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Resumo

On finite and infinite horizon
optimization problems

Vitor Luiz Pinto de Pina Ferreira

Orientador: Bernardo Freitas Paulo da Costa

Nós estudamos programas estocásticos convexos em um contexto multies-
tágio e programas convexos em um contexto de horizonte infinito periódico.
Nossas principais contribuições estão relacionadas ao caso de horizonte infinito
periódico. Primeiro, inspirados por métodos de planos cortantes existentes, nós
apresentamos dois algoritmos de solução, chamados exaustivo e exploratório,
e provamos sua convergência. O algoritmo exaustivo calcula cortes apenas em
um conjunto finito pré-selecionado de estados. O algoritmo exploratório gera
uma sequência finita de estados onde novos cortes são calculados. Segundo,
conjecturas naturais sobre tais problemas são examinadas.

Palavras-chave: Stochastic programming; Convex optimization; Multistage
problems; Infinite horizon; Cutting-plane method.



Abstract

On finite and infinite horizon
optimization problems

Vitor Luiz Pinto de Pina Ferreira

Advisor: Bernardo Freitas Paulo da Costa

We study convex stochastic programs in a multistage setting and convex
programs in a periodical infinite horizon setting. Our main contributions
are related to the periodical infinite horizon case. First, inspired by existing
cutting-plane methods, we present two solution algorithms, called exhaustive
and exploratory, and prove their convergence. The exhaustive algorithm com-
putes cuts only at a finite, preselected set of states. The exploratory algorithm
generates a finite sequence of states where new cuts are computed. Second,
natural conjectures about such problems are examined.

Keywords: Stochastic programming; Convex optimization; Multistage prob-
lems; Infinite horizon; Cutting-plane method.
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Chapter 1

Introduction

Decision-making inquires what decisions are possible, and which of those de-
cisions is the best. Our focus is to answer the latter question for problems
that can be described under the framework of mathematical optimization. The
formulation of an optimization model dictates the methods available to solve it
efficiently, often by exploiting the particular structure of a class of problems. It
is here that the importance of convexity in optimization cannot be understated.
The available tools for analyzing and solving convex optimization problems
make them more tractable than general nonconvex problems. In fact, they
often serve to develop solution methods for nonconvex problems; for example,
via successive convex approximations.

We further concentrate on a paradigm fit for sequential decision-making:
multistage optimization. The basic goal of multistage optimization is to obtain
the sequence of decisions to be carried out over a finite amount of discrete
periods of time. Predicting the future is a different—but related—problem,
hence planning in anticipation of future events falls under the purview of
decision-making under uncertainty. In that context, we introduce stochastic
optimization problems as our approach to incorporate forecasts into our models.
As time passes and new information becomes known, that data can be used to
instruct our decisions. This characterizes the decision taken at the beginning of
the planning period not as a single value, but as a function of this data.

In a sequential problem, performing the chosen action (regardless of how
it was chosen) and advancing to the next time period results in a problem one
time period smaller. This recursive property facilitates the study of multistage
optimization problems. Dynamic Programming, introduced by Bellman in the
early 1950s (cf. [1]), is a paradigm that makes use of this feature to mainly
solve multistage problems where decisions and resources are discrete (often
specifically finite). A key development for the continuous setting was the SDDP
algorithm (cf. [23]). Originally constructed to solve linear multistage problems
by means of approximating the cost of future actions by piecewise linear
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2 CHAPTER 1. INTRODUCTION

functions, many variations have since been developed, including extensions to
convex multistage problems.

As the planning horizon of models become longer and longer, the math-
ematical mind may ponder about problems that cover an infinite number of
time periods. We are going to see that such problems can be defined precisely,
and lay requirements for their well-posedness. Furthermore, rather than a
Sisyphean task, a practical solution can be computed as long as the problem
has a cyclical nature. Many phenomenons of interest—the climate; mass con-
sumption of goods and services—are periodical or approximately periodical,
and thus fit this assumption.

Prior to presenting our main contributions, we highlight two existing ap-
proaches to solving periodical infinite horizon optimization problems with
continuous state and control variables. The first approximates the problem by
discretizing the state or control variables. Such procedures had already been
developed before SDDP (cf. [3]), however the GDDP algorithm (cf. [30]) is a
recent proposal that combines state discretization with lower bounding func-
tions (not necessarily linear, as those used in SDDP). The second approach is
to solve finite horizon approximations. Suggestions of SDDP-type algorithms
that implement this approach have been made in the literature (cf. [12] and
[27]), but without a convergence proof. Another extension of SDDP to infinite
horizon problems, the Benders squared algorithm, was proposed in [21] with
a convergence proof.

The main contributions of this work relate to the aforementioned infinite
horizon problems. To be precise, they are related to solution algorithms
and conjectures regarding the properties of such problems, and we list them
below.

• The exploratory algorithm, a SDDP-type method for solving infinite
horizon optimization problems, alongside a convergence proof. The
solution method is similar to the proposals in [12] and [27];

• The exhaustive algorithm, combining discretization of the state variable
with linear lower bounding functions;

• Simple counterexamples to natural conjectures about properties of op-
timal solutions of periodical infinite horizon optimization problems, e.g.
if the optimal solution is also periodic with the same period (the precise
mathematical formulation is posed and answered later).

This dissertation is divided into three chapters. Each chapter focuses on
a particular kind of optimization problem, building on top of the previous by
introducing the theory and methods required by the problems of interest.

• In chapter Preliminaries, we introduce basic concepts of convex analysis
and optimization.
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Section 2.1 defines convex sets, lists examples, and shows properties
useful to certify convexity or construct new convex sets.

Section 2.2 presents convex functions and their extended-valued exten-
sions, defines the notions of epigraph, and explains how convex sets and
convex functions are related to each other.

Section 2.3 characterizes a general mathematical optimization problem.

Section 2.4 is dedicated to the important notion of duality in optimiza-
tion.

Section 2.5 explains a generalization of differentials particularly applica-
ble in the context of convex functions.

• In chapter Finite horizon, we discuss both multistage and stochastic
optimization problems.

Section 3.1 presents the simpler case of deterministic two-stage problems
and its nested decomposition.

Section 3.2 introduces uncertainty via stochastic two-stage problems.

Section 3.3 extends the discussion to multistage problems of arbitrary
finite length, both deterministic and stochastic.

Section 3.4 lists solution methods for multistage problems.

• In chapter Infinite horizon, we analyze optimization problems over an
infinite number of periods.

Section 4.1 introduces the infinite horizon setting, which is analyzed by
means of the Wald-Bellman operator.

Section 4.2 lists solution methods for infinite horizon problems.

Section 4.3 contains numerical examples of practical and theorical inter-
est.

Section 4.4 concludes the dissertation by suggesting extensions to the
examples previously presented.

• In the Appendix, section A.1 lists solution methods for the optimization
problems discussed in chapter 2.





Chapter 2

Preliminaries

Suppose that an organization is contractually responsible for supplying energy
to a third-party. The organization must satisfy a demand d. To that end it
disposes of two power generation facilities, to which it must assign generation
targets: one hydro power plant h and one thermal power plant g. Both plants
have a maximum capacity of h and g respectively. Each unit of energy produced
by the thermal plant incurs a cost of c, while the costs of energy production
at the hydro plant are deemed negligible. Finally, if the organization fails to
meet the demand, it must pay a penalty p that scales linearly with the deficit
df in power supply, and cannot have a deficit larger than df . The goal of
the organization is to find an operation plan that minimizes the operational
costs and yet satisfies the power demand. The described problem can be
mathematically formulated as

min
h,g,df

cg + pdf

s.t. h+ g + df = d,
0 ≤ h ≤ h,
0 ≤ g ≤ g,
0 ≤ df ≤ df.

(2.1)

Problem (2.1) is called a mathematical optimization problem, or simply an
optimization problem. The quantities (h, g, df) ∈ R3 are called optimization
variables, the function f : R3 → R given by f (h, g, df) = cg + pdf is called
the objective function, and the equality and inequality equations listed above
are the constraints the optimization variables are subject to.

Generally, optimization problems can take the form
min
x

f0 (x)
s.t. fi (x) ≤ bi, ∀i,

(2.2)

where the fi are constraint functions, and the bi are bounds for the constraints.
For example, setting problem 2.1 in this form, one might take f1 (h, g, df) = h

5



6 CHAPTER 2. PRELIMINARIES

with b1 = h for the constraint h ≤ h; and f2 (h, g, df) = −h with b2 = 0 for
the constraint 0 ≤ h; and so on for each other inequality in problem 2.1. The
remaining equality constraint h+ g + df = d can be broken down into a pair
of inequality constraints, h+ g + df ≤ d and −h− g − df ≤ −d.

Problem 2.1 in particular falls into a class of optimization problems known
as linear programs (abbreviated LP), i.e., in the general notation of prob-
lem 2.2, the objective function f0 and the constraint functions fi are linear.
Remember that a function f : Rn → R of n real variables is said to be linear
if

f (αx+ βy) = αf (x) + βf (y)

for all x, y ∈ Rn and all α, β ∈ R.

Linear programming theory is rich, and it finds practical applications in a
wide range of fields. Unfortunately, not all practical problems can be solved effi-
ciently exclusively through the use of linear programs. Nonlinear optimization
problems are, in general, much harder to solve efficiently than linear problems.
Fortunately, there is a larger class of optimization problems which has been
studied thoroughly that is of extreme theorical and practical interest: convex
optimization problems. Convex functions can be thought of a generalization
of linear functions, where a convex function f : Rn → R satisfies

f (αx+ βy) ≤ αf (x) + βf (y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, and β ≥ 0.

In order to introduce the theory of convex optimization, we find it best
to begin with convex sets, and trace back to convex functions after a solid
foundation has been stablished. Section 2.1 defines convex sets and exhibits
some examples. Additionally, it presents some methods that can be used to
construct new convex sets or to verify that a set is convex. Section 2.2, in turn,
defines convex functions and shows their fundamental property that makes
them particularly useful for optimization. Also, it defines the epigraph of a
function, which allows us to link convex functions and convex sets. Section 2.3
details what a mathematical optimization problem is and its elements. Sec-
tion 2.4 presents the idea of the dual optimization problem, and how it can be
used to bound the original problem (called the primal problem). Section 2.5
introduces a generalization of differentials, useful when dealing with nondif-
ferentiable convex functions. Solution methods for the optimization problems
discussed in this chapter are explained in section A.1 of the Appendix: sub-
section A.1.1 focuses on convex problems, while subsection A.1.2 pinpoints on
linear problems.
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2.1 Convex sets
In this section, we introduce the notion of convex sets and some of their
properties.

Let X be a Banach space over R, i.e. a complete normed vector space. For
most of this dissertation, the only Banach spaces considered are Rn. For every
x0, x1 ∈ X, and every θ ∈ [0, 1] , let

xθ = θx1 + (1− θ)x0.

The set {xθ : θ ∈ [0, 1]} =: [x0, x1] is called the line segment between x0 and
x1, and is the natural generalization of line segments laying in Rn for n ∈ N,
as the notation suggests.

Definition 2.1.1. A set C ⊂ X is called a convex set if the line segment
between any two of its points lays in C. In other words, for any x, y ∈ C, and
any θ ∈ [0, 1] , we have

θx+ (1− θ) y ∈ C.

Examples of convex sets include: the empty set, sets with a single point,
and the whole space X. A less trivial example arises from problem 2.1. The
set (h, g, df) ∈ R3 : h+ g + df = d,

0 ≤ h ≤ h,
0 ≤ g ≤ g,
0 ≤ df ≤ df.


is a convex set of a kind known as polyhedron.

Definition 2.1.2 (Polyhedron). A set P ⊂ X is called a polyhedron if it can
be described by a finite number of linear equations, that is, there are finite
sets Φ,Ψ ⊂ X∗ of continuous linear operators and their respective bounds
{aϕ}ϕ∈Φ , {bψ}ψ∈Ψ ⊂ R such that

P = {x ∈ X : ϕ (x) ≤ aϕ,∀ϕ ∈ Φ, ψ (x) = bψ, ∀ψ ∈ Ψ} .

A polyhedron described by a single linear equality is called a hyperplane,
while one described by a single linear inequality is called a halfspace. Therefore,
polyhedra are finite intersections of hyperplanes and/or halfspaces.

A hyperplane described by the equation ϕ (x) = a divides X into two
halfspaces, ϕ (x) ≤ a and ϕ (x) ≥ a, hence the name.

A vertex of a polyhedron is any point v ∈ P that can only be described as
a convex combination trivially, i.e., if v = θx+ (1− θ)y, then x or y equals v.

Below, we prove that polyhedra are indeed convex sets directly from the
definition. Afterwards, we will see properties that simplify the process of
determining if a given set is convex, rather than needing to return to the
definition each time.
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Theorem 2.1.3 (Polyhedra are convex). Let P be a polyhedron. Then P is
convex.

