thus A is invertible and multiplying by A−1 the
system NΛt = 0, we get1 . . . 0 k̃1

...
. . .

...
...

0 . . . 1 k̃n−1


λ1
...
λn

 =

0
...
0


n−1×1

.
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We have n− 1 equations of the form λi + k̃iλn = 0. Then

(λ1, . . . , λn) = (−k̃1, . . . ,−k̃n−1, 1)λn.

We know exactly who are the k̃i's, because they satisfy n1 1 . . . n1n−1
...

. . .
...

nn−1 1 . . . nn−1n−1


 k̃1

...
k̃n−1

 =

 n1n
...

nn−1n,


and, by the Cramer rule, k̃i = |Ai|

|A| , where | · | means determinant and Ai is
the matrix obtained from A by replacing the column i to [n1n . . . nn−1n]t.
Finally, we get

(λ1, . . . , λn) = (|A1|, . . . , |An−1|,−|A|)λ,

with λ = −λn/|A|, ki = |Ai| ∈ Z for i = 1, . . . , n − 1 and kn = −|A| ∈ Z as
we wanted. X

We know that the signs of the ki cannot be all neither positive nor negative
thanks to the condition n1 1k1 + · · ·+n1nkn = 0. The three dimensional case
is special because this implies that k1 ·k2 ·k3 < 0. So we can make one of them
negative and the other two positive by changing λ. However, in dimension
n > 3 this is not necessarily true. Here we have an example in dimension 4
where k1 · k2 · k3 · k3 > 0. Take

N =

1 0 1 0
0 1 1 2
0 0 1 1

 ,
if we have NΛt = 0 for some Λ = (λ1, λ2, λ3, λ4) then,

(λ1, λ2, λ3, λ4) = (−1, 1, 1− 1)λ.

With this example we can also see that a vector �eld of Siegel type may not
necessarily satisfy condition (?), whereas the opposite is always true.

Proposition 3.2.2. Suppose that X ∈ Gen(X(Cn, 0)) has a formal �rst
integral. Then F(X ) can be given in local coordinates by a vector �eld of the
form

X (x) = k1x1(1 + a1(x))
∂

∂x1

+ · · ·+ knxn(1 + an(x))
∂

∂xn
(3.2)

where k1, . . . kn ∈ Z and a1, . . . , an ∈Mn. In particular, if n = 3, X satis�es
condition (?).
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Proof. We are considering X ∈ Gen(X(Cn, 0)). If F̂ = (f̂1 . . . , f̂n−1) is
the formal �rst integral, then X (f̂i) ≡ 0 for i = 1, . . . , n − 1. If f̂i(x) =∑
|I|≥pi ai Ix

I , then

∂f̂i
∂xr

(x) =
∑
|I|≥pi

(ir)ai Ix
i1
1 · · ·xir−1

r · · · xinn ,

and

X (f̂i) =
n∑
r=1

λrxr(1 + ar(x))
( ∑
|I|≥pi

(ir)ai Ix
i1
1 · · ·xir−1

r · · ·xinn
)

=
n∑
r=1

∑
|I|≥pi

irλrai I(1 + ar(x))xi11 · · ·xirr · · ·xinn

=
∑
|I|≥pi

n∑
r=1

irλrai I(1 + ar(x))xI

=
∑
|I|≥pi

aI

( n∑
r=1

irλri

)
xI +

∑
|I|≥pi

aI

( n∑
r=1

irλriar(x)
)
xI = 0.

Thus given

JpiX (f̂i) =
∑
|I|=pi

aI

( n∑
r=1

irλri

)
xI = 0,

which implies
∑n

r=1 irλri = 0 for each I = (i1, . . . , in) such that aI 6= 0. Now,
by the same argument at the end of the proof of Proposition 2.2.9, there are
n− 1 linearly independent n-tuples satisfying this condition. With them we
can form the matrix N of Lemma 3.2.1, and we are done.

X

3.3 Holonomy and formal �rst integrals

We know that holonomy maps (by its construction) leave invariant the level
sets of a holomorphic �rst integral. What we want to obtain is a similar
invariance relation in the case of formal �rst integral. For simplicity, we
work in dimension 3, but small changes are needed for the general case.

Consider the foliation with formal �rst integral given by the vector �eld
X which, by Proposition 3.2.2, can be taken in the form (3.2). Note that
the vector �eld obtained from (3.2) by multiplying by

(
− k3(1 + a3(x))

)−1
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de�nes the same foliation. Then we can write X as

X (x1, x2, x3) = px1a1(x)
∂

∂x1

+ qx2a2(x)
∂

∂x2

+ x3
∂

∂x3

,

where a1, a2 ∈ M3 and p, q ∈ Q, let S := (x1 = x2 = 0) and Σ := (x3 = 1).
Consider the closed loop γ : [0, 1] 7→ S given by γ(t) = (0, 0, e2πit) and let
Γ(x1,x2)(t) = (Γ1(x1, x2, t),Γ2(x1, x2, t), e

2πit) be its lifting along the leaves of
F(X ) starting at (x1, x2, 1) ∈ Σ. In particular, the map h ∈ Diff(C2, 0)
given by Γ(x1,x2)(1) = (h(x1, x2), 1) is a generator of Hol(F(X ), S,Σ). Since
Γ(x1,x2)(t) belongs to a leaf of F(X ), then

∂

∂t
Γ(x1,x2)(t) = αX (Γ1(x1, x2, t),Γ2(x1, x2, t), e

2πit).

From this vector equation one has 2πie2πit = αe2πit, thus α = 2πi. Further-
more,

∂Γ1

∂t
= 2πipΓ1(x1, x2, t)a1(Γ),

∂Γ2

∂t
= 2πiqΓ2(x1, x2, t)a2(Γ).

Proposition 3.3.1. Let F(X ) be a foliation induced by a vector �eld X ∈
Gen (X(C3, 0)), h be as before and let F̂ = (f̂1, f̂2), with f̂1, f̂2 ∈ Ô3, be a
formal �rst integral of F(X ). Then

f̂i(x1, x2, 1) = f̂i(h(x1, x2), 1) (3.3)

Furthermore, there exist a coordinate change Φ(x1, x2, x3) = (u1, u2, u3) such
that (3.3) can be written as

Φ∗f̂i(u1, u2) = Φ∗f̂i(h̃(u1, u2)), (3.4)

where h̃ is given by Φ ◦ Γ ◦ Φ−1(u1, u2, 0) = (h̃(u1, u2, 0).

Proof. Let U be a small neighborhood of (0, 0, 1) such that the vector �eld X
is not singular in U . Then X can be trivialized (using Recti�cation Theorem,
see [5]) i.e., there exist a biholomorphisms Φ :

(
U, (0, 0, 1)

)
→
(
Φ(U) ⊂ C3, 0

)
such that Φ(x1, x2, 1) = (u1, u2, 0) and Φ∗X (u) = ∂/∂u3. Observe that
X (f̂i) ≡ 0, for i = 1, 2, implies X (f̂i)(Φ

−1(u)) = 0 for u ∈ Φ(U) and

X (f̂i)(Φ
−1(u)) = X (Φ−1(u)) · (Of̂i)Φ−1(u)

=
(
dΦΦ−1(u)X (Φ−1(u))

)
·
(
Of̂iΦ−1(u) · dΦ−1

u

)
= Φ∗X (Φ∗f̂i).
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Hence Φ∗X (Φ∗f̂i) ≡ 0 in U , this means that Φ∗f̂i(u1, u2, u3) = Φ∗f̂i(u1, u2) in
other words, Φ∗f̂i is a formal series in the variables (u1, u2). If Γ is as before
we have X (Γ) = 2πiΓ

′
this implies X (Φ−1 ◦ Φ ◦ Γ) = 2πiΓ

′
, then we have

dΦΓX (Φ−1 ◦ Φ ◦ Γ) = 2πidΦΓΓ
′
,

Φ∗X (Φ ◦ Γ) = 2πi(Φ ◦ Γ)′,

∂/∂u3 = 2πi(Φ ◦ Γ)′

thus Φ ◦ Γ(x1, x2, t) is a vertical line for t ∈ [0, ε) such that Γ(x1, x2, t) ∈ U
and Φ∗f̂i is constant on it, i.e.,

d

dt

(
Φ∗f̂i(Φ ◦ Γ(x1,x2)(t))

)
≡ 0, for t ∈ [0, ε),

but Φ∗f̂i(Φ ◦ Γ(x1,x2)(t)) = f̂i(Γ(x1,x2)(t)) then

d

dt

(
f̂i(Γ(x1,x2)(t))

)
≡ 0, for t ∈ [0, ε).