Proof. Let x0, x1 ∈ P , and θ ∈ [0, 1]. Then, for any ϕ ∈ Φ we can evaluate

ϕ(xθ) = ϕ(θx1 + (1− θ)x0) = θϕ(x1) + (1− θ)ϕ(x0) ≤ θaϕ + (1− θ)aϕ = aϕ,

where the second equality follows from linearity, and the inequality from the
fact that x0, x1 ∈ P . Thus ϕ(xθ) ≤ aϕ. Similarly, one can show that ψ(xθ) = bψ.
Because these equations hold for every ϕ ∈ Φ and ψ ∈ Ψ, we have shown that
xθ ∈ P as desired.

The Euclidean balls in Rn serve as an example of a convex set that is not
a polyhedron, such as the unit ball around the origin B0. It is nonetheless the
intersection of an infinite number of halfspaces, those on the side of hyperplanes
tangent to the boundary of the ball that contain the ball itself. This kind of
description of the Euclidean ball—as an infinite intersection of convex sets—is
sufficient to conclude that it is convex, as we will now see.

Theorem 2.1.4 (Intersection preserves convexity). Let C1, C2 ⊂ X be convex
sets. Then C1 ∩ C2 is a convex set. In fact, let {Cλ}λ∈Λ be an arbitrary
collection of convex subsets of X. Then ⋂

λ∈Λ
Cλ is a convex set.

Proof. Let x, y ∈ ⋂
λ∈Λ

Cλ. Then, for any particular λ ∈ Λ, x, y ∈ Cλ. By
convexity, [x, y] ⊂ Cλ. Since λ was taken arbitrarily, [x, y] ⊂ ⋂

λ∈Λ
Cλ.

Remark 2.1.5. The preceding theorem allows us to reduce the proof that poly-
hedra are convex to proving that hyperplanes and halfspaces are convex. (In
fact, only a proof for halfspaces is necessary, as hyperplanes are the intersection
of the halfspaces defined by it.)

Related to Euclidean balls in Rn are ellipsoids, which can be described as
the image of an Euclidean ball under a linear transformation. They are, as
expected, convex, which again follows from a more general fact.

Theorem 2.1.6 (Linear maps preserve convexity). Let T : X → Y be a
continuous linear operator between Banach spaces, and let C ⊂ X and S ⊂ Y
be convex sets. Then T (C) and T−1 (S) are convex sets.

Proof. Let x0, x1 ∈ C, and θ ∈ [0, 1] . Then by convexity,

xθ = θx1 + (1− θ)x0 ∈ C,

and thus by linearity

θT (x1) + (1− θ)T (x0) = T (θx1 + (1− θ)x0)
= T (xθ) ∈ T (C) .
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Now, if T−1(S) is empty, it is convex by vacuity. Otherwise, let z0, z1 ∈
T−1(S) and θ ∈ [0, 1] . Then we can denote their convex combination by

zθ = θz1 + (1− θ) z0 ∈ X.

Let y0, y1 ∈ S refer to the elements of S such that T (z0) = y0 and T (z1) = y1.
As a point in the domain of T, we can calculate the image of zθ,

T (zθ) = T (θz1 + (1− θ) z0)
= θT (z1) + (1− θ)T (z0)
= θy1 + (1− θ) y0 ∈ S,

showing that zθ ∈ T−1 (S) , as desired.

In some situations, there is a nonconvex set and a convex set is desired.
The following construction is useful in a variety of such cases.

Definition 2.1.7. Let A ⊂ X be an arbitrary set. We define the convex hull
of A as the set of all convex combinations of elements of A, that is,

convA :=
{

n∑
i=0

θiai : ai ∈ A, θi ∈ [0, 1],∀i ∈ [0..n],∀n ∈ N
}
.

As its name suggests, the convex hull of A is always convex, even if A is
not. Additionally, it is the smallest convex set that contains A. We now prove
these two facts.

Proof. First, let x0, x1 ∈ convA, and θ ∈ [0, 1] . By definition of the convex
hull, we may write xj = ∑nj

i=0 θi,jai,j. Therefore,

xθ = θx1 + (1− θ)x0 =
n1∑
i=0

θθi,1ai,1 +
n0∑
i=0

(1− θ)θi,0ai,0,

which is a weighted sum of n0 + n1 elements of A. Now, the weights are all
non-negative, and each is at most 1. The sum of the weights can be written as

n1∑
i=0

θθi,1 +
n0∑
i=0

(1− θ)θi,0 =
n0∑
i=0

θi,0 + θ

(
n1∑
i=0

θi,1 −
n0∑
i=0

θi,0

)
= 1.

Thus xθ is a convex combination of elements of A, and xθ ∈ convA.

Now, let {Cλ}λ∈Λ be the collection of convex sets that contain A. As convA
is one such set, it is immediate that convA ⊃ ⋂

λ∈Λ
Cλ. Let x ∈ convA, that

is, we may write x = ∑n
i=0 θiai. For any λ ∈ Λ, we have ai ∈ Cλ for each

i ∈ [0..n]. Because each Cλ is convex, x = ∑n
i=0 θiai belongs to Cλ. Since we

begun by taking an arbitrary element x of convA, convA ⊂ Cλ, showing
convA ⊂ ⋂

λ∈Λ
Cλ, and in fact convA = ⋂

λ∈Λ
Cλ.
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2.2 Convex functions
In this section, we characterize convex functions and relate them to convex
sets.

Definition 2.2.1. Let C ⊂ X be a convex set. A function f : C → R is called
a convex function if the line segment between two points in its graph lies above
said graph. In mathematical notation, for any x0, x1 ∈ C, and θ ∈ [0, 1], we
have

f(θx1 + (1− θ)x0) ≤ θf(x1) + (1− θ)f(x0).

A function is said to be strictly convex if the inequality is strict whenever
x0 ≠ x1. A function f is a concave function if −f is convex, and, likewise, it
is strictly concave if −f is strictly convex.

We have seen examples of convex functions in previous sections. Lin-
ear functions, and, more generally, affine functions, are examples of convex
functions. However, affine functions are not only convex functions, but also
concave. The converse is true: any function that is both convex and concave
is affine.

Recall problem 2.1: its objective function,

f0(h, g, df) = cg + pdf,

is a linear function of h, g, and df ; meanwhile, the constraint function

f1(h, g, df) = h+ g + df − d

is an affine function of the same variables. Remember that c, p, and d are
constant real numbers. Note that this results in the constraint f1(h, g, df) = 0.
Alternatively, we could define

f̃1(h, g, df) = h+ g + df,

a linear function, and use the constraint f̃1(h, g, df) = d instead. (In order to
cast problem 2.1 as an LP, f̃1 should be used.)

Another family of examples that arise naturally are norms defined on a
Banach space. For instance, as functions of real numbers x and y, both |x|+ |y|
and
√
x2 + y2 are convex functions. 1

One of the main reasons convex functions are useful for optimization is
that a local minimum of a convex function is the global minimum. Note that

1Convexity is independent of the norm of the ambient space. In particular, two norms that
are not equivalent (in an infinite-dimensional context) are nonetheless convex, whichever
norm is chosen to define the Banach space at hand. Continuity, on the other hand, is
affected.
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the global minimum can be attained at multiple points (as in the constant
functions) or not at all (as in the exponential function). Prior to formally
stating and proving this property, we need the following definition.

Definition 2.2.2 (Relative openness). Let A ⊂ C ⊂ X. We say that A is
relatively open relative to C if there exists an open U ⊂ X such thatA = C∩U .2

The motivation for the preceding definition is the common need of consid-
ering a convex set C ⊂ X whose dimension is less than that of the entire space.
For example, the set {(x, y) ∈ R2 : x = 0, 0 ≤ y ≤ 1} is a line segment in two-
dimensional space. An open ball around an arbitrary point (0, y) in the line
segment would contain points of the form (ε, y), where ε > 0, outside of the
segment. We do not need to make this notion of dimension precise; nonetheless,
the next theorem codifies the required concept of local minimum.

Theorem 2.2.3 (Fundamental property of convex functions). Let f : C ⊂
X → R be a convex function, and let A ⊂ C be a non-empty set relatively
open to C. If f attains a minimum at x⋆ ∈ A, then x⋆ minimizes f over C.

Proof. Assume, for contradiction purposes, that there exists x ∈ C with f(x) <
f(x⋆). Denote by d = x−x⋆ the vector in the direction from x⋆ to x. Because
A is open, there exists a sufficiently small θ ∈ [0, 1] such that x⋆ + θd ∈ A.
However, by convexity,

f(x⋆ + θd) = f((1− θ)x⋆ + θx) ≤ (1− θ)f(x⋆) + θf(x) < f(x⋆),

contradicting the fact that f(x⋆) = minx∈A f(x).

There is another simple yet useful class of convex functions, that require the
introduction of the following concepts. The extended real numbers are

R := {−∞} ∪ R ∪ {∞} .

Another way to denote them is R = [−∞,∞], which highlights the shared
properties of R and the compact intervals of R = (−∞,∞).

Definition 2.2.4. Let f : C ⊂ X → R be a convex function. The extended-
value extension of f is the function f : X → R given by

f(x) =

f(x), if x ∈ C,
∞, otherwise.

We denote both f and f by the same symbol whenever there is no ambiguity.
The domain of f is the set dom f where f is finite. Here, for example,
dom f = C.

2In topology, this is known as subspace topology, relative topology, or induced topology.
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Note that the above definition precludes convex functions from attaining
the value −∞. It is possible to include such constructions in the definition,
but we have no need for them in this text.

Now, we can introduce the family of extended-value indicator functions.
For any set C ⊂ X, we define the function IC : X → R by

IC(x) =

0, if x ∈ C,
∞, otherwise.

If C is a convex set, IC is a convex function. In fact, IC can be seen as the
extension of the constant function defined only on C and equal to 0 in it.
We may also write I[x ∈ C] to refer to IC , especially when the set C can be
described in simple terms (e.g. I[x ≥ 0] when C = {x ≥ 0 : x ∈ R}).

The reader may have come across another definition of indicator functions,
namely a function f that is piecewise-constant, taking the value 1 on a set C,
and the value 0 everywhere else. These functions are usually neither convex
nor concave, and thus not particularly useful to us.

Theorem 2.2.5. Let {fn}n∈N be a sequence of convex functions defined on
the same Banach space X. If fn converges to f pointwise, then f is convex.

Proof. Let x0, x1 ∈ X, and θ ∈ [0, 1]. Then for xθ = θx1 + (1− θ)x0, and any
n ∈ N,

fn(xθ) ≤ θfn(x1) + (1− θ)fn(x0),

since fn is convex. Taking the limit as n→∞ on both sides, we obtain

f(xθ) ≤ θf(x1) + (1− θ)f(x0).

Because this inequality is valid for arbitrary x0, x1, and θ, we conclude that
f is convex.

The following definition helps bridge the gap between convex sets and
convex functions. It is also an useful tool for analysing and modeling convex
optimization problems (as we will see in e.g. example 2.3.5).

Definition 2.2.6. Let f be a real-valued function. The epigraph of f is the
set

epi f = {(x, t) : f(x) ≤ t} ,

that is, the epigraph of a function is the region above (and including) the
graph of a function.

Figure 2.1 depicts an example.
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Figure 2.1: Epigraph of the quadratic function f(x) = x2 (shaded in gray).

The epigraph is a particular set associated with any real-valued function.
However, when the function under consideration is convex, its epigraph is a
convex set. Conversely, a function whose epigraph is convex is a convex set.
This is precisely the connection between the two different kinds of convex
objects we studied so far.

Theorem 2.2.7. Let f be a real-valued function. Then f is a convex function
if and only if its epigraph is a convex set.

Proof. Let f : C → R be a convex function, x0, x1 ∈ C, and θ ∈ [0, 1]. Take
t0, t1 ∈ R such that y0 = (x0, t0) and y1 = (x1, t1) are points in epi f . Then
the point yθ = θy1 + (1− θ)y0 has coordinates(

θx1 + (1− θ)x0, θt1 + (1− θ)t0
)
.

Because y0 and y1 are points in the epigraph of f , t0 ≥ f(x0) and t1 ≥ f(x1),
and thus

θt1 + (1− θ)t0 ≥ θf(x1) + (1− θ)f(x0) ≥ f(θx1 + (1− θ)x0),

where the second inequality follows from convexity. This shows yθ ∈ epi f .

Now, assume f : X → R is a function whose epigraph is a convex set. Let
x0, x1 ∈ X, y0 = (x0, f(x0)) and y1 = (x1, f(x1)), and θ ∈ [0, 1]. By convexity
of the epigraph, yθ = θy1 + (1− θ)y0 ∈ epi f . Because yθ has coordinates(

θx1 + (1− θ)x0, θf(x1) + (1− θ)f(x0)
)
,

this implies θf(x1)+(1−θ)f(x0) ≥ f(θx1+(1−θ)x0), which shows f is a convex
function. (Note that f(θx1+(1−θ)x0) is a real number because f is real-valued,
and not extended real-valued. It can be calculated by inf

(xθ,t)∈epi f
t.)
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We now define a subclass of convex functions that serve to extend results
about single-variate strictly convex functions to the multi-variate case.