Fix a point (x1, x2, 1) ∈ U and take a �nite partition 0 = t0 < t1 <
· · · < tm−1 < tm = 1 and open neighborhoods {Ui}mi=0 forming a covering
of Γ(x1, x2) such that Γ(x1, x2, ti) ∈ Ui and U0 = U1 = U . Each Ui can
be chosen su�ciently small that we can repeat the previous analysis. We
conclude that f̂i is constant along Γ(x1, x2, t) for t ∈ [0, 1]. Hence

f̂i(Γ(x1,x2)(t)) = f̂i(Γ(x1,x2)(0)) = f̂i(Γ(x1,x2)(1))

and

f̂i(Γ(x1,x2)(0)) = f̂i(x1, x2, 1),

f̂i(Γ(x1,x2)(1)) = f̂i(h(x1, x2), 1)

then
f̂i(x1, x2, 1) = f̂i(h(x1, x2), 1)

Consider H(x1, x2, x3) = (h(x1, x2), x3) de�ned in a small neighborhood of
(x1, x2, 1). Note that H(x1, x2, 1) = Γ(x1,x2)(1) and that Φ◦H◦Φ−1 is a di�eo-
morphism in an open set of 0 ∈ Φ(U) ⊂ C3. Denote Φ ◦H ◦Φ−1(u1, u2, 0) =
(h̃(u1, u2), 0) then we have

f̂i(x1, x2, 1) = Φ∗f̂i(u1, u2, 0) = Φ∗f̂i(u1, u2),

f̂i(h(x1, x2), 1) = f̂i ◦H(x1, x2, 1) = f̂i ◦H ◦ Φ−1(u1, u2, 0)

= f̂i ◦ Φ−1
(
Φ ◦H ◦ Φ−1(u1, u2, 0)

)
= Φ∗f̂i(h̃(u1, u2), 0) = Φ∗f̂i(h̃(u1, u2)).
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Using (3.3) we have

Φ∗f̂i(u1, u2) = Φ∗f̂i(h̃(u1, u2)).

In conclusion, after a variable change Φ, we obtain the relation we were
looking for. X

Remark 3.3.2. One would think that is possible to make the following com-
putation. Using the formal chain rule (Section 2.1.1) and that f̂1 and f̂2 are
F(X )-invariant. We have

px1a1(x1, x2, x3)
∂f̂1

∂x1

+ qx2a2(x1, x2, x3)
∂f̂1

∂x2

+ x3
∂f̂1

∂x3

= 0

Evaluating Γ and multiplying by 2πi,

0 = 2πipΓ1a1(Γ)
∂f̂1

∂x1

∣∣∣
Γ

+ 2πiqΓ2a2(Γ)
∂f̂1

∂x2

∣∣∣
Γ

+ 2πie2πit ∂f̂1

∂x3

∣∣∣
Γ

=
∂Γ1

∂t

∂f̂1

∂x1

∣∣∣
Γ

+
∂Γ2

∂t

∂f̂1

∂x2

∣∣∣
Γ

+
d

dt
(e2πit)

∂f̂1

∂x3

∣∣∣
Γ

=
∂

∂t
(f̂1 ◦ Γ).

The last line (note that the same holds for f̂2) implies that f̂1 ◦Γ is constant
whit respect to t. Then,

f̂1 ◦ Γ(x1, x2, 1) = f̂1 ◦ Γ(x1, x2, 0),

f̂1(h(x1, x2), 1) = f̂1(x1, x2, 1).

The previous is true but it is useless in somehow, unless f̂1 and f̂2 be formal
series in two variables when x3 = 1. This happens for example if they are
formal along x3; series of this kind but de�ned along submanifolds are used
in [17] pag. 456. They also appear naturally in dimension 2 as a result of
blow-ups of formal series at the origin, as can be seen in [30] pag. 487. In
that setting the series can be de�ned in a neighborhood U of the divisor
(projective line) and is said to be a germ along U of a transversally formal
holomorphic function.

3.3.1 From formal to holomorphic �rst integral

Now we are in conditions to prove our �rst main result:

44



Theorem C. Let F(X ) be a germ of holomorphic foliation with
X ∈ Gen (X(C3, 0)). If F(X ) has a formal �rst integral then it also has
a holomorphic one.

Proof of Theorem C. Let F̂ = (f̂1, f̂2) be a formal �rst integral of F(X ). By
de�nition of formal �rst integral df̂1 ∧ df̂2 6= 0. By Proposition 3.2.2, the
vector �eld X can be written the form (3.2):

X (x) = mx1(1 + a1(x))
∂

∂x1

+ nx2(1 + a2(x))
∂

∂x2

− kx3(1 + a3(x))
∂

∂x3

,

were m,n, k ∈ Z+ and a1, a2, a3 ∈ M3. In particular X satis�es condition
(?). We just need the periodicity of the holonomy respect to the x3 axis to
satisfy the conditions of Theorem 3.1.6 and conclude the demonstration. For
this we use the notation and result (Proposition 3.3.1) of the previous section.
We want to show that the map h̃, which is a di�eomorphism leaving invariant
Φ∗f̂1 and Φ∗f̂2, is periodic and then h the holonomy map is periodic.

But �rst, we have to guarantee that Φ∗f̂1 and Φ∗f̂2 are still generically
transverse because in general df̂1 ∧ df̂2 6≡ 0 does not imply d(f̂1(x1, x2, 1))∧
d(f̂2(x1, x2, 1)) 6≡ 0. In order to proof this, suppose that (df̂1 ∧ df̂2)x3=1 ≡ 0
and observe that

d(Φ∗f̂1) ∧ d(Φ∗f̂2) = (df̂1 Φ−1(·)dΦ−1
(·) ) ∧ (df̂2 Φ−1(·)dΦ−1

(·) )

= (df̂1 ∧ df̂2)Φ−1(·)|dΦ−1
(·) |

thus in (u1, u2, 0), (d(Φ∗f̂1) ∧ d(Φ∗f̂2))(u1,u2,0) ≡ 0 which implies (d(Φ∗f̂1) ∧
d(Φ∗f̂2))Φ(U) ≡ 0 and then (df̂1 ∧ df̂2)U ≡ 0, contradiction. We can now use
the previous sections and Chapter 2.

With this in mind, by Proposition 2.2.8, we have that h̃ is periodic be-
cause it preserves Φ∗f̂1, Φ∗f̂2 and it is generated by one germ of di�eomor-
phism, therefore after a change of coordinates Hol(F(X ), S,Σ) is periodic
and Theorem 3.1.6 implies that F(X ) has a holomorphic �rst integral. X

As for arbitrary dimension we have:

Theorem 3.3.4. Let F(X ) be a germ of holomorphic foliation with X ∈
Gen (X(Cn, 0)) satisfying condition (?). If F(X ) has a formal �rst integral,
then it also has a holomorphic one.

Proof of Theorem 3.3.4. The proof goes on as the previous one but instead
of Theorem 3.1.6 in the last part, we use the following theorem:
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Theorem 3.3.5 (Theorem 5 in [39]). Let F be a singular foliation on (Cn, 0)
possessing n invariant pairwise transverse hyperplanes and denote by λ1, . . . ,
λn its eigenvalues. Suppose also that λn ∈ R+ while λ1, . . . , λn−1 are all
negative reals. Denote by hn the local holonomy map associated to the axis
xn (corresponding to the eigenvalue λn ) and suppose that hn has isolated
�xed points (in the sense of Theorem 1.4.1) and that it has �nite orbits.
Then F admits a holomorphic �rst integral.

By Proposition 3.2.2, the vector �eld X can be written in the form (3.2):

X (x) = k1x1(1 + a1(x))
∂

∂x1

+ · · ·+ knxn(1 + an(x))
∂

∂xn
,

where k1, . . . kn ∈ Z and a1, . . . , an ∈ Mn. This vector �eld, by hypothesis,
satis�es condition (?). Therefore, X is on the conditions of Theorem 3.3.5.
The same method in the proof of Theorem C shows that the holonomy group,
in this case associated to xn, is periodic. Thus hn has isolated �xed points
(in the sense of Theorem 1.4.1) and has �nite orbits. We can now apply
Theorem 3.3.5. X

The unsuccessful part of this chapter is that unlike Mattei and Moussu
[30] we did not manage to establish a relationship between the formal �rst
integral and the holomorphic one. In dimension one the latter is the compo-
sition of a formal series with the former one. It is possible just a matter of
computation but perhaps there is something deeper.
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Chapter 4

Vector �elds and Darboux's

Theorem

In this chapter we suppose the existence of analytic hypersurfaces invariant
by a vector �eld and we try to show the existence of an holomorphic �rst
integral. Its existence would imply that all the leaves are closed o� the
singularity. This is a Darboux's like proceeding and this made us try to use
Darboux's Theorem (Theorem 4.1.2) in our framework, however only in a
particular case we mange to use it. In our main result we use Chapter 1.