Definition 2.2.8 (Strong convexity.). Let C ⊂ X be a convex set and f :
C → R be a convex function. We say that f is strongly convex with parameter
m, or just strongly convex, when

∇2f(x) ≥ mI

for m > 0 and any x ∈ C, or, equivalently, if the smallest eigenvalue of ∇2f
is uniformly bounded away from the origin for all x. We note that there are
extensions of this definition that use only the function’s gradient, or even avoid
both the gradient and the Hessian, but we do not use them.

2.3 Optimization problems
In this section, we present the structure and notation of a general optimiza-
tion problem, which includes convex optimization problems, but also two
other important problem classes: linear programs and mixed-integer linear
programs.

Definition 2.3.1 (Optimization problem). An optimization problem is a prob-
lem of the form

min
x

f0 (x)
s.t. fi (x) ≤ bi, ∀i,

(2.2 revisited)

and the goal is to find an x that achieves the minimum value of f0(x) among
all x such that fi(x) ≤ bi. The quantity x is called the optimization variable,
the function f0 is called the objective function, and the inequality equations
are called the constraints. Optimization problem can also include equality
equations, or no constraints at all, i.e. be unconstrained.

An alternative way to write optimization problems is

min
x

f0 (x)
s.t. x ∈ X,

(2.3)

in which the constraints are implied by the definition of X.We name the set
X below.

For example, in
order for problems 2.3 and 2.2 to be the same, we take

X = {x : fi (x) ≤ bi, ∀i} .

The abstract notation of problem 2.3 is compact and useful for exposition,
while the more concrete notation of problem 2.2 can be more useful for analysis
(such as when discussing duality in section 2.4), and developing algorithms
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(as in section A.1). We will use each notation, or a mixture of both, when
appropriate.

A specific x is called a feasible solution when f0(x) <∞ and x ∈ X. The finiteness
requirement is
explained below.

An
optimization problem is called feasible when a feasible solution exists, and
unfeasible otherwise. The set of feasible solutions is called feasible set or
constraint set, and we often assume the condition f0(x) <∞ implicitly, as we
require it for every problem considered in this text; accordingly, we refer to X
as the feasible set. The set X is

defined above.A value p⋆ ∈ R is called an optimal value if

p⋆ = inf {f0(x) : x ∈ X} .

When a problem is unfeasible, we write p⋆ = ∞. This agrees with
the convention
inf ∅ =∞.

A feasible solution x⋆ ∈ X
such that p⋆ = f0(x⋆) is called an optimal solution.

Optimizations problems are often classified into families where the opti-
mization variables, the objective function, and the constraints share specific
properties. Besides convex optimization problems, with convex objective and
constraint functions, another important such class are linear programs.

Definition 2.3.2 (Linear programs). Linear programs (LP) are characterized
by a linear objective function and a polyhedral constraint set. A general linear
program has the form

min
x

c⊤x

s.t. Ax = b,
Tx ≤ w.

(2.4)

In applications, such as in the simplex algorithm, it may be useful to have
a linear program written in standard form.

min
x

c⊤x

s.t. Ax = b,
x ≥ 0.

(2.5)

There are families of nonconvex optimization problems for which techniques
used in convex—or, more accurately, linear—programming can be used for
great effect.

Definition 2.3.3 (Integer programs). Integer programs (IP) are linear pro-
grams with the additional constraint that the optimization variable must be
integer-valued. A general integer program has the form

min
z

c⊤z

s.t. Az = b,
Tz ≤ w,
z ∈ Znz .

(2.6)
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A subclass of integer programs are binary programs, or 0-1 integer programs,
where each optimization variable is further constrained to take values in the
set {0, 1}.

Definition 2.3.4 (Mixed-integer programs). Mixed-integer linear programs
(MILP) are linear programs with both real and integer-valued optimization
variables. A general mixed-integer linear program has the form

min
x,z

c⊤x+ d⊤z

s.t. Ax+Bz = b,
Tx+Wz ≤ w,
z ∈ Znz .

(2.7)

There is often a certain degree of freedom when designing an optimization
problem that can allow it to be cast as a problem of a particular class. We
say that two optimization problems are equivalent if it is possible obtain a
solution for one problem from a solution to the other, and vice-versa. We do
not make this definition formal, but we give two examples.

Example 2.3.5 (“Nonlinear” LP). Let X ⊂ R be a polyhedron. Then the
problem

min
x
|x|

s.t. x ∈ X,

can be cast as a LP by adding a variable, two constraints, and changing the
objective function as follows

min
x,t

t

s.t. x ∈ X,
x ≤ t,
−x ≤ t.

This is possible because the epigraph of the absolute value function is a poly-
hedron.Remember that

|x| =
max {x,−x}.

In this light, the pair (x, t) ∈ R2 represents a point in the epigraph
such that its first-coordinate projection belongs to the feasible set X. For this
reason, we refer to the original problem as a LP even if its objective function
is not linear.

Example 2.3.6 (Converting LPs into standard form). Any general form linear
program 2.4 can be cast into standard form. The conversion procedure is as
follows: each variable x becomes a nonnegative pair x+ and x−, representing
its positive and negative parts, respectively;x = x+ − x−

with x+, x− ≥ 0.
and each inequality constraint

t⊤x ≤ w can be written as t⊤x+ s = w, where s ≥ 0 is an additional variable
called a slack variable. The resulting standard form problem resembles the
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following
min
x+,x−,s

c⊤x+ − c⊤x−

s.t. Ax+ − Ax− = b,
Tx+ − Tx− + s = w,
x+ ≥ 0, x− ≥ 0, s ≥ 0.

(2.8)

2.4 Duality
In this section, we explain what is duality in optimization.

In optimization theory, the main idea behind duality is taking an optimiza-
tion problem and obtaining from it a new problem, called the dual problem.
The dual problem is useful for both developing the theory and for construct-
ing algorithms in applications, because, under certain conditions, solving the
dual problem is equivalent to solving the original problem. Stronger results
are available when the problems under consideration exhibit certain proper-
ties, such as convexity or linearity, but weaker results stand in more general
conditions.

Consider the following optimization problem.

min
x∈Rn

f0(x)
s.t. fi(x) ≤ 0, i ∈ [1..m],

hi(x) = 0, i ∈ [1..p].

At the moment, we make no assumptions over the objective and constraint
functions, except that the set

D =
m⋂
i=1

dom fi ∩
p⋂
i=1

dom hi = {x ∈ Rn : fi(x) <∞, hi(x) <∞} .

is nonempty.

To begin with, we want to relax the problem above by replacing the hard
constraints with penalty terms in a new objective function. A simple penalty
term is a linear function of how much each constraints is violated, which can
be quantified by the difference between the left and right hand sides of each
constraint equation. Because the right hand sides are all zero, we are led to
the following definition.

Definition 2.4.1. The Lagrangian L : Rn × Rm × Rp → R associated with
the above problem is the function

L(x;λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

µihi(x). (2.9)

The variables λ and µ are called dual variables, or Lagrange multipliers, and
we refer to λi (resp. µi) as the dual variable associated with the constraint
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fi(x) ≤ 0 (resp. hi(x) = 0). The original variable x is called the primal
variable.

The feasible set of the original problem is

F = {x ∈ Rn : f0(x) <∞, fi(x) ≤ 0, hi(x) = 0} .

Meanwhile the domain of the Lagragian is D; it is clear that F ⊂ D.

Definition 2.4.2. The Lagrange dual function, or just dual function, g :
Rm × Rp → R is the infimum of the Lagrangian over x

g(λ, µ) = inf
x∈D

L(x;λ, µ). (2.10)

Remark 2.4.3. For a fixed x ∈ D, we can find vectors ax, bx, and cx that allow
us to write the Lagrangian as

L(x;λ, µ) = λ⊤ax + µ⊤bx + cx.

Thus each L(x; · , · ) is an affine function of the dual variables. As the infimum
of affine functions, the dual function is concave. Observe we made no assump-
tions on the convexity of the original problem. Therefore the dual function is
always concave, even if the original optimization problem is nonconvex.

The dual function underestimates the primal problem. This property will
be shown later (in theorem 2.4.6). Because the dual functions provides many
lower bounds to the original problem, we may seek the best such lower bound.
This motivates the following definition.

Definition 2.4.4. The Lagrange dual problem, or just dual problem, is the
optimization problem

max
(λ,µ)∈Rm×p

g(λ, µ)
s.t. λ ≥ 0.

(2.11)

For particular problems, it may be possible to formulate the dual problem
explicitly. An important case are linear programs.

Example 2.4.5 (Dual linear program). Consider a general LP,

min
x

c⊤x

s.t. Ax = b,
Tx ≤ w.

The corresponding Lagrangian is

L(x;λ, µ) = c⊤x+ λ⊤(Tx− w) + µ⊤(Ax− b).

The dual function is

g(λ, µ) = −λ⊤w − µ⊤b+ min
x

(c⊤ + λ⊤T + µ⊤A)x.
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Observe that for fixed λ and µ, the term being minimized is a linear function
of the primal variables, and thus the unconstrained minimum is only finite
if the linear function is constant. The only such linear function is the zero
function, so

g(λ, µ) =

−λ⊤w − µ⊤b, if λ⊤T + µ⊤A = −c⊤,

−∞, otherwise.

Then, the dual problem is

max
λ,µ

−λ⊤w − µ⊤b

s.t. λ⊤T + µ⊤A = −c⊤,
λ ≥ 0.

As a particular explicit case, the Lagragian associated with problem 2.1
is

L(h, g, df ;λ, µ) = cg + pdf + λ1(h− h)− λ2h+ λ3(g − g)− λ4g

+ λ5(df − df)− λ6df + µ(h+ g + df − d). (2.12)

Rearranging, we obtain

L(h, g, df ;λ, µ) = (λ1 − λ2 + µ)h+ (c+ λ3 − λ4 + µ)g + (p+ λ5 − λ6 + µ)df
− µd− λ1h− λ3g − λ5df. (2.13)

Here, the minimum over h, g, and df can only be finite whenever λ1−λ2 +
µ = 0, λ3 − λ4 + µ = −c, and λ5 − λ6 + µ = −p. We can now calculate the
corresponding dual function explicitly.

g(λ, µ) =


− µd− λ1h− λ3g − λ5df, if λ1 − λ2 + µ = 0, λ3 − λ4 + µ = −c,

and λ5 − λ6 + µ = −p,
−∞, otherwise.

When writing the dual problem, we can denote the domain of g by adding
constraints.

max
λ,µ

−µd− λ1h− λ3g − λ5df

s.t. λ1 − λ2 + µ = 0,
λ3 − λ4 + µ = −c,
λ5 − λ6 + µ = −p,
λ ≥ 0.



20 CHAPTER 2. PRELIMINARIES

This problem in particular can be further simplified by noting we can remove
the variables λ2, λ4, and λ6 by changing the equalities into inequalities.

max
λ,µ

−µd− λ1h− λ3g − λ5df

s.t. λ1 + µ ≥ 0,
λ3 + µ ≥ −c,
λ5 + µ ≥ −p,
λ ≥ 0.

Note that, in this last problem, λ = (λ1, λ3, λ5), but we preserved the previous
indexes for consistency.

Theorem 2.4.6 (Weak duality). For all primal-dual pairs of optimization
problems, the following inequality holds for all primal variables x and dual
variables λ and µ

g(λ, µ) ≤ f0(x). (2.14)
In particular, this implies that

d⋆ = max
(λ,µ)∈Rm

+ ×Rp
g(λ, µ) ≤ min

x∈F
f(x) = p⋆. (2.15)

Proof. When x is unfeasible, p(x) = ∞ and the inequality holds trivially.
Similarly, when λ ≥ 0 does not hold or g(λ, µ) = −∞, the inequality also
holds. Now, suppose that x is feasible, i.e.,

x ∈ F = {x ∈ Rn : f0(x) <∞, fi(x) ≤ 0, hi(x) = 0} ,

and λ ≥ 0. Then
m∑
i=1

λifi(x) +
p∑
i=1

µihi(x) ≤ 0.

Adding f0(x) to both sides of the above inequality, we obtain

L(x;λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

µihi(x) ≤ f0(x).

The feasible set F is a subset of D, therefore

g(λ, µ) = inf
x′∈D

L(x′;λ, µ) ≤ L(x;λ, µ) ≤ f0(x),

showing the desired inequality holds.

For certain convex optimization problems, a sharper result holds: equality
in equation 2.15. This result is called strong duality; it is not true in general,
but it applies for convex optimization problems whose inequality constraints
can be satisfied strictly. This strict feasibility property is called Slater’s con-
dition.
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Theorem 2.4.7 (Strong duality). For all primal-dual pairs of optimization
problems such that the primal problem satisfies Slater’s condition, i.e., there
exists a feasible x ∈ F such that

fi(x) < 0 ∀i ∈ [1..m],

then
d⋆ = p⋆.

Furthermore, whenever p⋆ > −∞ (or d⋆ > −∞), the dual problem has a
solution.

For example: the
primal problem
has a solution, or
the dual problem
is feasible.

We refer to subsection 5.3.2 of [10] for a proof of strong duality under
Slater’s condition. Alternatively, confer theorem 11.39 and corollary 11.40 of
[24] (note the conditions 0 ∈ intU and 0 ∈ intV plays a similar role to Slater’s
condition in this context).