4.1 Preliminaries

Let be F a foliation by curves in CP (n) and L a leaf of F .

De�nition 4.1.1. We say that L is algebraic if the closure L of L in CP (n),
is an algebraic subset of dimension 1, i.e., an algebraic curve. In this case,
we also say that L is an algebraic solution of F .

Let be F a foliation in CP (n), whose singularities are isolated. Then, a
leaf L of F is an algebraic solution, if and only if, L is obtained from L by
the adjunction of the singularities of F to which L is adherent (see [32] pag.
103).

Theorem 4.1.2 (Darboux's Theorem [19, 26]). Let F be a foliation in CP (2)
having in�nitely many algebraic solutions. Then F admits a rational �rst
integral.

47



4.2 Vector �elds with in�nitely many invariant

hypersurfaces

4.2.1 Homogeneous case

De�nition 4.2.1. Let X ∈ X (C3, 0). We say that X is homogeneous of
degree ν if X (x) = aν(x) ∂

∂x1
+ bν(x) ∂

∂x2
+ cν(x) ∂

∂x3
where aν , bν and cν are

homogeneous polynomials of same degree ν and without common factors.

Note that, if X is homogeneous of degree ν, then X (λx) = λνX (x) for
every λ ∈ C∗. Intuitively this means that along the line λx the vector �eld
X points in the same direction allowing us to de�ne a vector �eld X̃ in the
projective plane CP (2) as follows.

Remember that the usual di�erential structure of CP (2) is given by the
atlas {(Ui, ϕi)}3

i=1 where Ui = {[x1;x2;x3] ∈ CP (2) |xi 6= 0} and

ϕ1([x1;x2;x3]) =
(x2

x1

,
x3

x1

)
=: (x, y),

ϕ2([x1;x2;x3]) =
(x1

x2

,
x3

x2

)
=: (u, v),

ϕ3([x1;x2;x3]) =
(x1

x3

,
x2

x3

)
=: (s, r).

Consider the projection

Π : C3 → CP (2) : (x1, x2, x3)→ [(x1;x2;x3)] = {λ(x1, x2, x3) |λ ∈ C∗}

that in the �rst chart is written as Π1(x1, x2, x3) = ϕ1 ◦Π(x1, x2, x3) = (x, y).
Putting all of this together, X̃ in the �rst chart is

X̃1(x, y) = Π∗1X (x, y)
∣∣
x1=1

=
{

dΠ1Π−1
1 (x,y)X

(
Π−1

1 (x, y)
)}

x1=1
,

=

[
−x 1 0
−y 0 1

]
X (1, x, y),

X̃1(x, y) =
(
bν(1, x, y)− xaν(1, x, y)

) ∂
∂x

+
(
cν(1, x, y)− yaν(1, x, y)

) ∂
∂y
.

We proceed in a similar way for the other two charts.

De�nition 4.2.2. We say that two hypersurfaces S1 and S2 are �rst jet
di�erent if S1 and S2 are given by the zero set of irreducibles g1, g2 ∈ M3

whose �rst jets are di�erent.
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Theorem 4.2.3. Let X be a germ of homogeneous vector �eld in 0 ∈ C3.
Suppose that X leaves invariant in�nitely many �rst jet di�erent hypersur-
faces passing through 0. Then, there exists a rational map f : CP (2) →
CP (1) that is F(X )-invariant (i. e., X (f) ≡ 0). This map is also called a
weak �rst integral for F(X ).

Proof. The idea of the proof is to use the homogeneity of X to de�ne a vector
�eld X̃ in the complex projective space CP (2) and show that the foliation
F(X̃ ) has in�nitely many algebraic leaves. Then we use Darboux's Theorem
4.1.2 to obtain a �rst integral for F(X̃ ). This �rst integral is a weak �rst
integral for F(X ).

Suppose that S := {g = 0}, for an irreducible g ∈M3, is an X -invariant
hypersurface. This is equivalent to saying that g divides X (g), denoted as
g
∣∣X (g). To see this if x0 ∈ S and φ(T ) is the integral curve of the vector

�eld X with φ(0) = x0 de�ned in a neighborhood of 0 ∈ C then,{
g(φ) = 0

X (φ(T )) = φ′(T ),

together they imply that X (g)(φ) = 0. Therefore X (g)(·) is a holomorphic
function which is zero when restricted to S. Therefore, It can be written as

X (g)(·) = g(·)h(·), (4.1)

where h ∈ O3.
Remember that if κ is the order of g then g = gκ + gκ+1 + · · · where gm

is a homogeneous polynomial of degree m. Thus, by the linearity of X as a
derivation operator, we have that

X (g) = X (gκ) + X (gκ+1) + · · · ,

is also a sum of homogeneous polynomials. If X (gκ) ≡ 0, we have that gκ
is a weak �rst integral for F(X ) and we are done. Suppose that X (gκ) 6≡ 0,
then X (gκ) is homogeneous of order ν + κ − 1, X (gκ+1) is homogeneous of
order ν + κ, etc., where ν is the order of X as before. Obviously, h in (4.1)
can also be written as a sum of homogeneous polynomials and the degree of
the �rst non zero of them (the order of h) necessarily is ν−1 by (4.1). Using
this, (4.1) can be rewritten in the following way;

X (gκ) + X (gκ+1) + · · · = (gκ + gκ+1 + · · · )(hν−1 + hν + · · · )
= gκhν−1 + . . . .
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This implies, by comparing terms with same degree in both sides, that

X (gκ) = gκhν−1,

in other words gκ | X (gκ). Thereby Sκ := {gκ = 0} is an X -invariant algebraic
hypersurface.

Next, as we mention previously, the homogeneity of X can be used to
de�ne a vector �eld X̃ in CP (2). The same can be done for gκ, de�ning a
function g̃κ in CP (2) as follows:

g̃κ(x, y) = Π∗1gκ|x1=1

= gκ(Π
−1
1 (x, y))|x1=1

= gκ(1, x, y).

We proceed analogously in the other two charts. Let us see that g̃κ | X̃ (g̃κ),
�rst we use the equality gκ(x1, x2, x3) = xκ1gκ(1, x2/x1, x3/x1) = xκ1gκ(1, x, y)
in order to calculate Ogκ(1, x, y) in terms of x1, x2 and x3 as follows:

∂gκ
∂x1

= κxκ−1
1 gκ + xκ1

(∂gκ
∂x

dx

dx1

+
∂gκ
∂y

dy

dx1

)
= κxκ−1

1 gκ + xκ−1
1

(
− x∂gκ

∂x
− y∂gκ

∂y

)
,

∂gκ
∂x2

= xκ1

(∂gκ
∂x

dx

dx2

+
∂gκ
∂y

dy

dx2

)
= xκ−1

1

∂gκ
∂x

,

∂gκ
∂x3

= xκ1

(∂gκ
∂x

dx

dx3

+
∂gκ
∂y

dy

dx3

)
= xκ−1

1

∂gκ
∂y

,

if we set x1 = 1, they become

∂gκ
∂x1

= κg̃κ +
(
− x∂gκ

∂x
− y∂gκ

∂y

)
,

∂gκ
∂x2

=
∂gκ
∂x

,
∂gκ
∂x3

=
∂gκ
∂y

.

Second, keep in mind that X (gκ) = aν
∂gκ
∂x1

+ bν
∂gκ
∂x2

+ cν
∂gκ
∂x3

= gκhν−1. In

particular, for x1 = 1. Thus, we have that g̃κ | X̃ (g̃κ) is consequence of the

50



previous considerations, as shown in the following calculations.

X̃ (g̃κ) =

[
−x 1 0
−y 0 1

]
X (1, x, y) · Ogκ(1, x, y)

=
(
− xaν + bν

)∂gκ
∂x

+
(
− yaν + cν

)∂gκ
∂y

= aν

(
− x∂gκ

∂x
− y∂gκ

∂y

)
+ bν

∂gκ
∂x

+ cν
∂gκ
∂y

= −κaν g̃κ +
(
aν
∂gκ
∂x1

+ bν
∂gκ
∂x2

+ cν
∂gκ
∂x3

)
= −κaν g̃κ + g̃κhν−1

X̃ (g̃κ) = g̃κ
(
− κaν + hν−1

)
,

where all functions are evaluated in (1, x, y).
Thus {g̃κ = 0} is an X̃ -invariant algebraic curve. The same argument

is valid with each of the in�nitely many X -invariant hypersurfaces. The
fact that they are �rst jet di�erent implies that there exists in�nitely many
X̃ -invariant algebraic curves. Then by Darboux's Theorem, X̃ posseses a
rational �rst integral f : CP (2) → CP (1). It only remains to see that f is
F(X )-invariant. This is equivalent to verify that X (f) ≡ 0, which is the next
and �nal step in the proof.

We can think f as a rational function in C3, constant along the directions
f(λx) = f(x) in other words, homogeneous of order 0. So, as we did before
with gκ, f can be written as f(x1, x2, x3) = f(1, x2/x1, x3/x1) = f(1, x, y).
Taking derivatives

∂f

∂x1

= − x

x1

∂f

∂x
− y

x1

∂f

∂y
,

∂f

∂x2

=
1

x1

∂f

∂x
,

∂f

∂x3

=
1

x1

∂f

∂y

and using that X̃1(f) = (−xaν + bν)
∂f
∂x

+ (−yaν + cν)
∂f
∂y
≡ 0, where all the

functions are evaluated in (1, x, y), we can calculate

X (f) = aν(x1, x2, x3)
∂f

∂x1

+ bν(x1, x2, x3)
∂f

∂x2

+ cν(x1, x2, x3)
∂f

∂x3

= xν1

(
aν(1, x, y)

∂f

∂x1

+ bν(1, x, y)
∂f

∂x2

+ cν(1, x, y)
∂f

∂x3

)
= xν−1

1

(
aν(1, x, y)

(
− x∂f

∂x
− y∂f

∂y

)
+ bν(1, x, y)

∂f

∂x

+ cν(1, x, y)
∂f

∂y

)
= xν−1

1

(
(−xaν + bν)

∂f

∂x
+ (−yaν + cν)

∂f

∂y

)
≡ 0 X

51



In order to conclude the homogeneous case is important to note that the
previous method does not produce two weak �rst integrals transversally in-
dependent, because both of them are �rst integrals of X̃ then in C3 they have
the same level sets.

4.2.2 Generalities on blow-ups.

Suppose that X (x) = a(x1, x2, x3) ∂
∂x1

+ b(x1, x2, x3) ∂
∂x2

+ c(x1, x2, x3) ∂
∂x3

,
where a, b, c ∈ O3 are given by

a(x) =
∑
|I|≥p1

aIx
I , b(x) =

∑
|J |≥p2

bJx
J and c(x) =

∑
|K|≥p3

cKx
K .

If ϕ1 is the �rst chart of the punctual blow-up at 0 ∈ C3. We denote E ◦
ϕ−1

1 (z1, z2, z3) = (z1, z1z2, z1z3) simply by E1(z), a(E1(z)) by a(z) (in the
same way b(z) and c(z)) and the p1-jet of a(z) by ap1(z) (in the same way
bp2(z) and cp3(z)). Observe that in this chart the divisor, D := E−1(0) =
CP (2), is given by {z1 = 0}.

Using this notation we calculate X̃ (z) = (dE−1
1 )E1(z)X

(
E1(z)

)
,

dE1 =

 1 0 0
z2 z1 0
z3 0 z1

 , dE−1
1 =

1

z2
1

 z2
1 0 0

−z1z2 z1 0
−z1z3 0 z1

 .
Thus

X̃ (z) =
1

z2
1

 z2
1 0 0

−z1z2 z1 0
−z1z3 0 z1

 ·
a(z)
b(z)
c(z)

 ,
X̃ (z) = a(z)

∂

∂z1

+
1

z1

(−z2a(z) + b(z))
∂

∂z2

+
1

z1

(−z3a(z) + c(z))
∂

∂z3

=
(
zν1aν(1, z2, z3) + zν+1

1 (. . . )
) ∂
∂z1

+(
− z2z

ν−1
1 aν(1, z2, z3) + zν−1

1 bν(1, z2, z3) + zν1 (. . . )
) ∂
∂z2

+(
− z3z

ν−1
1 aν(1, z2, z3) + zν−1

1 cν(1, z2, z3) + zν1 (. . . )
) ∂
∂z3

,
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which gives

X̃ (z) = zν1aν(1, z2, z3)
∂

∂z1

+

zν−1
1

(
− z2aν(1, z2, z3) + bν(1, z2, z3)

) ∂
∂z2

+

zν−1
1

(
− z3z

ν−1
1 aν(1, z2, z3) + cν(1, z2, z3)

) ∂
∂z3

+ zν1 (. . . ),

where ν = min{p1, p2, p3}. Then, supposing that x2aν(x) 6= x1bν(x) or
x3aν(x) 6= x1cν(x) (i.e., 0 is a not dicritical singularity, see [16]). In that
case we can de�ne in the �rst chart of D

X̃D(z2, z3) :=
(
(zν−1

1 )−1X̃ (z)
)
z1=0

and, we have that

X̃D(z2, z3) =
(
− z2aν(1, z2, z3) + bν(1, z2, z3)

) ∂
∂z2

+(
− z3aν(1, z2, z3) + cν(1, z2, z3)

) ∂
∂z3

.

(4.2)

In order to write X̃D in the other two charts, that we will denote X̃D(s, t)
and X̃D(u, v) for simplicity, consider the following diagram:

z3

z2

ϕ31

ϕ21

v

u

r
s

where,

ϕ21(z2, z3) = (u, v) and ϕ31(z2, z3) = (r, s)

u = 1/z2 r = z2/z3

v = z3/z2, s = 1/z3,
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hence,

X̃D(u, v) = uν−1dϕ21X̃D(ϕ−1
21 (u, v)) and

X̃D(r, s) = sν−1dϕ31X̃D(ϕ−1
31 (r, s)),

using that

dϕ21 =

[
−u2 0
−uv u

]
and dϕ31 =

[
s −rs
0 −s2

]
,

we have,

X̃D(u, v) = uν
(
− ubν

(
1,

1

u
,
v

u

)
+ aν

(
1,

1

u
,
v

u

)) ∂
∂u

+

uν
(
− vbν

(
1,

1

u
,
v

u

)
+ cν

(
1,

1

u
,
v

u

)) ∂
∂v
,

X̃D(u, v) =
(
− ubν(u, 1, v) + aν(u, 1, v)

) ∂
∂u

+(
− vbν(u, 1, v) + cν(u, 1, v)

) ∂
∂v

and

X̃D(r, s) = sν
(
− rcν

(
1,
r

s
,
1

s

)
+ bν

(
1,
r

s
,
1

s

)) ∂
∂r

+

sν
(
− scν

(
1,
r

s
,
1

s

)
+ aν

(
1,
r

s
,
1

s

)) ∂
∂s
,

X̃D(r, s) =
(
− rcν(s, r, 1) + bν(s, r, 1)

) ∂
∂r

+(
− scν(s, r, 1) + aν(s, r, 1)

) ∂
∂s
.

Observe that X̃D(z2, z3) is a polynomial vector �eld of degree ≤ ν+1 leaving
D invariant.

Lemma 4.2.4. If a vector �eld X ∈ X (C3, 0) leaves invariant a hypersur-
face passing through 0, then its �rst jet Xν leaves invariant a homogeneous
algebraic hypersurface passing through 0.

Proof. The argument is similar to the one in the �rst part of the proof of
Theorem 4.2.3. Let be S = {g = 0}, for g ∈ M3 irreducible, a X -invariant
hypersurface. Then there exists h ∈ M3 such that X (g) = gh. The three of
them, X , g and h can be written as a sum of homogeneous terms:

X = Xν + Xν+1 + · · · ,
g = gκ + gκ+1 + · · · ,
h = hν−1 + hν + · · · .
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The equality X (g) = gh implies that the order of h is ν − 1. By comparing
both sides of

Xν(gκ + gκ+1 + · · · ) + Xν+1(gκ + · · · ) + · · · = (gκ + · · · )(hν−1 + · · · ),

we get that Xν(gκ) = gκhν−1. Therefore, gk = 0 is a Xν-invariant a homoge-
neous algebraic hypersurface passing through 0 X

In what follows, we denote by X̃ the pull-back of the vector �eld X by the
blow-up E : C̃3 → C3 at the origin and by X̃D its restriction to the divisor.
We have,

Proposition 4.2.5. Let F(X ) be a germ of holomorphic foliation, where
X ∈ X(C3, 0), having an isolated non dicritical singularity at 0 ∈ C3. If
there exist in�nitely many X -invariant analytic hypersurfaces passing through
0 ∈ C3 and in general position then X̃D possesses a rational �rst integral.