Remark 2.4.8. Slater’s condition can be weakened if any of the inequalities
are affine. Whenever fi is an affine function, x needs not to satisfy fi(x) ≤ 0
strictly for strong duality to hold. In particular, this implies the following
result.

Corollary 2.4.9 (Strong duality for LPs). Strong duality holds for each pair
of feasible primal and feasible dual linear programs.

Strong duality also holds for LPs if the primal is feasible and the dual is not
(or vice-versa). This follows directly from weak duality (theorem 2.4.6). Thus,
strong duality is only absent for LPs where both primal and dual problems
are infeasible.

There are alternatives to Slater’s condition under which strong duality holds
for convex optimization problems, known as constraint qualifications.

Strong duality allows us to characterize the optimal Langrange multipliers
of an optimization problem as a measurement of the sensitivity of the problem
with respect to its inequalities. To begin with, we parameterize a family of
optimization problems with respect to the right-hand side of their constraints
and the respective optimal values as follows:

p⋆(b, w) =


min
x∈Rn

f0(x)
s.t. fi(x) ≤ bi, i ∈ [1..m],

hi(x) = wi, i ∈ [1..p].

The original problem corresponds to setting (b, w) to (0, 0).

Assume that strong duality holds for the original problem and that the
dual problem to the original has an optimal solution (λ⋆, µ⋆). Suppose that x
is feasible for the pertubed problem given by (b, w) ̸= (0, 0), that is,

x ∈ F(b, w) = {x ∈ Rn : f0(x) <∞, fi(x) ≤ bi, hi(x) = wi} .
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Strong duality yields

p⋆(0, 0) = g(λ⋆, µ⋆) ≤ L(x;λ⋆, µ⋆) = f0(x) +
m∑
i=1

λ⋆i fi(x) +
p∑
i=1

µ⋆ihi(x).

Now, because x ∈ F(b, w) and λ⋆ ≥ 0, we have

f0(x) +
m∑
i=1

λ⋆i fi(x) +
p∑
i=1

µ⋆ihi(x) ≤ f0(x) +
m∑
i=1

λ⋆i bi +
p∑
i=1

µ⋆iwi.

Combining the previos two inequalities, we obtain

p⋆(0, 0)−
m∑
i=1

λ⋆i bi −
p∑
i=1

µ⋆iwi ≤ f0(x).

Because x ∈ F(b, w) is arbitrary, we can finally assert

p⋆(0, 0)−
m∑
i=1

λ⋆i bi −
p∑
i=1

µ⋆iwi ≤ p⋆(b, w). (2.16)

A finer interpretation of this result will be possible after definition 2.5.1. At
the moment, assume further that p⋆ is differentiable at (b, w) = (0, 0). Then
we can relate the optimal Lagrange multipliers (λ⋆, µ⋆) to the gradient of p⋆
as follows

∇p⋆(0, 0) = (−λ⋆,−µ⋆).

This equality can be stablished by evaluating equation 2.16 at, e.g., tei,

−tλ⋆i ≤ p⋆(0, . . . , t, . . . , 0)− p⋆(0, . . . , 0, . . . , 0),

dividing by t, and taking the limit when t → 0. We have, in this example,
assumed that t > 0, ei is the i-th coordinate basis vector of Rm × Rp, and
that the nonzero entry of ei corresponds to λ⋆i . Using t < 0 yields the other
inequality.

2.5 Subdifferentiability
In this section, subdifferentials are presented as a generalization of differen-
tials.

Definition 2.5.1 (Subdifferential). Let f : C ⊂ X → R be a convex function.
The subdifferential of f at x is the set of continuous linear functions tangent
to f at x that globally underestimate f . In other words,

∂xf = {λ : f(y) ≥ f(x) + ⟨λ, y − x⟩ ∀y ∈ X} .
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An element λ ∈ ∂xf is called a subgradient of f at x. A function f is called
subdifferentiable at x if ∂xf ̸= is not empty, and it is called subdifferentiable if
it is subdifferentiable at every x ∈ C.

When f is differentiable at x, the subdifferential at x is the singleton set
containing the gradient, i.e., ∂xf = {∇f(x)}.

An immediate property of subdifferentials is that whenever 0 is a subgra-
dient of f at x, x is a minimizer of f . Taking λ = 0 in the subdifferential
inequality,

f(y) ≥ f(x) + ⟨λ, y − x⟩ = f(x)

showing our claim holds. This property is analogous to the equivalent property
of differentiable convex functions. Whenever 0 is a

gradient of f at
x, x is a
minimizer of f .

A simple example of a convex function that is subdifferentiable but not
differentiable is the following.

Example 2.5.2. The absolute value function f = | · | : R→ R is differentiable
everywhere except at the origin. Its subgradient at zero is

∂0f = [−1, 1].

We have seen other examples of subdifferentiable functions before. Equa-
tion 2.16 informs us (−λ⋆,−µ⋆) is a subgradient of p⋆ at the origin even when
p⋆ is not differentiable there.

Subgradients can be shown to exist at every point of intC using the sup-
porting hyperplane theorem. See corollary 8.9 of [24] for a proof of existence of
subgradients in a more general case. Alternatively, confer propositions 2.2 (re-
spectively 2.22) of [26] for a proof for the linear (respectively convex) two-stage
problem case. (This kind of problem is the topic of Finite horizon.) There are
convex functions that are not subdifferentiable at some points, which must
therefore be at the boundary of C.

Example 2.5.3. The negative square root function f : R+ → R given by
f(x) = −

√
x is not subdifferentiable at the origin. Note the origin

is a boundary
point for the
domain of f .

Let λ ∈ R. Suppose by
contradiction that the subdifferential inequality holds for every y ∈ R. Then

−√y ≥ λy.

When λ ̸= 0, we can substitute y = 1
4λ2 , yielding a contradiction. Otherwise,

when λ = 0, any specific value of y > 0 yields the desired contradiction.

The existence and boundedness of the subgradient at all points in the
domain can be linked to the existence of a convex extension of the function
to a larger domain. In fact, it can be related to uniform Lipschitz continuity
of the function.
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Definition 2.5.4 (Lipschitz continuity.). A function f : X → R is called
Lipschitz continuous with constant L if

∥f(x)− f(y)∥ ≤ L ∥x− y∥

for every x, y ∈ X.

We do not discuss these relationships in depth, but we show the following
lemma that is useful to show convergence of algorithms discussed later.

Lemma 2.5.5 (Uniformly bounded subgradients). Let F be a family of
bounded convex functions on a compact set X3. Let δ > 0 and denote by
Xδ the set of points within δ distance of X, that is,

Xδ = {x+ y : x ∈ X, y ∈ B0} .

If each function f ∈ F can be extended to a convex function f̂ ∈ L∞(Xδ), and,
furthermore, all functions f are bounded below by ℓ and all functions f̂ are
bounded above by u, then the subgradients of the functions in F are uniformly
bounded.

Proof. A subgradient of f at x satisfies

f(y) ≥ f(x) + ⟨∂xf, y − x⟩ .

In particular, this inequality holds for y = x + δ
2
∂xf

∥∂xf∥ ∈ XδNote that
f(y) =∞ for

y /∈ X.

whenever
∂xf ̸= 0. Furthermore, because f̂ is a convex extension of f , ∂xf is also a
subgradient of f̂ at x. Substituting y in the preceding equation and rearranging
its terms, we obtain

∥∂xf∥ ≤
2
δ

[
f̂

(
x+ δ

2
∂xf

∥∂xf∥

)
− f(x)

]
.

Per our assumptions, we can bound the right-hand side of the preceding
equation, yielding the desired uniform bound

∥∂xf∥ ≤
2
δ

[u− ℓ] .

3Banach spaces of functions are going to be discussed later: our focus will be on the case
F ⊂ L∞(X).



Chapter 3

Finite horizon

The hydrothermal problem 2.1 can be used to decide upon an operation plan,
followed by its execution over a certain time period. Suppose now that the
organization has been contracted for two time periods, called the planning
horizon. While it is possible to solve two different instances of the hydrother-
mal problem, in the beginning and in the middle of the planning horizon, the
second problem instance may be unfeasible. This can happen if, for example,
the resources at the end of the first period are insufficient to satisfy the con-
straints of the second period (we give a pictorial example after introducing
some notation). Furthermore, even if it is feasible, there may exist an opera-
tion plan that incurs lower operational costs by jointly optimizing the actions
for what will happen in both time periods.

Instead of considering two individual problems, we can create a model that
encompasses the entire planning horizon. Each time period of interest is called
a stage, associated with a natural number t; here, there are two stages: 1 and 2.
The same variables from before are still present, now indexed by t to represent
the stage they are associated with. For example, h1 and h2 are the generation
target for the hydro power plant over the first and second stage respectively.
The hydro power plant has a water reservoir, whose level at the end of stage t
is rt, with maximum capacity rt. The initial reservoir level at the beginning of
the planning horizon is known, and it is denoted by r0. The weather forecast
predicts an inflow it that affects the reservoir level. The organization also has
the option to spill st water to avoid overflow. Additionally, the organization
discounts the costs incurred at the second stage by a factor β ∈ (0, 1]. Over
long enough time periods, this term can arise out of economic considerations,
but it can appear in applications for practical mathematical considerations
(as we are going to see in lemma 4.1.7; also, cf. subsection 3.2 of [12], which
covers a more general class of multistage problems than those discussed in this
dissertation).

The resulting model is written in full in (3.1).

25
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min
h,g,df,s,r

c1g1 + p1df1 + β (c2g2 + p2df2)
s.t. ht + gt + dft = dt,

rt + ht + st = rt−1 + it
0 ≤ ht ≤ ht,
0 ≤ gt ≤ gt,
0 ≤ dft ≤ df t,
0 ≤ rt ≤ rt,
0 ≤ st.

(3.1)

Now that the notation has been introduced, let us sketch an example of
how optimizing each stage separately can lead to infeasibility. Let the demand
be dt = 20 in both stages, the predicted inflow be i1 = 0, and the upper
bounds gt = 10 and df t = 5. Furthermore, assume the initial reservoir level is
i0 = 20. Then the decision to generate h1 = 20 units of energy is feasible for
the first stage and incurs zero costs, thus being optimal. However, beginning
the second stage with a reservoir level r1 = 0, it becomes impossible to satisfy
the demand. Constructing a two-stage problem, it is possible to see that
setting generation targets ht = 10 and gt = 10 for both stages is a feasible
alternative decision.

We begin section 3.1 by presenting general two-stage problems, their com-
posing parts, and their decomposition into two one-stage problems. Section 3.2
covers stochastic two-stage problems and the notion of recourse. Section 3.3
broadens the scope to deterministic and stochastic multistage problems. Sec-
tion 3.4 describes cutting-plane methods for the problems presented in this
chapter.

3.1 Two-stage problems
In this section, the general two-stage problem and its elements are defined.

Definition 3.1.1 (Two-stage problem). We consider general two-stage prob-
lems that can be written in the formulation below.

min
x,u

c1(u1) + βc2(u2)
s.t. x1 = f1(x0, u1),

u2 ∈ U2(x1)
x0 is given,
u1 ∈ U1(x0).

(3.2)

There is an important distinction between the optimization variables x
and u. The variable x is called a state variable, and it represents the least
amount of information from the first stage required to solve the second stage.
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The variable u is called a control variable, and it represents the actions and
decisions taken over the course of a stage.

The sets Ut are the sets of feasible controls that can be chosen given the
state xt−1 at the beginning of stage t. Observe that, in this representation,
Ut are set-valued functions. While this notation is more concise and covers
a more general case, very often Ut can be described explicitly by inequalities
similar to the set X in 2.3.1.

The functions ft describe how the control ut changes the state xt−1 into
xt = ft(xt−1, ut) over the stage t. For that reason, the functions ft are called
transition functions.

Remark 3.1.2. In problem 3.1, there is an one-to-one correspondence between
stages and time periods that is monotone in time. Through this text, the
notation and language chosen to address and discuss stages suggests such a
connection. However, it is not necessary that stages represent time periods at
all. A simple example, which we do not develop here, is the problem of finding
the shortest path between two nodes on a graph, which can be described as a
multistage optimization problem. Observe that finding the shortest path and
traversing it are different actions.

Returning to problem 3.1, we can now identify the elements of a two-stage
problem.

• The state variable is the vector of reservoir levels r, while the control
variables are the remaining: h, g, df , and s;

• The cost at stage t is given by the expression ctgt + ptdft; 1

• The transition functions are ft(rt−1, ht, gt, dft, st) = rt−1 + it − ht − st;

• The sets of feasible controls are given by the bounding constraints: 0 ≤
ht ≤ h1, and so on.

However, problem 3.1 has a difference from definition 3.2: it has a constraint
on the state variable r: 0 ≤ rt ≤ rt. This is not an issue, because we can,
at each stage, add an extra control variable r′

t, and the constraint rt = r′
t.

Furthermore, we change the previous contraints on r to contraints on r′
t:

0 ≤ r′
t ≤ rt. The modified problem is equivalent to the original problem.