Proof. The previous lemma, together with Theorem 4.2.3 implies that Xν
possesses a weak �rst integral. Now, X̃ in the �rst chart of the blow-up can
be written in the form (4.2).

Now, as we mention before, there exists f : CP (2) → CP (1) such that
Xν(f) ≡ 0, i.e., aν(x) ∂f

∂x1
+ bν(x) ∂f

∂x2
+ cν(x) ∂f

∂x3
≡ 0. We then proceed as in

the end of the proof of Theorem 4.2.3,

X̃D(f) =
(
− z2aν(z) + bν(z)

) ∂f
∂z2

+
(
− z3aν(z) + cν(z)

) ∂f
∂z3

= −z2aν(z)
∂f

∂z2

− z3aν(z)
∂f

∂z3

+ bν(z)
∂f

∂z2

+ cν(z)
∂f

∂z3

= x1

(
aν(z)

∂f

∂x1

+ bν(z)
∂f

∂x2

+ cν(z)
∂f

∂x3

)
X̃D(f) ≡ 0.

In the part above we use the following notation aν(x) = aν(x1, x2, x3) =
zν1aν(1, z2, z3) = zν1aν(z), and that f(x1, x2, x3) = f(1, z2, z3) which implies
by derivation,

∂f

∂x1

= − z2

x1

∂f

∂z2

− z3

x1

∂f

∂z3

,
∂f

∂x2

=
1

x1

∂f

∂z2

,
∂f

∂x3

=
1

x1

∂f

∂z3

.

X
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4.2.3 General case

The condition (?) introduced in De�nition 3.1.4 can be understood in the
following way: Let {λi}n1 ⊂ C∗ be the eigenvalues of (dX )0, if X satis�es
condition (?), then it is possible to choose a complex vector v ∈ C∗ such
that, for one of the eigenvalues λi, Re

(
λi
v

)
has di�erent sign. Then this

eigenvalue can be separated (see Fig. 4.1).

λ1

λ3

λ2

l C

l⊥

v

Figure 4.1: Condition (?) with l the line separating λ3.

Theorem B. Let F(X ) be the germ of a holomorphic foliation with X ∈
Gen (X(C3, 0)) satisfying condition (?). Then F(X ) has a holomorphic �rst
integral if, and only if, the leaves of F(X ) are closed o� the singularity and
there exist non-enumerable many X -invariant analytic hypersurfaces passing
through 0 in general position.

Proof. (=⇒) This implication is obvious.
(⇐=) To see this, consider X ∈ Gen(X(Cn, 0)), and according to De�nition
(3.1.1) after a change of coordinates, it can be written in the form

X (x) = λ1x1

(
1+a1(x)

) ∂

∂x1

+λ2x2

(
1+a2(x)

) ∂

∂x2

+λ3x3

(
1+a3(x)

) ∂

∂x3

. (4.3)

This vector �eld is in the conditions of Theorem 3.1.6, just remaining to
prove that the holonomy respect to the distinguished axis of X (denoted SX
as before) is periodic. Remember that SX is the invariant manifold associated
to the eigenvalue that can be separated, assumed to be λ3. We can calculate
Hol(F(X ), SX ,Σ) taking a small transversal section Σ to SX , di�eomorphic
to a ball in C2, at some point z0 close to the origin.
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S

x3

x1 x2

Σ

Σ

z0

Figure 4.2: Holonomy of SX

Observe �rst that if z0 is close enough to the origin, the saturate of Σ
together with the hyperplane {x3 = 0} contains a neighborhood of the origin
(see Proposition 1 [40]). This means that every X -invariant hypersurfaces
di�erent from {x3 = 0} necessarily cuts Σ, since it contains 0 and then cuts
the saturate of Σ, containing the leaves coming through Σ by its X -invariance.
Furthermore, we can guarantee that not only cut Σ

Assertion 4.2.1. Non-enumerable many X -invariant analytic hypersurfaces
contain the x3-axis.

In order to see this, take S = {g = 0} an X -invariant hypersurface given
by the zero set of g(x) = Σ|I|≥νbIx

I . Then X (g)(x) = g(x)h(x), where
h(x) = ΣIcIx

I . Using (4.3), we write this equation in terms of series, getting

Σ|I|≥ν
[
λ1i
(
1 + a1(x)

)
+ λ2j

(
1 + a2(x)

)
+ λ3k

(
1 + a3(x)

)]
bIx

I =(
Σ|I|≥νbIx

I
)(

ΣIcIx
I
)
.

Making x2 = x3 = 0, we get

Σi≥i0λ1i
(
1 + a1(x1, 0, 0)

)
bi,0,0x

i
1 =

(
Σi≥i0bi,0,0x

i
1

)(
Σici,0,0x

i
1

)
.

We proceed in a similar way for x1 = x2 = 0 and x1 = x3 = 0. Comparing
the �rst terms in both sides,

λ1i0bi0,0,0 = bi0,0,0c0,0,0,

λ2j0b0,j0,0 = b0,j0,0c0,0,0,

λ3k0b0,0,k0 = b0,0,k0c0,0,0.
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Remember that our intention is to show that g(0, 0, x3) = Σk≥k0b0,0,kx
k
3 ≡ 0

(because this implies that the x3 axis belongs to S). For this it is enough
to show that b0,0,k0=0 because in principle it is the �rst not zero term. If
c0,0,0 = 0, then b0,0,k0 = 0 given that k0 > 0 because g(0) = 0 (by hypothesis
0 ∈ S), then we are done. If c0 6= 0, suppose �rst that the three coe�cients
bi0,0,0, b0,j0,0 and b0,0,k0 are non zero. Then

λ1i0 = λ2j0 = λ3k0,

dividing by the vector v as in �g. 4.1 and comparing the real parts we have

Re
(λ1

v

)
i0 = Re

(λ2

v

)
j0 = Re

(λ3

v

)
k0.

This is a contradiction because v can be chosen so that Re
(
λ3
v

)
> 0, implying

that the other two are negative. Hence, at least one of the coe�cients bi0,0,0,
b0,j0,0 or b0,0,k0 has to be zero. The same analysis shows that bi0,0,0 · b0,0,k0 6= 0
or b0,j0,0 · b0,0,k0 6= 0 cannot happen. Thus any hypersurface not containing
the axis x1 and x2 necessarily contains the axis x3. This proves the assertion
.

The previous assertion implies that in�nitely many X -invariant hypersurfaces
cut Σ forming G-invariant analytic curves (calling G the holonomy map) as
in �g. 4.2 in a such way that if we think Σ as a ball in C2, each of these
G-invariants curves contains 0 ∈ C2. Therefore G generates a �nite group
according to Theorem A, and this implies the existence of a holomorphic �rst
integral for F(X̃ ) in some neighborhood of 0. X

It remains open to see is only �nite many X -invariant analytic hypersur-
faces are necessary, also if it is possible to conclude something taking �formal�
instead of �analytic� in Theorem B.
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Chapter 5

Complete stability theorem for

foliations with singularities

In this chapter we present a stability theorem (Theorem 5.2.2) for a holo-
morphic foliation F of codimension 1 on a compact, connected and complex
surface M . For this, we use the following result of Jouanolou about closed
leaves of holomorphic foliations:

Theorem 5.0.1 ([21, 25]). Let F be a holomorphic foliation (possibly singu-
lar) of codimension 1 in a compact and connected complex manifold. Then
F has a �nite number of closed leaves unless it possesses a meromorphic �rst
integral, in which case all the leaves are closed.

In our result, which will be stated properly in Section 5.2, we suppose the ex-
istence of F -invariant irreducible hypersurfaces and �nd conditions on them
that guarantees the existence of in�nitely many closed leaves. Then we use
the theorem above.

In the prove of our result we also need the following well known theorem
of Mattei and Moussu.