We could have used an alternative to definition 3.2 that allows for state
contraints. We chose the current definition because it keeps the notation simple
and causes no loss in generality for our purposes. This is because there are more
modeling techniques that often allow formulating other problems in this setting,

1There is a minor overlap in notation between the use of the symbol c in definition 3.2,
as a function, and in problem 3.1, as a constant. While it is customary to denote a linear
function and its multiplier by the same symbol, note that (omitting the state index) the
cost actually is (0, c, p, 0)⊤(h, g, df, s).
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and are thus useful to develop the theory. In practice, they often increase
the number of variables and constraints, increasing computational costs, but
are sometimes necessary to cast a model in a particular formulation (e.g. as
a LP). We also note that, even when two problems are equivalent, different
formulations can change the constraint qualification. As an example, Slater’s
condition (see theorem 2.4.6) can fail when replacing an equality constraint
(e.g. x = 0) with two inequality constraints (e.g. x ≥ 0 and x ≤ 0), since there
cannot exist a value satisfying both inequalities strictly simultaneously.

We can decompose a two-stage problem into two one-stage problems as
follows. In the beginning of the second stage, assume the decisions for the first
stage variables have already been taken. Thus, they are set to constant values,
and the second stage variables remain to be decided upon. We can find an
optimal operation plan as a function of the first stage variables. Furthermore,
in our problem setting, the sole connection between the two stages is the
dynamical equation given by the transition function

x1 = f1(x0, u1),

and the only variable we need knowledge of to solve the second stage problem
is the state at the end of the first stage, x1. Now, before deciding on an
operation plan for the first stage, we can substitute the second stage objective
for this function of the first stage state variables. The resulting decomposition
is written below.

min
x1,u1

c1(u1) + βQ (x1)
s.t. x1 = f1(x0, u1),

x0 is given,
u1 ∈ U1(x0),

(3.3)

where

Q (x1) =

 min
u2

c2(u2)
s.t. u2 ∈ U2(x1).

(3.4)

In theory, we need to solve problem 3.4 for each possible value of x1. In
practice, often we only need to solve it at a finite number of possible values, and
it is an alternative to solving problem 3.2 exactly for instances of multistage
problems. Each formulation has its uses, both when developing the theory, as
we shall see, and when solving practical problems (as in the algorithm given
in definition 3.4.4).

Definition 3.1.3. The function Q defined in equation 3.4 is called the cost-to-
go function, or future cost function, or recourse function. The reason for this
last name will become clear after definition 3.2.1. (For maximization problems,
the analogous function is called the value-to-go function.)

In this context, the function c1 in 3.3 is called the immediate cost function
or instantaneous cost function.
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Let us see how the above decomposition applies to problem 3.1.

min
h1,g1,df1,s1,r1

c1g1 + p1df1 + βQ (r1)
s.t. h1 + g1 + df1 = d1,

r1 + h1 + s1 = r0 + i1
0 ≤ h1 ≤ h1,
0 ≤ g1 ≤ g1,
0 ≤ df1 ≤ df 1,
0 ≤ r1 ≤ r1,
0 ≤ s1,

(3.5)

where

Q (r1) =



min
h2,g2,df2,s2,r2

c2g2 + p2df2

s.t. h2 + g2 + df2 = d2,

r2 + h2 + s2 = r1 + i2

0 ≤ h2 ≤ h2,

0 ≤ g2 ≤ g2,

0 ≤ df2 ≤ df 2,

0 ≤ r2 ≤ r2,

0 ≤ s2.

(3.6)

3.2 Stochastic problems
In this section, the previously deterministic two-stage model is extended to
incorporate uncertainties.

In applications, often not all problem data is known ahead of time. For
example, in problem 3.1, we explained the constant it as the inflow of water
into the reservoir expected during stage t. After deciding on an operation
plan and beginning execution, the real inflow at a stage may differ from the
prediction, so the operation plan is maybe not optimal anymore. Further
complications can arise, such as infeasibility: an overestimated inflow in the
first stage, leading to an increased expenditure of water, and a reservoir level
too low to execute the original plan at the second stage.

The paradigm we discuss to handle these issues is stochastic optimization,
where uncertainties in the decision-making process are modeled by a random
variable. This allows us to incorporate a more detailed uncertainty model into
our optimization model. Other approaches to optimization under uncertainty
exist, like robust optimization, where the goal is to minimize the worst-case
scenario in a set of uncertainties, but we do not discuss them here. (Cf. section
2.4 of [2] for an exposition on a robust linear programming framework.)

Before looking at a formal definition of our new problem setting, let us



30 CHAPTER 3. FINITE HORIZON

naively consider how replacing a constant with a random variable leads to the
randomness spreading thorough our model.

• The optimization variables of a stochastic problem can be split into two
kinds. Here-and-now variables represent decisions and actions taken
before a realization of the random variable becomes known; conversely,
wait-and-see variables are those which can be decided after observing
the random variable. They key difference is that wait-and-see variables
can depend on said realizations, i.e. they are functions of the random
variable. Here-and-now variables cannot, and this property is known as
nonanticipativity.

• The objective function becomes a random function; in particular, its
image is a random variable. Unlike real numbers, random variables lack
an (interesting2) complete order. Instead of minimizing a random func-
tion, our goal becomes minimizing the expected value of such a function.
The justification for this approach is that, incorporating this model in
a procedure that will be repeated over time, the decisions taken will
minimize the average cost.

More generally, we may be willing to accept a small increase in the
average cost in exchange for reducing the probability of a costly but
unlikely event. It is possible to consider risk measures instead of the
expectation operator (itself a risk measure), that express in the model
this aversion to unfortunate events. We limit ourselves to discussing the
expectation operator, but we note some risk measures of interest can be
represented as the expectation of a modified random variable, in place
of the original one. (Cf. chapter 6 of [26] for an introduction to risk
averse optimization. Also, subsection 3.3 of [12] briefly explains how this
modified random variable can be computed for some particular cases of
interest.)

• The constraints become random. We take this to mean that the con-
straints have to be satisfied almost surely, that is, with probability 1.
An alternative is requiring that the constraints are satisfied with some
probability.

Let us briefly recall some concepts of probability theory and fix our notation.
Let Ω denote an arbitrary set, Σ a σ-algebra on Ω, and P : Σ → [0, 1] a
probability measure, such that (Ω,Σ, P ) is a probability space. A function
ξ : Ω→ R is a random variable if it is measurable, and a value ξ(ω) is called
a realization. Often, when there is no ambiguity, we suppress the dependence
on ω ∈ Ω, and denote both a random variable and its realization by the same
symbol, ξ, whenever there is no ambiguity. We denote by Ξ the support of the

2The Axiom of Choice is equivalent to the Well-ordering Theorem, i.e. every set can be
well-ordered.
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random variable ξ, and denote its elements by ξ ∈ Ξ. Instead of
ξ(ω) ∈ Ξ.Definition 3.2.1 (Stochastic two-stage problems). We consider general two-

stage problems that can be written in the formulation below.

min
x,u

c1(u1) + β E[c2(u2, ξ)]
s.t. x1 = f1(x0, u1),

u2 ∈ U2(x1, ξ)
x0 is given,
u1 ∈ U1(x0).

(3.7)

The approach we take is to assume a realization of the random variable be-
comes known either at the beginning or at the end of a stage. Not in the

middle, for
example.

For two-stage
problems, the first stage decisions are taken before the realization is known;
the second stage decisions after. More complicated behaviours are usually
more appropriately represented via multistage models.

Stochastic two-stage problems are also called problems with recourse. Be-
cause the second stage decision can depend on a particular yet-to-be-observed
realization of ξ, it is also called recourse action.

Note that unless the random variable ξ has a finite number of realizations,
this problem is infinite, in that is contains infinitely many decision variables
in the second stage, and correspondingly infinitely many constraints.

Let us look at an example.

Example 3.2.2 (Two-stage stochastic linear problem). Here, the random
variable ξ is the second stage data, i.e. ξ = (c2, T2,W2, w2). The first stage
data is deterministic and known.

min
x,u

c⊤
1 u1 + β E[c⊤

2 u2]
s.t. x1 = A1x0 +B1u1 + b1,

T2x1 +W2u2 ≤ w2
x0 is given,
T1x0 +W1u1 ≤ w1.

(3.8)

As in the deterministic setting, we can decompose a stochastic two-stage
problem into one-stage problems, as formulated below.

min
x1,u1

c1(u1) + β E[Q(x1, ξ)]
s.t. x1 = f1(x0, u1),

x0 is given,
u1 ∈ U1(x0),

(3.9)

where

Q(x1, ξ) =

 min
u2

c2(u2, ξ)
s.t. u2 ∈ U2(x1, ξ).

(3.10)
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When the random variable ξ is finite, this decomposition results in |Ξ| < ∞
deterministic second stage problems, and one deterministic first stage problem.
The reason for this is that the expectation in problem 3.9 can be written
as a finite sum. Denoting by pξ the probability of the realization ξ being
observed,3

E[Q(x1, ξ)] =
∑
ξ∈Ξ

pξQ(x1, ξ).

The function E[Q( · , ξ)] is called the expected cost-to-go function, or expected
future cost function, and so on as in definition 3.1.3.

Definition 3.2.3 (Relatively complete recourse). The stochastic two-stage
problem 3.7 is said to have relatively complete recourse (RCR) if the second
stage problem is feasible for every feasible first stage decision and every real-
ization of the random variable. Precisely, let X1 be a proper subset of Rnx .
Then RCR holds if for each x1 ∈ X1 and ξ ∈ Ξ, the set

{u : u ∈ U2(x1, ξ), c2(u, ξ) <∞}

is nonempty. Note this implies that the expected cost-to-go function is always
finite, that is, E[Q(x1, ξ)] <∞ in equation 3.9.

Whenever a particular problem specifies the state variables belong to a
particular subset of Rnx , X1 can be taken as that set. A problem-agnostic
definition is taking X1 as the set

{x : x = f1(x0, u), u ∈ U1(x0)} .Remember x0 is
given. This definition only requires the second stage problem be feasible for states

that can occur as an outcome of the first stage decisions.

That X1 is a proper subset of Rnx is the “relative” in relatively complete
recourse. When X1 = Rnx , this property is called simply complete recourse,
but most problems do not have it.

We shall soon discuss multistage problems, and the definition of RCR can
be extended to them. However, we do not consider it necessary to present
the extension explicitly. Regardless, defining X1 (or, generally, Xt) explicitly
makes it easier to verify in practice, as opposed to the implicit definition as
states that could occur as a consequence of previous decisions.

3.3 Multistage problems
In this section, we consider the broader case of multistage problems, initiating
with the deterministic case before following into the stochastic case.

3To be precise and conform with traditional probability notation, we instead define
pξ̂ = P[ξ = ξ̂], where ξ̂ ∈ Ξ is a realization of ξ, and, correspondingly, E[Q(x1, ξ)] =∑̂
ξ∈Ξ

pξ̂Q(x1, ξ̂).
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The natural extension of two-stage problems are multistage problems, with
an arbitrary finite number of stages, known as finite horizon problems. Return-
ing to the hydrothermal example, suppose the organization has been contracted
for T ∈ N time periods. The stage index t now belongs to the set [1..T ], and
each stage has their own corresponding decision variables and constants. The
complete model can be described as follows.

min
h,g,df,s,r

T∑
t=1

βt−1 (ctgt + ptdft)
s.t. ht + gt + dft = dt,

rt + ht + st = rt−1 + it
0 ≤ ht ≤ ht,
0 ≤ gt ≤ gt,
0 ≤ dft ≤ df t,
0 ≤ rt ≤ rt,
0 ≤ st.

(3.11)

Definition 3.3.1 (Multistage problem). We consider general multistage prob-
lems that can be written in the formulation below.

min
x,u

T∑
t=1

βt−1ct(ut)
s.t. xt = ft(xt−1, ut),

ut ∈ Ut(xt−1).
(3.12)

A function πt of xt such that πt(xt) ∈ Ut(xt), that is, a mapping from the
set of states to the set of feasible controls is called a decision rule. A sequence
of decision-rules π = {πt}t, one for each stage t, is called a policy.

We write the optimization problem 3.11 as T one stage problems with a
recursive formulation below, and comment on the boundary conditions after-
wards.

Qt (rt) =



min
ht+1,gt+1,dft+1,

st+1,rt+1

ct+1gt+1 + pt+1dft+1 + βQt+1 (rt+1)

s.t. ht+1 + gt+1 + dft+1 = dt+1,

rt+1 + ht+1 + st+1 = rt + it+1

0 ≤ ht+1 ≤ ht+1,

0 ≤ gt+1 ≤ gt+1,

0 ≤ dft+1 ≤ df t+1,

0 ≤ rt+1 ≤ rt+1,

0 ≤ st+1,

(3.13)

where t ∈ [0..T − 1].
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Two future cost functions are important highlighting: Q0 and QT . The
function Q0 can be interpreted as the future cost function of a stage in the
past, preceding the first stage. It includes the immediate cost of the first stage,
here c1g1 + p1df1, and the (discounted) future cost of the first stage, Q1(r1).
When evaluated at r0, Q0(r0) is the optimal value of problem 3.11.

Now, QT , which appears when we set t = T − 1 in the above equation,
is instead defined as QT (rT ) = 0, the constant function everywhere zero.
The reasoning behind this definition is that what happens after the planning
horizon does not incur neither costs nor profit for the organization. On the
other hand, Q0 is simply the optimal value of the original problem, 3.11, as a
function of the initial reservoir level r0.

There is no loss of generality in assuming QT is the zero function. Suppose
that for a particular application, it would make sense to set QT = g, where g
is a function. Then the model could be modified to have an additional stage T
with cost function cT = g. To be consistent with our formulation, an additional
control variable zT and the constraint xT = zT can be added as well, so that
cT can be evaluated at the control variable zT instead of the state xT .

Definition 3.3.2 (Stochastic multistage problem). We consider general mul-
tistage problems that can be written in the formulation below.

min
x,u

E
[
T∑
t=1

βt−1ct(ut, ξt−1)
]

s.t. xt = ft(xt−1, ut, ξt−1),
ut ∈ Ut(xt−1, ξt−1).

(3.14)

Compared to the two-stage case in equation 3.7, the random variable then
denoted by ξ corresponds to ξ1. Often in multistage problems, the first stage
is deterministic, i.e. ξ0 is assumed to be a known real number (or vector).
Whenever this is true, the term c1(u1, ξ0) can be moved out of the expectation.
For multistage problems, one can always assume the first stage is deterministic,
as it is always possible to add a costless, restrictionless stage at the beginning.

Another important and common assumption is stagewise independence:
for every stage t, the random variable ξt is independent of each other random
variable ξs, where s ̸= t. In particular, ξt is independent from the history
of realizations up to t, {ξs}t−1

s=0. (This assumption is particularly useful for
the development of algorithms, e.g SDDP in [23], which we explain in defini-
tion 3.4.5.)

Finally, a set of realizations at each stage {ξt}T−1
t=0 is called a scenario.

Remark 3.3.3 (Graphical representation). It is useful to represent multistage
optimization models graphically. The generic model described in equation 3.12
can be associated with a linear graph.
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1 2 3 . . . T

Figure 3.1: Graph representation of deterministic multistage model.

Similarly, the stochastic multistage model described by equation 3.14 can
also be represented by a linear graph. The random variable that becomes
known at the beginning of a stage is represented by a wavy arrow pointing at
the top-left section of the corresponding node, as seen in figure 3.2.

1 2 3 . . . T

ξ1 ξ2 ξT−1

Figure 3.2: Graph representation of stochastic multistage model.
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Figure 3.3: Scenario tree

Stochastic multistage models admit another graphical representation, called
a scenario tree. Figure 3.3 depicts a scenario tree of a particular three-stage
problem. The random variable ξ1 has two possible realizations, represented
by the node 1 having two children. The random variable ξ2 has two or three
possible realizations, conditioned on ξ1. This is represented by the different
number of children between nodes 2 and 3. This means stagewise-independency
does not hold for the problem represented by this graph.

The scenario tree representation clearly illustrates the stagewise-independency
of a model (or lack thereof). However, for large models, it can be cumbersome
to depict the entire tree. In addition to its smaller size, the linear graph
does have a benefit over the scenario tree in the stagewise-independent case:
it merges together nodes with the same cost-to-go function. Solution algo-
rithms often calculate (exactly or approximately) the cost-to-go functions of
each stage. If two nodes share the same cost-to-go function, only a single
representation (or approximation) of that cost-to-go function is necessary. As
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an example of the contrary, the three-stage problem in figure 3.3 would re-
quire different cost-to-go functions at nodes 2 and 3. In this sense, the linear
graph can be regarded as a condensed representation of the scenario tree. See
[12] for a discussion of more general multistage problems, including problems
associated with nonlinear graphs.

3.4 Algorithms
In this section, we describe methods for solving finite horizon optimization
problems in the following order: stochastic two-stage problems, deterministic
multistage problems, then stochastic multistage problems.

We begin discussing a cutting-plane method for solving two-stage stochastic
linear optimization problems with finite support, originally proposed by Van
Slyke and Wets (cf. [29]). This particular case of problem 3.7 is formulated
below. Note that we do not distinguish the state and control variables from each
other, as the distinction is not necessary for the method we are about to present.
The inequality constraints are assumed to be nonnegativity constraints, in a
similar manner to standard form LPs.Recall

example 2.3.6 of
LP conversion to

standard form.
min
x

c⊤
1 x1 + ∑

ξ∈Ξ
pξc

⊤
2,ξx2,ξ

s.t. Ax1 = b,
Tξx1 +Wξx2,ξ = wξ,
x1 ≥ 0, x2,ξ ≥ 0.

(3.15)

Definition 3.4.1 (L-shaped method). The idea behind the L-shaped method
is to construct a piecewise linear function that underestimates the first-stage
future cost function. This corresponds to an outer polyhedral approximation of
the future cost function’s epigraph. The linear inequalities in the representation
of the piecewise linear underestimator are called cuts. For simplicity, we assume
relative complete recourse holds, and discuss the implications afterwards.

At the beginning of an iteration of the L-shaped method, let C denote the
cuts available. The problem to be solved is

min
x1,θ

c⊤
1 x1 + θ

s.t. Ax1 = b,
θ ≥ ⟨ai, x1⟩+ bi, for (ai, bi) ∈ C,
x1 ≥ 0.

(P1(C))

The pair (x1, θ) can be thought of as a point in the epigraph of the piecewise
linear approximation of the cost-to-go function, described by the constraints

θ ≥
〈
ai, x1

〉
+ bi.
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After an optimal solution (x⋆1, θ⋆) of P1(C) is obtained, We suppress the
dependency of
the optimal
solution on C for
simplicity of
notation.

coefficients a and b for
a new cut can be generated by solving each of the following |Ξ| problems

min
x2,ξ

c⊤
2,ξx2,ξ

s.t. Wξx2,ξ = wξ − Tξx⋆1,
x2,ξ ≥ 0,

Problem P2,ξ(C)
depends on C
only through x⋆1.

(P2,ξ(C))

calculating the optimal Lagrange multiplier λ⋆ξ of the equality constraint, and
then computing

a = −
∑
ξ∈Ξ

pξ
(
λ⋆ξ
)⊤
Tξ and b =

∑
ξ∈Ξ

pξ
(
λ⋆ξ
)⊤
wξ.

Indeed, from LP duality, we know that

Q(x⋆1, ξ) =
(
λ⋆ξ
)⊤

(wξ − Tξx⋆1) .

Using the chain rule, a subgradient of Q at x⋆1 is given by
(
λ⋆ξ
)⊤
Tξ. So,

applying the subgradient inequality for Q yields

Q(x, ξ) ≥
(
λ⋆ξ
)⊤

(wξ − Tξx) =
(
λ⋆ξ
)⊤
wξ −

(
λ⋆ξ
)⊤
Tξx.

Therefore, taking the expectation over ξ on both sides results in

E [Q(x, ξ)] ≥ ⟨a, x⟩+ b,

so we see that indeed the pair (a, b) provides the coefficients of a linear under-
estimator of the expected cost-to-go function.

As a stopping condition, if θ⋆ ≥ a⊤x⋆1 + b, the pair (x⋆1, x⋆2) is an optimal
solution of the original two-stage problem. x⋆2 denotes the

function
ξ 7→ x⋆2,ξ.

Otherwise, the cut (a, b) can be
added to C, and the algorithm proceeds to the next iteration.

Algorithm 3.1: L-shaped method.
Data: an initial lower bound C = {(a0, b0)}.
Result: an optimal solution.

1 while optimal solution not found do
2 solve P1(C)
3 for ξ ∈ Ξ do
4 solve P2,ξ(C)
5 end
6 calculate new cut (a, b) and add it to C
7 end

Relative complete recourse guarantees that each problem P2,ξ(C) gener-
ated during the execution of the method is feasible. Otherwise, it becomes
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necessary to generate and store feasibility cuts, which are linear constraints
that approximate the domain of the expected cost-to-go function. At each
iteration, either a feasibility or an optimality cut is generated, or the algorithm
terminates.Optimality cuts

are the cuts
previously
described.

Generating a feasibility cut requires solving |Ξ| linear problems,
similarly to optimality cuts, and so we direct the reader to section 5.1 of [8]
for a more complete description of the L-shaped method.

The cutting-plane technique employed in the L-shaped method is also used
for the algorithms we present for solving multistage problem. Another key idea
required for their exposition is the Dynamic Programming algorithm. The use
of the DP algorithm in optimization was popularized by Bellman in the early
fifties. It is based on what Bellman called the principle of optimality, which
can be informally stated as follows.

Definition 3.4.2 (Principle of optimality). All optimal policies of a multistage
optimization problem have the property that, beginning from any given stage,
the remaining decision-rules compose an optimal policy for the multistage
problem that begins at that stage.

In other words, given an optimal policy π⋆ = {π⋆t }
T
t=1 for a T -stage problem,

the policy {π⋆t }
T
t=s is optimal for the (T − s+ 1)-stage subproblem composed

of stage s and all future stages.

There is a straightforward, intuitive reasoning supporting the principle of
optimality. Suppose A, B, and C are cities, and there is a travel route of
minimal length from A to C passing through B. Then the route from B to C
must be of minimal length, otherwise the original route from A to C could be
improved by replacing the original B to C portion with a shorter one.

Definition 3.4.3 (DP algorithm). The procedure of the DP algorithm has
been hinted at by the recursive description of multistage optimization problems.
This algorithm was originally developed for multistage problems with discrete
state and control variables. We further assume the state, control, and random
variables can only take a finite amount of values, e.g. the state variable belongs
to a set X ⊂ Rnx such that |X| < ∞. In this case, the cost-to-go functions
{Qt}Tt=0 can be represented by a vector in R|X|, and they can be calculated
exactly.

We give an outline of the proof by induction below, and direct the reader
to sections 1.3 and 1.5 of [4]. The latter section contains the more rigorous
mathematical proof, but the more technical issues are much simpler under the
present assumptions. We also revisit a similar algorithm later when discussing
the value iteration algorithm 4.1 in the infinite horizon setting, which, in
contrast to the DP algorithm, is not guaranteed to converge in a finite number
of iterations.
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First, we can calculate QT at each possible state as follows:

QT (xT−1) =


min
uT

E [cT (uT , ξT−1)]
s.t. xT = fT (xT−1, uT , ξT−1),

uT ∈ UT (xT−1, ξT−1).
(3.16)

Note the expectation is a finite sum, and, for example, all (finite) values of uT
can be checked for optimality. Then, assuming Qt+1 has been calculated, we
can solve

Qt(xt−1) =


min
ut

E [ct(ut, ξt−1) +Qt+1(xt)]
s.t. xt = ft(xt−1, ut, ξt−1),

ut ∈ UT (xt−1, ξt−1).
(3.17)

Algorithm 3.2: DP algorithm.
Data: the problem data required to build each cost-to-go function.
Result: the function Q0.

1 for t ∈ [T..0] do // Note we begin at T and descend to 0.
2 for i ∈ [1.. |X|] do
3 solve Qt(xi)
4 end
5 end

Multiple approaches for solving continuous state and continuous control
problems have been developed. We now present the dual DP (DDP) algorithm,
and later the stochastic DDP (SDDP) algorithm. The SDDP algorithm was
introduced by Pereira and Pinto to solve multistage problems related to hydro
power planning (cf. [23]). It can be compared to Benders decomposition and
the L-shaped method in a multistage setting.

Definition 3.4.4 (DDP algorithm). A basic description of the algorithm is
the following. Each stage is represented by a one stage problem, where the cost-
to-go term is approximated by the maximum of a set of affine functions, known
as cuts. A sequence of feasible controls for each stage and a corresponding
sequence of states are generated by solving the one stage problems, beginning
with the first stage and proceding forward in time. Now, duality arguments
allow the calculation of new cuts that improve the cost-to-go approximations.
The key observation is that by calculating and updating each one stage problem
by moving backwards in time, the new t-th stage cut will be generated after
the (t+ 1)-st approximation has been improved, resulting in a better cut.

Now, let us go over the DDP algorithm in depth. First, at the k-th step
of the algorithm, the one stage problem of stage t resembles the following
problem,
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Qk
t (xt) =



min
xt+1,ut+1,θt+1

ct+1(ut+1) + θt+1

s.t. xt+1 = ft+1(xt, ut+1),
ut+1 ∈ Ut+1(xt),
θt+1 ≥

〈
ait+1, xt+1

〉
+ bit+1, ∀i ∈ [1..k],

(3.18)

where θt is an extra one-dimensional (control) variable that represents the
cost-to-go term, which as mentioned is approximated by the maximum of the
affine functions

〈
ait+1, ·

〉
+ bit+1. The symbol Q denotes the letter “Q” in the

Fraktur script, and is chosen to represent the above problem as it is an outer
polyhedral approximation of the true cost-to-go function Qt. The algorithm
will have accumulated k additional constraints at each stage in the k-th step,
incurring increasing computational costs with each iteration. A very large
amount of cuts can also lead to numerical instability. An option is to perform
cut selection procedures, which remove unnecessary cuts from the subproblems
(we refer the reader to references listed after the end of this definition). The
above problem is initialized with a precalculated lower bound for θt, which
can be obtained easily in many applications. For example, if all stage costs
are nonnegative, the lower bound θt ≥ 0 can be used.