Theorem 5.0.2 (Mattei-Moussu [30]). Let F be a germ at 0 ∈ C2 of holo-
morphic foliation. Suppose that:

1. Sing (F) = {0}.

2. There are only �nite many separatices Sk.

3. The leaves are closed o� the origin.

Then, there exist a neighborhood V of 0, such that F|V has a holomorphic
�rst integral.
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5.1 Holonomy and virtual holonomy groups

Let F be a holomorphic foliation with isolated singularities on a complex
surface M . Denote by Sing(F) the singular set of F . Given a leaf L0 of
F , choose any base point p ∈ L0 ⊂ M \ Sing(F) and a transverse disc
Σp ⊂ M to F centered at p. The holonomy group of the leaf L0 with
respect to the disc Σp and to the base point p is the image of the repre-
sentation Hol : π1(L0, p)→ Diff(Σp, p) obtained by lifting closed paths in L0

with base point p to paths in the leaves of F , starting at points z ∈ Σp, by
means of a transverse �bration to F containing the disc Σp ([10]). Given
a point z ∈ Σp we denote the leaf through z by Lz. Given a closed path
γ ∈ π1(L0, p) we denote by γ̃z its lift to the leaf Lz starting (the lifted
path) at the point z. Then the image of the corresponding holonomy map is
h[γ](z) = γ̃z(1), i.e., the �nal point of the lifted path γ̃z. This de�nes a germ
of di�eomorphism h[γ] : (Σp, p) → (Σp, p) and also a group homomorphism
Hol : π1(L0, p) → Diff(Σp, p). The image Hol(F , L0,Σp, p) ⊂ Diff(Σp, p) of
such homomorphism is called the holonomy group of the leaf L0 with respect
to Σp and p. By considering any parametrization z : (Σp, p)→ (D, 0) we may
identify (in a non-canonical way) the holonomy group with a subgroup of
Diff(C, 0). It is clear from the construction that the maps in the holonomy
group preserve the leaves of the foliation. Nevertheless, this property can be
shared by a larger group that may therefore contain more information about
the foliation in a neighborhood of the leaf. The virtual holonomy group of
the leaf with respect to the transverse section Σp and base point p is de�ned
as ([13], [12])

Holvirt(F ,Σp, p) = {f ∈ Diff(Σp, p)
∣∣Lz = Lf(z),∀z ∈ (Σp, p)}.

The virtual holonomy group contains the holonomy group and consists of
all map germs that preserve the leaves of the foliation. Fix now a germ
of holomorphic foliation with a singularity at the origin 0 ∈ C2, with a
representative F(U). Let Γ be a separatrix of F . By Newton-Puiseaux
parametrization theorem, the topology of Γ is the one of a disc. Further,
Γ \ {0} is biholomorphic to a punctured disc D∗ = D \ {0}. In particular,
we may choose a loop γ ∈ Γ \ {0} generating the (local) fundamental group
π1(Γ \ {0}). The corresponding holonomy map hγ is de�ned in terms of a
germ of complex di�eomorphism at the origin of a local disc Σ transverse
to F centered at a non-singular point q ∈ Γ \ {0}. This map is well-de�ned
up to conjugacy by germs of holomorphic di�eomorphisms and is generically
referred to as local holonomy of the separatrix Γ.
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5.2 Main result

De�nition 5.2.1 ([6, 23]). A divisor D on a compact complex manifold M ,
is a formal sum dp =

∑
j kjVj where kj ∈ Z and {Vj}j is a locally �nite

sequence of irreducible hypersurfaces on M , where locally �nite means that
every point has a neighborhood which meets only �nitely many Vj's.

Consider F a holomorphic foliation of codimension 1 on a compact, con-
nected and complex surface M having an invariant divisor D ⊂ M . We
denote by M̃ the surface obtained from M after the resolution of the di-
critical singularities in D. Let E : M̃ → M be the resolution map (�nite
composition of blow-ups) and F̃ the foliation induced by E; there is a di-
visor Dq for each dicritical q ∈ D ∩ sing(F) consisting of a �nite union of
projective lines, moreover we can suppose that there are no singularities in
the dicritical components of Dq; note that the foliation F̃ is tranverse to the
dicritical components of Dq.
Remember that F o� the dicritical singularities in D and F̃ \ D are bi-
holomorphic, where D is the union of the divisors Dq one for each dicritical
q ∈ D ∩ sing(F).

Finally, denote D̃∗ = E−1(D\sing(F)). We are now in conditions to state
the main result of this chapter.

Theorem 5.2.2. Let F be a holomorphic foliation of codimension 1 on a
compact, connected and complex surface M . Suppose that there is an invari-
ant divisor D ⊂M such that:

(i) The virtual holonomy of the components of D is �nite.

(ii) The elements in D ∩ sing(F) are isolated singularities of F .

(iii) If a singularity p ∈ D ∩ sing(F) is non dicritical then D contains all
the separatrices of F through p.

(iv) If a singularity q ∈ D∩ sing(F) is dicritical then for its separatrices Lq
in D the closure of L̃q = E−1(Lq \ {q}) cuts a dicritical component of
Dq.

Then F has a meromorphic �rst integral.

Proof. If p ∈ D ∩ sing(F) is non dicritical, note that it has �nitely many
separatrices due to the locally �niteness of D and condition (iii), further-
more, they have �nite holonomy by (i), then by Mattei-Moussu's Theorem
5.0.2 there exist a neighborhood Up of p such that the foliation FUp has a
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holomorphic �rst integral, then the leaves of FUp are closed o� p. Avoiding
the introduction of unnecessary notation, in what follows we are going to
consider the elements in this paragraph as their pre-images by E; they are
biholomorphic because we are blowing-up only the dicritical singularities in
D.

If q ∈ D ∩ sing(F) is dicritical, by (iv) we have that for its separatrices

Lq ∈ D, L̃q cuts some dicritical component of Dq, suppose in a point q̃.
Consider now a foliation chart Uq̃ for the foliation F̃ centered in q̃; the
foliation induced by F̃ in Uq̃, denoted by F̃Uq̃ , is not singular and its leaves

(L̃q ∩ Uq̃ is one of them) are plaques transverse to the dicritical component
of Dq.

Suppose that D ∩ sing(F) = {p1, . . . , pr, q1, . . . , qs} where {pi}r1 are non
dicritical and {qi}s1 are dicritical singularities, observe that r, s <∞ by (ii).
Consider neighborhoods {Upi}r1 and {Uq̃i}s1 as in the previous paragraphs,
and take small ones {U ′pi}

r
1 and {U ′q̃i}

s
1 such that pi ∈ U ′pi ⊂ U ′pi ⊂ Upi ,

analogously for q̃i. Note that D̃∗ \ (∪ri=1U
′
pi

⋃
∪si=1U

′
q̃i

) is a compact set, then
for each leaf in F̃∩D̃∗\(∪ri=1U

′
pi

⋃
∪si=1U

′
q̃i

) we can apply a stability argument,
as Reeb's Local Stability Theorem (see for example [11] pag. 71) or Theorem
4.15 in [44] pag. 71, and �nd a fundamental system of neighborhoods W of
D̃∗ \ (∪ri=1U

′
pi

⋃
∪si=1U

′
q̃i

) where all the leaves are compact.
Therefore, adjusting the sizes of the sets {U ′pi}

r
1, {U ′q̃i}

s
1 and choosingW ∈ W ,

we can create (with the union of all of them) a neighborhood V of D̃ =
D̃∗ ∪ {pi, q̃i} invariant by F̃ . The leaves of F̃V are closed because each leaf
L ∈ F̃V can be written as a �nite union of closed sets L = (∪riL∩U ′pi)∪(∪siL∩
U ′q̃i)∪ (L∩W ), note that if some element in that union (for instance L∩U ′pi)
consists of in�nitely many plaques cumulating D then the same is true for all
the nonempty sets in {L∩U ′pi , L∩U

′
q̃j
, L∩W}r,si,j hence L acumulates D̃, this

implies that one element of the group of holonomy of some leaf L′ in D̃ is
not periodic and this contradicts (i) because that element can be seen as the
composition of elements in the groups of holonomy of L′W ∈ F̃W , L′U ′pi ∈ F̃U ′pi
and L′U ′qj

∈ F̃U ′qj for some i, j, and all of them are periodic, thereby there exist

in�nitely many compact leaves and according to Theorem 5.0.1 this implies
that F̃ has a meromorphic �rst integral f̃ , hence f̃ ◦ E−1 is a meromorphic
�rst integral of F .

X

62



Chapter 6

First integrals around the

separatrix set

6.1 Introduction

One of the key stones in the theory of holomorphic foliations is the article of
Mattei and Moussu [30] where the important result 5.0.2 about the existence
of holomorphic �rst integrals is presented.