Second, with the above representation fixed, we begin from t = 0 and solve
each of the T one stage problems, up to t = T − 1. Remember that x0 is
known and fixed. This calculation returns to us a sequence of states

{
xkt
}T−1

t=0

and a sequence of present costs
{
ct+1(ukt+1)

}T−1

t=0
. The reason for returning a

sequence of costs will become clear later. See algorithm 3.3.

Algorithm 3.3: Forward pass (DDP).

Data: an initial state x0 and a list of one-stage problems
(
Qk
t

)T−1

t=0
.

Result: a trajectory and the corresponding costs.
1 set state← x0
2 set trajectory← [x0]
3 set cost← [ ]
4 for t ∈ [0..T − 1] do
5 solve Qk

t (state)
6 append ct+1(ut+1) to cost
7 update state← xt+1
8 append state to trajectory
9 end

Third, recall that we wish to approximate the cost-to-go term Qt+1 at stage
t from below. If we had both the optimal value Qt+1(xt+1) at a state xt+1
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and a subgradient λ of Qt+1 at xt+1, then, because Qt+1 is convex, we could
underestimate the cost-to-go at x by

Qt+1(x) ≥ Qt+1(xt+1) + ⟨λ, x− xt+1⟩ = (Qt+1(xt+1)− ⟨λ, xt+1⟩) + ⟨λ, x⟩ .

This suggests we take a = λ and b = (Qt+1(xt+1)− ⟨λ, xt+1⟩) as cut coefficients.
Although we do not have access to Qt+1, we do have access to Qk

t+1, a global
convex underestimator of Qt+1. Thus any function below Qk

t+1 is also below
Qt+1. The simplest approach to compute a subgradient of Qk

t+1 is to modify
subproblem 3.18 by adding a dummy variable and a constraint for each state
variable,

Qk
t (xt) =



min
xt+1,ut+1,θt+1,x̂t

ct+1(ut+1) + θt+1

s.t. xt+1 = ft+1(x̂t, ut+1),
ut+1 ∈ Ut+1(x̂t),
θt+1 ≥

〈
ait+1, xt+1

〉
+ bit+1,

x̂t = xt.

(3.19)

The dual variables λkt associated with the equality constraints x̂t = xt are
the desired subgradients. The final expression for the new cut coefficients
are ak+1

t = λkt and bk+1
t =

(
Qk
t (xt)−

〈
λkt , xt

〉)
. The approach used here to

calculate the subgradient is also used in [14] and in [12]. Other approaches
are related to the dual of the transition constraint (cf. section 3 of [23]; or the
term βkt in definition 3.1 of [20]). See algorithm 3.4.

Algorithm 3.4: Backward pass (DDP).

Data: a trajectory and a list of one-stage problems
(
Qk
t

)T−1

t=0
.

Result: an updated set of one stage problems
{
Qk+1
t

}T−1

t=0
.

1 for t ∈ [T − 2..0] do // Remember the terminal cost-to-go term
is everywhere zero.

2 set state← xt+1
3 solve Qk

t+1(state)
4 set ak+1

t+1 ← the value of the optimal fishing dual
5 set bk+1

t+1 ←
(
Qk
t+1(state)−

〈
ak+1
t+1 , state

〉)
6 update Qk

t to Qk+1
t by adding the cut θt+1 ≥

〈
ak+1
t+1 , xt+1

〉
+ bk+1

t+1

7 end

Finally, we need to define a condition for terminating the algorithm. At
stage k, the optimal value Qk

0(x0) is an underestimator of the optimal value
Q0(x0), in other words,

Qk
0(x0) ≤ Q0(x0).

Furthermore, remember that, in the forward pass, we have a sequence of
present costs

{
ct+1(ukt+1)

}T−1

t=0
available. Because each present cost function
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is known exactly, the sum of the costs over an arbitrary feasible trajectory
overestimates Q0(x0), that is

Q0(x0) ≤
T−1∑
t=0

ct+1(ukt+1).

The previous two inequalities hold for every k, and so we can choose indexes
independently to make the bounds as tight as possible. Let us denote the best
lower and upper bounds found up to stage k + 1 by q

k+1 = max
{
Qk

0(x0), qk
}

and qk+1 = min
{∑T−1

t=0 ct+1(ukt+1), qk
}

respectively. Prior to executing the
DDP algorithm, we can choose an ε > 0, and terminate the algorithm after
step k if

qk − qk ≤ ε.

In-depth convergence analyses of the DDP algorithm, its variations, and
other algorithms with the same general structure exist in the literature. When
the multistage problem is linear, that is, the present costs ct and transition
functions ft are linear and the feasible sets Ut are polyhedral, it can be shown
by induction the functions Qt are piecewise linear. In this case, the respective
dual problems will also be linear problems, and thus Qt can be calculated
exactly in a finite number of steps (that is, for some large K, Qt = QK

t ).
However, convergence only requires that Qk

t is equal to Qt on a vicinity of an
optimal trajectory. For convex multistage problems, it is this local convergence
that is guaranteed, i.e. the approximation may not be close to the true cost-
to-go away from the minimum.

Finally, we remark that proofs of convergence of the DDP algorithm are of-
ten readily extended to the SDDP algorithm we soon explain in definition 3.4.5.
Rather, it may be more accurate to say the convergence of the DDP algorithm
is considered a particular case of SDDP as applied to deterministic multistage
problems, and it is useful to consider it separately as an expository tool. As
such, we condense external references about both at the end of this subsection,
after the definition of the SDDP algorithm, to avoid repetition.

Definition 3.4.5 (SDDP algorithm). There are two modifications to be done
to the DDP algorithm to adapt it to the stochastic setting. First, the forward
pass is adapted to a Monte Carlo method, where a possible scenario is sampled,
and optimization at each stage is performed conditioned on the respective
sample realization. Second, during the backward pass, the calculation of a new
cut at a stage requires solving multiple subproblems, corresponding to each
possible random realization at the next stage. Furthermore, we assume the
stochastic multistage problem has stagewise independent random variables
with finite support.

The main modification to the forward pass is sampling and storing realiza-
tions of the random variable. See algorithm 3.5.
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Algorithm 3.5: Forward pass (SDDP).
Data: an initial state x0, an initial realization ξ0, and a list of

one-stage problems
({

Qk
t,ξt

}
ξt∈Ξt

)T−1

t=0
.

Result: a trajectory and the corresponding costs.
1 set state← x0
2 set sample← ξ0
3 set trajectory← [(x0, ξ0)]
4 set cost← [ ]
5 for t ∈ [0..T − 1] do
6 solve Qk

t, sample(state)
7 append ct+1(ut+1, sample) to cost
8 update state← xt+1
9 update sample← ξt+1

10 append (state, sample) to trajectory
11 end

During the backwards pass, it becomes necessary to solve each subproblem{
Qk
t+1,ξt

}
ξt∈Ξt

in order to calculate a new cut for the expected cost-to-go func-
tion of Qk

t, sample. However, due to the stagewise independency assumption, we
can share cuts across

{
Qk
t,ξt−1

}
ξt−1∈Ξt−1

, as their expected cost-to-go function
is the exact same. See algorithm 3.6.

The reader interested in a proof of convergence for convex multistage prob-
lems can confer [14], which covers (S)DDP and similar methods. As another
option, [16] treats both the linear and convex deterministic cases, with and
without cut selection strategies. Another work by the same author, [15], con-
siders SDDP and related algorithms but in a risk-averse context. In [11], the
computational efficiency of SDDP under different cut selection strategies is
compared numerically (the model resembles the example in subsection 4.3.1, a
modification of the hydrothermal model presented in equation 3.11). Section
4 of [12] features a brief overview of existing methods and convergence proofs,
and notes that earlier proofs (such as [20]) did not state an assumption regard-
ing the application of the second Borel-Cantelli lemma4. An earlier method
related to SDDP is the Nested Decomposition method introduced in [7].

4Informally, the lemma states that if the sum of probabilities of countably many events
is finite, the probability that infinitely many of them happen is 0.
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Algorithm 3.6: Backward pass (SDDP).

Data: a trajectory and a list of one stage problems
({

Qk
t,ξt

}
ξt∈Ξt

)T−1

t=0
.

Result: an updated list of one-stage problems
({

Qk+1
t,ξt

}
ξt∈Ξt

)T−1

t=0
.

1 for t ∈ [T − 2..0] do // Remember the terminal cost-to-go term
is everywhere zero.

2 set state← xt+1
3 set sample← ξt−1
4 for ξt ∈ Ξt do // Remember ξt becomes known at the

beginning of the (t+ 1)-st stage.
5 solve Qk

t+1,ξt
(state)

6 end
7 set ak+1

t+1 ← the expected value of the optimal fishing dual
8 set bk+1

t+1 ←
(
E
[
Qk
t+1,ξt

(state)
]
−
〈
ak+1
t+1 , state

〉)
9 for ξt−1 ∈ Ξt−1 do

10 update Qk
t,ξt−1 to Qk+1

t,ξt−1 by adding the cut
θt+1 ≥

〈
ak+1
t+1 , xt+1

〉
+ bk+1

t+1

11 end
12 end



Chapter 4

Infinite horizon

A natural question that follows finite horizon optimization problems is if it
is possible to optimize over an infinite number of time periods. Recall the
finite horizon hydrothermal problem 3.11. It’s possible that the organization
contractually responsible for maintaining a steady supply of energy doesn’t
intend to perform its activities for a specific amount of periods, but rather
an indefinite amount, and it periodically solves sufficiently large finite horizon
problems to update its operation plan. One alternative is to formulate an
infinite horizon model, as follows

min
h,g,df,s,r

∞∑
t=1

βt−1 (ctgt + ptdft)
s.t. ht + gt + dft = dt,

rt + ht + st = rt−1 + it
0 ≤ ht ≤ ht,
0 ≤ gt ≤ gt,
0 ≤ dft ≤ df t,
0 ≤ rt ≤ rt,
0 ≤ st.

(4.1)

Despite the seemingly minor changes when compared to the finite horizon
model, note that our optimization variables are now infinite dimensional vec-
tors, that is, they belong to some Banach space of sequences of real numbers,
RN, equipped with some metric.

Section 4.1 defines infinite horizon problems and presents the assumptions
that restrict our problem class of interest. The section also presents the Wald-
Bellman operator and variants, that are then used to show useful properties
and characterizations of optimal solutions. The results obtained allow the
development of the solution methods featured in section 4.2: subsection 4.2.1
for the simpler discrete and finite case, and subsection 4.2.2 returning to con-
tinuous state and control problems. Section 4.3 showcases several examples:
subsection 4.3.1 compares the finite horizon and infinite horizon hydrothermal

45
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problems as a model of the Brazilian interconnected power system, and sub-
section 4.3.2 features examples motivated by the investigation of properties of
infinite horizon models. Section 4.4 ends by proposing improvements to the
examples and topics of investigation motivated by them.

4.1 Infinite horizon problems
In this section, infinite horizon problems are defined and analyzed mainly
through the application of the Wald-Bellman operator (or modified versions).

Definition 4.1.1 (Infinite horizon problem). We consider infinite horizon
problems that can be written in the formulation below, and satisfies some
assumptions to be discussed later.

min
x,u

∞∑
t=1

βt−1ct(ut)
s.t. xt+1 = ft(xt, ut),

ut ∈ Ut(xt).
(4.2)

There are two ways of making the preceding formulation precise. The first
is to interpret the infinite series in the objective function as a limit of finite
sums. Note we then have an optimization problem with an infinite number
of variables and of constraints. The second is through theorem 4.1.8. At the
moment, it can be thought of intuitively as the limit of T -stage problems as T
tends to infinity. Both are used as definition in the literature, and are known
to be equivalent under certain hypotheses. (See theorem 4.1.14.)

We will restrict ourselves to a class of infinite horizon problems that we
will call stationary.

Definition 4.1.2 (Periodicity and Stationarity). An infinite horizon optimiza-
tion problem of the form 4.2 is said to be periodic with period p if

ct = ct+p, ft = ft+p, and Ut = Ut+p for every t ∈ N,

and also if p ∈ N is the smallest number such that these three equalities hold
(i.e. p is the least period). Observe that the stage costs ct, the transition func-
tions ft, and the admissible controls Ut comprise the problem data, inherent to
each particular situation, while the state variables xt and the control variables
ut remain to be chosen according to some optimizing procedure.

When a periodic problem has period 1, we say that it is stationary. Sta-
tionarity allows us to drop the index t from the stage cost, the transition
functions, and the admissible control sets.

Periodic infinite horizon problems can be reformulated as stationary prob-
lems. Intuitively, instead of considering p separate stages, each representing a
time period with a certain length, one can consider a larger stage representing
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p time periods in a bundle. For a p-periodic problem, the infinite sum in
problem 4.2 can be rewritten as

∞∑
t=1

βt−1ct(ut) =
∞∑
t=1

β(t−1)p
p∑
i=1

βi−1cp(t−1)+i(up(t−1)+i) =
∞∑
t=1

β′t−1
c′(u′).