Years later the second author (in [31]) revisited this result in order to cre-
ate a new proof, simpler and more geometric. In this chapter we present two
minor results products of unsuccessful attempts to give a proof of Theorem
3.1.6 repeating Moussu's technique [31].

6.2 Generic vector �elds in dimension n

This section is dedicated to show our attempt to prove Theorem 3.1.6 fol-
lowing the proof in [31].

Theorem 3.1.6. Suppose that X ∈ Gen(X(C3, 0)) satis�es condition (?)
and let SX be the axis associated to the separable eigenvalue of X .

Then, Hol(F(X ), SX ,Σ) is periodic (in particular linearizable and �nite)
if and only if F(X ) has a holomorphic �rst integral.

The following de�nitions is inspired by [36] where it is shown that the
existence of a holomorphic �rst integral for foliations by curves on (C3, 0)
is not a topological invariant. More precisely, it is provide an example of
two topologically equivalent foliations such that only one of them admits a
holomorphic �rst integral.
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De�nition 6.2.1. Let F be a dimension one foliation on (C3, 0), a (possibly
singular) F -invariant surface will be called dicritical (or dicritical invariant
surface) if the restriction of F to it possesses in�nitely many separatrices.
The particular case of a hyperplane will be called dicritical hyperplane.

6.2.1 Attempt to a geometric proof of Theorem 3.1.6

We divided the proof in two parts:

a. The construction of a neighborhood V of the origin.

b. The study of the quotient space V/FV .

We succeeded to prove the �rst part, i.e., we built an invariant neighborhood
V of the separatrices (in this case the distinguished axis and the dicritical hy-
perplane Proposition 6.2.2) that can be seen as the saturated of a transverse
section to the distinguished axis. It is important to mention that this was
already done in [40] (Proposition 1.) but, in our case, we use the hypothesis
about the periodicity of the holonomy of SX . Our proof is more geometric
though, except by the used of the Proposition 6.2.2.

Fix a su�ciently small ball B = B2n
r centered at 0 ∈ Cn(∼= R2n) contained

in an open set U where the germ of generic vector �eld X ∈ Gen(X(Cn, 0))
is de�ned.

Proposition 6.2.2. Suppose that X ∈ Gen(X(C3, 0)) satis�es condition (?)
and let SX be the axis associated to the separable eigenvalue of X .

Then, the separatrices of F(X ) are SX and the leaves contained in the
dicritical hyperplane.

Proof. Remember that a generic vector �eld can be written in the form (3.1)

X (x) = λ1x1(1 + a1(x))
∂

∂x1

+ λ2x2(1 + a2(x))
∂

∂x2

+ λ3x3(1 + a3(x))
∂

∂x3

,

where ai ∈ M3 for i = 1, 2, 3. We can also choose v such that Re(λ1/v),
Re(λ2/v) < 0 e Re(λ3/v) > 0. Also, as a3(0) = 0 we know that for |x|
small |a3(x)| < ε thus |1 + a3(x)| ≥ |1 − |a3(x)|| ≥ 1 − |a3(x)| > 1 − ε and
the function 1+ai(x)

1+a3(x)
is holomorphic, take 1 + ãi(x) = 1+ai(x)

1+a3(x)
, suppose that

|ãi(x)| ≤
∣∣Re(λi/v)

2λi/v

∣∣ and write X as

X (x) =
λ1

v
x1(1 + ã1(x))

∂

∂x1

+
λ2

v
x2(1 + ã2(x))

∂

∂x2

+
λ3

v
x3

∂

∂x3

,
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Now, let γ(T ) = (x1(T ), x2(T ), x3(T )) be a separatrix of F(X ) not contained
in the hyperplane x3 = 0 or in the x3 axis. We know that γ is F(X )-invariant
then X (γ) = γ′ which is equivalent to x′i(T ) = (λi/v)xi(T )(1 + ãi(γ(T ))) for
i = 1, 2 and x′3(T ) = (λ3/v)x3(T ). Consider the case where T = t ∈ R.
Hence γ(t) is a curve with real dimension one. Reparametrize γ such that
γ(0) 6= 0 and limt→∞ γ(t) = 0. Therefore

xi(t) = xi(0)e
λi
v
t+

λi
v

∫ t
0 ãi(γ(t))dt

for i = 1, 2 and x3(t) = x3(0)e
λ3
v
t. Now, taking modulus

|xi(t)| = |xi(0)|eRe
(
λi
v

)
t+Re

(
λi
v

∫ t
0 ãi(γ(t))dt

)
.

Considering the upper quotes

Re
(λi
v

∫ t

0

ãi(γ(t))dt
)
≤
∣∣λi
v

∣∣ ∫ t

0

|ãi(γ(t))|dt,

≤ 1

2
|Re(λi/v)|t,

we have that |xi(t)| ≤ |xi(0)|e 1
2

Re(λi/v)t and this goes to 0 when t → ∞. On

the other hand |x3(t)| = |x3(0)|eRe(
λ3
v

)t and goes to∞ because Re(λ3/v) > 0.
As a conclusion, γ cannot be as we supposed and it has to be contained in
the hyperplane x3 = 0 or in the x3 axis. X

We will denote by S the union of SX with the dicritical hyperplane, i.e.,
the set of separatrices of F(X ).

Lemma a. Suppose that X ∈ Gen(X(C3, 0)) satis�es condition (?) and let
SX be the axis associated to the separable eigenvalue of X .

If Hol(F(X ), SX ,Σ) is periodic, then there exists a F-invariant neighbor-
hood V of S in B such that the leaves in V cut ∂B transversally. Furthere-
more, V is the union of the saturate of a small transversal section of SX and
the dicritical hyperplane.

Proof of Lemma a. In this paragraph we use some of the arguments of [[10],
Lemma 2 pag. 66]. First observe that if L ∈ F is a closed leaf transverse
to ∂B, then ∂L = L ∩ ∂B is a closed set of real dimension one, and each
connected component in ∂L is di�eomorphic to the circle S1. Suppose that
K ⊂ ∂L is one of this connected components. Consider neighborhoods Uk ⊃
Wk of K, UK open in Cn and WK open in L, where WK can be taken as a
�nite union of plates because K ⊂ L is a compact subset of a leaf. As ∂B
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intersects WK transversally, we can choose UK small enough such that for
every x ∈ UK the leaf of F|UK through x meets ∂B transversally.

Continuing with this argument, if there exist K1 and K2 as above, we
can use global trivialization to show the existence of a homeomorphism be-
tween transversal sections toWK1 andWK2 contained respectively in UK1 and
UK2 (in fact is just to repeat the technique used in the construction of the
holonomy map). This homeomorphism shows that we can �nd an invariant
neighborhood of L of leaves transversal to ∂B in ∂B ∩ UK1 and ∂B ∩ UK2 .

In what follows we will use the notation K1 = SX ∩ ∂B where SX is the
distinguished axis of the generic vector �eld X ; K1 is compact with peri-
odic holonomy, then it possesses a neighborhood where ∂F is a transversally
holomorphic foliation without singularities. Applying Reeb's in (∂Sk, ∂F),
we have

Assertion 6.2.1. The leaf K1 of ∂F possesses a tubular neighborhood T1(ε)
in ∂B

J1 : (Dε × Dε)× S1 → T1(ε),

such that J−1
1 (∂F) is the suspension of a periodic rotation in Dε × Dε.

The neighborhood T1(ε) is ∂F -invariant and T1(ε′) = J1

(
(Dε′×Dε′)×S1

)
with 0 < ε′ < ε forms a fundamental system of neighborhoods of K1 in ∂B.
In addition T1(ε) is transverse to F .

Consider also the following set

T2(ε2) = {x ∈ C3
∣∣ |x1|2 + |x2|2 = 1, |x3| ≤ ε2}

Assertion 6.2.2. There exist 0 < ε′ < ε such that the intersection of ∂B with
the F -saturated V (ε′) of T1(ε′) is contained in T (ε) = T1(ε) ∩ T2(ε).

Proof of Assertion 6.2.2. By contradiction, take a sequence {ak}k of
points in T1(ε) such that ak → a ∈ K1 and satisfying Lak ∩ ∂B 6⊂ T (ε) where
Lak is the leaf in F through ak. Take bk a point in (Lak ∩ ∂B) \ T (ε), then
{bk}k is a sequence in a compact set thus bk → b ∈ ∂B (using the same
notation for a subsequence). If Lb is transverse to ∂B, then we can use the
previous paragraph supposing that b belongs to some K2, then there exist
an invariant neighborhood of Lb of leaves transversal to ∂B in ∂B ∩UK1 and
∂B ∩ UK2 , this implies that Lb is far from SX .

If Lb is not transverse to ∂B we can take a sphere of radius 1 + δ, δ > 0,
and proceed as above.

Assertion 6.2.3. There exist 0 < ε1 < ε′ such that V (ε1) = V , the F -saturate
of T1(ε1) together with the dicritic hyperplane is a neighborhood of 0 in B.
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Proof of Assertion 6.2.3. The periodicity of the holonomy group
Hol(F(X ), SX ,Σ) implies that it can be conjugated to a cyclic group gen-
erated by a diagonal di�eomorphism. Therefore, there are not �xed points
other than the origin in a neighborhood of it, so we can choose ε1 such that
0 < ε1 < ε′ and the leaves cutting J1(∂B4

ε1
×{1}) = Cε1 have trivial holonomy

and the compactness of the leaves allows to apply Reeb stability theorem.
For all a ∈ Cε1 the leaf La in F through a possesses a F -saturated tubular
neighborhood:

Ja : τa × La → T (La),

such that J−1(F) is foliated by �bers z×La, where τa (whose complex dimen-
sion is two) is a small transverse section to F through a contained in T1(ε′).
In particular the F -saturate of νa = τa∩Cε1 is C∞-di�eomorphic to the prod-
uct νa ×La and the saturated of Cε1 is a C

∞-hypersurface (whose boundary
is contained in ∂B) �bered over S1. By construction, is the boundary of
V = V (ε1) the F -saturated of T1(ε1). X

We would like to have the analogous of Lemma 2 in [31], something like:

�There exists a homeomorphism

h : V ∗/FV ∗ → B∗(= B \ {0})

such that h ◦ qV ∗ = pV ∗ is holomorphic.�

In order to proof such lemma, it would be necessary to understand the
topology of the space of leaves q(V ∗) = V ∗/F . We know that q(V ∗) =
q
(
J1(Bε′ × {1})

)
is a Hausdor� space (because the leaves we are consider-

ing are closed) but the major di�erence is that in dimension two it can be
shown, using machinery like the Riemann map and fundamental group, that
the q(V ∗) is biholomorphic to D∗. In our case, what we need is to �nd a
biholomorphism between q(V ∗) and B4∗ (where q(V ∗) has a di�erentiable
structure possibly de�ned as in dimension two) but the machinery used in
dimension two do not exist (or are not as useful) in higher dimensions. Our
intention of repeat Moussu's proof in dimension three was unsuccessful but
it helped us to achieve a better understanding of our problem.
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Appendix A

Algebraic properties of groups of

di�eomorphisms

Here we give a sketch of the proof of Proposition 2.2.8. We start by intro-
ducing some notations, de�nitions and results needed for this purpose, they
mainly come from [41], we also recommend [28, 29].

A.1 Preliminaries

Let φ ∈ Diff(Cn, 0). We consider its action in the space of k-jets. More
precisely we consider the element φk ∈ GL(m/mk+1) de�ned by

m/mk+1 φk→ m/mk+1

g + mk+1 7→ g ◦ φ+ mk+1

where m/mk+1 can be interpreted as a �nite dimensional complex vector
space. In this point of view, di�eomorphisms are interpreted as operators
acting on function spaces.

De�nition A.1.1. We de�ne Dk = {φk : φ ∈ Diff(Cn, 0)}.

The natural projections πk,l : Dk → Dl for k ≥ l de�ne a projective
system and hence we can consider the projective limit lim←−Dk. It is the so

called group of formal di�eomorphisms D̂iff(Cn, 0).

De�nition A.1.2. Let G be a subgroup of D̂iff(Cn, 0). We de�ne Gk as the
smallest algebraic subgroup of Dk containing {ϕk : ϕ ∈ G}.
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De�nition A.1.3. Let G be a subgroup of D̂iff(Cn, 0). We de�ne G
z
as

lim←−k∈NGk, more precisely G
z
is the subgroup of D̂iff(Cn, 0) de�ned by

G
z

= {ϕ ∈ D̂iff(Cn, 0) : ϕk ∈ Gk ∀ k ∈ N}

We say that G
z
is the pro-algebraic closure of G. We say that G is pro-

algebraic if G = G
z

Proposition A.1.4. Let φ ∈ D̂iff(Cn, 0). Then φ is unipotent if and only if
j1φ is unipotent.

Lemma A.1.5. Let Hk be an algebraic subgroup of Dk for k ∈ N. Suppose
that πl,k(Hl) ⊂ Hk for all l ≥ k ≥ 1. Then lim←−k∈NHk is a pro-algebraic

subgroup of D̂iff(Cn, 0). Moreover the natural map lim←−Hj → Hk is surjective
for any k ∈ N if πl,k(Hl) = Hk for all l ≥ k ≥ 1.

The group G is a projective limit of algebraic groups and closed in the
Krull topology by de�nition. Since Gk is an algebraic group of matrices and
in particular a Lie group, we can de�ne the connected component Gk,0 of the
identity in Gk. We also consider the set Gk,u of unipotent elements of Gk.

Proposition A.1.6. Let G be a subgroup of D̂iff(Cn, 0). Then we have
G
z

0 = {ϕ ∈ Gz
: ϕ1 ∈ G1,0}. Moreover G

z

0 is pro-algebraic.

Remark A.1.7. Let G be a solvable subgroup of Diff(Cn, 0). Since member-
ship in G

z

0 and G
z

u can be checked out in the �rst jet, these groups have �nite
codimension in G

z
. Indeed the kernels of the natural maps

G
z → G1/G1,u and G

z → G1/G1,0

are equal to G
z

u and G
z

0 respectively by Propositions A.1.4 and A.1.6. In
particular G

z
/G

z

0 is a �nite group.

Proposition A.1.8 (Proposition 2. [28]). Let G ⊂ D̂iff(Cn, 0) be a group.
Then g is equal to {X ∈ X̂(Cn, 0) : exp(tX ) ∈ G

z ∀t ∈ C} and G
z

0 is
generated by the set {exp(X ) : X ∈ g}. Moreover if G is unipotent then the
map

exp : g→ G
z

is a bijection and g is a Lie algebra of nilpotent formal vector �elds.

Remark A.1.9. Invariance properties typically de�ne pro-algebraic groups.
Let us present an example. Consider f1, . . . , fn ∈ Ôn and

G = {ϕ ∈ D̂iff(Cn, 0) | fj ◦ ϕ ≡ fj ∀ 1 ≤ j ≤ n}
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We de�ne

Hk = {A ∈ Dk : A(fj + mk+1) = fj + mk+1 ∀1 ≤ j ≤ p}

for k ∈ N. It is clear that Hk is an algebraic subgroup of Dk for k ∈ N.
Moreover we have πl,k(Hl) ⊂ Hk for l ≥ k ≥ 1. Since f ◦ φ − f = 0 is
equivalent to f ◦ φ− f ∈ mk for any k ∈ N, the group lim←−Hk is equal to G.
Moreover G is pro-algebraic by Lemma A.1.5.

A.2 Finiteness of a invariance group

Now, using the previous theory we have the necessary tools to give a sketch
of the proof of Proposition 2.2.8.

Proposition A.2.1. Let us consider n elements f1, . . . , fn of the �eld of
fractions of Ôn. Suppose df1 ∧ · · · ∧ dfn 6≡ 0. Then the group

G = {ϕ ∈ D̂iff(Cn, 0) | fj ◦ ϕ ≡ fj ∀ 1 ≤ j ≤ n}

is �nite.

Proof. We have that G is pro-algebraic by Remark A.1.9. Consider an el-
ement X =

∑n
j=1 aj∂/∂xj in the Lie algebra L(G) of G. By de�nition we

have

fj ◦ exp(tX ) ≡ fj ∀t ∈ C =⇒ X (fj) = lim
t→0

fj ◦ exp(tX )− fj
t

≡ 0

for any 1 ≤ j ≤ n. The property X (fj) = 0 for any 1 ≤ j ≤ n is equivalent
to 

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn



a1

a2
...
an

 =


0
0
...
0

 .

Since df1 ∧ · · · ∧ dfn 6≡ 0, the n × n matrix in the previous equation has a
non-vanishing determinant and then X ≡ 0. Hence L(G) is trivial and G

z

0

is the trivial group by Proposition A.1.8. Since G/G
z

0 is �nite by Remark
A.1.7, G is �nite. X
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