Here, β′ = βp, and c′ and u′ can be thought of as Cartesian products of p
functions and p variables, respectively (although the costs need to incorporate
the weights β to be summed). Similarly, the state variable is replaced by x′,
the transition function by f ′ and the admissible controls by U ′. The preceding
argument is informal, but hopefully sufficient.

Remark 4.1.3 (Graphical representation). As with finite horizon models, it is
useful to represent infinite horizon models as a graph. However, the linear
graph in this setting has an infinite number of nodes, as shown in figure 4.1.
For periodic models, it becomes possible to represent them with a cyclical
graph, as in figure 4.2.

1 2 3 . . .

Figure 4.1: Linear graph representation of infinite horizon model.

1 2 3 . . . p

Figure 4.2: Cyclical graph representation of infinite horizon model.

Remark 4.1.4 (Aperiodicity). It is possible to convert aperiodic infinite horizon
problems into periodic problems by introducing a state variable representing
time. Denote by x̂t this additional variable at period t. This variable has an
initial condition x̂1 = 1, and a dynamic constraint x̂t+1 = x̂t + 1. The data of
the problem is modified to depend on this new variable rather than on the time
index, e.g. the cost at stage t is reformulated from ct(ut) to c(ut, x̂t) = cx̂t(ut). To maintain the

previous
structure, one
can introduce a
new control
variable û and a
constraint
ût = x̂t.

However, this reformulation conflicts with our approach as it requires the
introduction of a discrete state variable, and our focus is on continuous state
and continuous control variables.

In this setting, it is possible to introduce a functional operator that is of
great theoretical use, as well as an useful tool for developing algorithms.

Definition 4.1.5. Given a particular instance of problem 4.2, the associated
Wald-Bellman operator, or simply Bellman operator, is the mapping B such
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that

B(V )(x0) =


min
x,u

c (u) + βV (x)
s.t. x = f(x0, u),

u ∈ U (x0) ,
(4.3)

defined on an appropriate function space (to be discussed later). Alternatively,
one can succintly write

B(V )(x0) = min
u∈U(x0)

c(u) + βV (f(x0, u)).

Note that the index t has been dropped from almost all terms, except for the
initial state x0. This is possible because the minimization problem is a single
stage problem; in this sense, the expression βV (x) can be seen as a cost for
terminating at the state x.

Remark 4.1.6 (Domain of the Wald-Bellman operator). It is necessary to set
the stage in order to specify the function space we consider the Wald-Bellman
operator is defined on. The main motivation behind the following asumptions
and subsequent definition is a theorem yet to be discussed (theorem 4.1.8).

Implicit in the definition of the infinite horizon problem are the sets where
the state and control variables take values in. Remember the set-valued func-
tion U(x) represents the feasible controls given a state x. Denote by X ⊂ Rnx

the domain of U , by U = ⋃
x∈X

U(x) ⊂ Rnu the image of X by UThe dimensions
nx and nu are

nonnegative
integers.

, and the
domain of the transition function f is

graphU := {(x, u) : x ∈ X, u ∈ U(x)} ,

which is a subset of X × U .

The important assumptions to be considered relate to convexity, continuity,
and compactness. We assume the cost function c and transition function f are
continuous convex functions with compact domains; that U is a continuous
set-valued function whose graph graphU is a convex set; and, furthermore,
that for each state x ∈ X, U(x) is non-empty.

In this context, the Wald-Bellman operator is the previously defined func-
tion

B : L∞(X)→ L∞(X),

where L∞(X) is the Banach space of bounded functions defined on X 1. The
norm of a function V ∈ L∞(X) is given by

∥V ∥∞ = sup
x∈X
|V (x)| .

1More accurately, L∞(X) is the Banach space of equivalence classes of essentially bounded
Borel functions defined on X.
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The extent to which these assumptions are useful will become clear later.
As an example, let c = supu∈U c(u) and c = infu∈U c(u), which are both finite
due to compactness and continuity. Without loss of generality, assume c = 0.
Then it becomes possible to bound the total cost of an arbitrary policy by 0
from below and by c

1−β from above.

Finally, we note some theorems require analysis on L∞(X̂), where X̂ ⊃ X
is an extended state space.

As an example, consider the hydrothermal problem 4.1, and assume it is
stationary. The Wald-Bellman operator 4.3 becomes

B (V ) (r0) =



min
h,g,df,s,r

cg + pdf + βV (r)

s.t. h+ g + df = d,

r + h+ s = r0 + i

0 ≤ h ≤ r0,

0 ≤ g ≤ g,

0 ≤ df ≤ df,

0 ≤ s ≤ r0.

(4.4)

Setting V = 0, the constant function everywhere zero, B(V ) = Q, which
is the value function of a one-stage problem, defined on equation 3.6. Now,
computing B2(V ) = B(B(V )) = B(Q), one obtains the value function of
a two-stage hydrothermal problem, defined on equation 3.5. Proceding in
this manner, it is natural to wonder whether the sequence of k-stage value
functions {

Bk(V )
}
k∈N

converges, and whether it converges to the value function of the infinite horizon
problem 4.1.

We now verify that the Wald-Bellman operator has some useful properties,
and use them to prove theorems.

Lemma 4.1.7. Let V, V ′ ∈ L∞(X), and let r ∈ R, but denote also by r the
function in L∞(X) everywhere equal to c.

1. If V ≤ V ′, then B(V ) ≤ B(V ′). (Monotonicity.)

2. B(V + r) = B(V ) + βr. (Scalar additivity.)

3. If V is convex and β > 0, then B(V ) is convex. (Convexity preserving.)

4. If β ∈ (0, 1), then ∥B(V )−B(V ′)∥∞ ≤ β ∥V − V ′∥∞ . (Contracting.)
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Proof. 1. For every x ∈ D and every u ∈ U(x),

c(u) + βV (f(x, u)) ≤ c(u) + βV ′(f(x, u)).

It is immediate that

B(V )(x) = min
u∈U(x)

c(u) + βV (f(x, u)) ≤ c(u) + βV (f(x, u)),

and thus that
B(V )(x) ≤ c(u) + βV ′(f(x, u)).

Compared to the original inequality, we have eliminated the left-hand
side dependency on u. We can now minimize over u ∈ U(x) on the
right-hand side, yielding

B(V )(x) ≤ B(V ′)(x)

for arbitrary x ∈ X. This asserts B(V ) ≤ B(V ′) as stated.

2. By definition,

B(V + r) = min
u∈U(x)

c(u) + β (V (f(x, u)) + r)

=
(

min
u∈U(x)

c(u) + βV (f(x, u))
)

+ βr

= B(V ) + βr.

3. Remember that by assumption the original optimization problem is con-
vex. Since the function f is linear, V ◦ f is a convex function of both x
and u. Then c + βV ◦ f is also a convex function of both x and u. In
addition, as U(x) is a convex set for each x, IU(x)(u) is a convex function.

4. Since V, V ′ ∈ L∞(X), ∥V − V ′∥∞ < ∞ and the inequality V ≤ V ′ +
∥V − V ′∥∞ holds. Applying the Wald-Bellman operator on both sides,
one can see that

B(V ) ≤ B(V ′) + β ∥V − V ′∥∞ .

By symmetry, also B(V ′) ≤ B(V ) + β ∥V − V ′∥∞ , showing that

∥B(V )−B(V ′)∥∞ ≤ β ∥V − V ′∥∞

as desired.

Lemma 4.1.7 allows us to show the following key result.
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Theorem 4.1.8. There exists a unique function V ⋆ ∈ L∞(X) such that

V ⋆ = B(V ⋆). (4.5)

Moreover, V ⋆ is convex.

Equation 4.5 is called Bellman’s equation, and it can be more explicitly
written as

V ⋆(x) = min
u∈U(x)

c(u) + βV ⋆ ◦ f(x, u).

Proof. The existence and uniqueness of V ⋆ follow from the Banach Fixed
Point Theorem. (Remember that B is a contraction mapping from L∞(X)
into itself.) Now, the sequence

{
Bk(V )

}
k∈N

, beginning from the zero function
on X, is a sequence of convex functions that converges uniformly to V ⋆ on X.
The (pointwise) limit of convex functions is convex (theorem 2.2.5), and this
completes the proof.

We claim that problem 4.1, as a function of the initial reservoir level, is
the solution V ⋆ of the fixed-point problem

B (V ⋆) = V ⋆.

Theorem 4.1.8 guarantees that the optimal value function is stationary. It
is natural to wonder if the optimal policy is also stationary, that is, if it is
composed by a single decision-rule repeated at each stage. In that case, the
optimal policy can be represented via the respective decision-rule associated
with it. This property is particularly useful when the state and control spaces
are finite, as decision-rule can be represented by a vector in Unx ⊂ Rnx , and
allows the application of algorithm 8.

In order to determine the answer to this question, for a fixed decision-rule
π, we introduce a modified version of the Bellman operator, Bπ.

Bπ(V )(x) = c
(
π(x)

)
+ βV ◦ f

(
x, π(x)

)
(4.6)

This new operator corresponds to acting according to the decision-rule π
instead of the decision-rule that minimizes the right hand side of the equation.
The same properties shown for the Wald-Bellman operator in lemma 4.1.7
can be shown for Bπ, and therefore there exists a unique Vπ ∈ L∞(X) such
that

Vπ = Bπ(Vπ).

The value function Vπ is the value function associated with the stationary
policy composed by acting according to the decision-rule π at every stage. We
can now state and prove the following result.
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Theorem 4.1.9. A stationary policy composed by the decision-rule π is op-
timal if and only if π attains the minimum in Bellman’s equation for every
x ∈ D, that is,

B(V ⋆) = Bπ(V ⋆).

Proof. If the above equation is satisfied, theorem 4.1.8 tells us V ⋆ = B(V ⋆) =
Bπ(V ⋆). Because Vπ is the unique solution of Vπ = Bπ(Vπ), we must have
V ⋆ = Vπ.

On the other hand, optimality of the stationary policy π means that V ⋆ =
Vπ. Using again the property Vπ = Bπ(Vπ), we obtain that V ⋆ = Bπ(V ⋆).
Finally, theorem 4.1.8 allows us to write B(V ⋆) = V ⋆ = Bπ(V ⋆).

Given V ⋆, we can calculate

π⋆(x) = arg min
u∈U(x)

c(u) + βV ⋆ ◦ f(x, u).

Whenever π⋆ : X → U is well-defined, the optimal stationary policy π⋆ is
optimal. This is the case when we have relatively complete recourse (because
then U(x) is nonempty for every x ∈ X) and U is a compact operator (because
both c and V ⋆ ◦ f(x, · ) are continuous functions of the control, and thus
bounded on their domain). In particular, this holds when the state and
control sets are finite.

Note this optimal policy does not need to be unique. For example: when
there are multiple controls that attain the minimum for a specific x.

Theorem 4.1.10. Let π and π′ be decision-rules such that π minimizes the
sum of the present cost and the discounted value function, assuming we continue
with the stationary policy given by π′. In other words,

Bπ(Vπ′) = B(Vπ′),

or, written in another way,

c(π(x)) + βVπ′ ◦ f(x, π(x)) = min
u∈U(x)

c(u) + βVπ′ ◦ f(x, u).

Then Vπ ≤ Vπ′ , and strict inequality holds for at least one state x unless π′ is
optimal.

Proof. Using that Vπ′ = Bπ′(Vπ′) and the hypothesis, we obtain, for every
x ∈ D,

Vπ′(x) = Bπ′(Vπ′)(x) = c(π′(x)) + βVπ′ ◦ f(x, π′(x)) ≥
min
u∈U(x)

c(u) + βVπ′ ◦ f(x, u) = B(Vπ′)(x) = Bπ(Vπ′)(x). (4.7)
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That is, Vπ′ ≥ Bπ(Vπ′). We can apply Bπ to both sides of this equation k times
to get Bk

π(Vπ′) = Bk+1
π (Vπ′). All these inequalities together tell us

Vπ′ ≥ Bπ(Vπ′) ≥ B2
π(Vπ′) ≥ · · · ≥ Bk

π(Vπ′) ≥ · · · ≥ lim
k→∞

Bk
π(Vπ′) = Vπ.

Now, if the equality Vπ′ = Vπ holds, then also Vπ′ = Bπ(Vπ′). Because by
hypothesis Bπ(Vπ′) = B(Vπ′), we obtain Vπ′ = B(Vπ′) and thus Vπ′ = V ⋆ is
optimal by theorem 4.1.8. Therefore, if Vπ′ is not optimal, strict inequality
holds for at least one state x.

We now define a way with which to measure how suboptimal any V ∈
L∞(X) is in comparison to V ⋆.

Definition 4.1.11 (Bellman error.). Let V ∈ L∞(X) and x ∈ X. We denote
the Bellman error of V at x by

BEx(V ) = |V (x)−B(V )(x)| .

We also denote the Bellman error of V by

BE(V ) = sup
x∈X

BEx(V ).

Note that the Bellman error of V is the L∞-distance between V and B(V ),
i.e. BE(V ) = ∥V −B(V )∥∞ .

Lemma 4.1.12. Let V ∈ L∞(X) and x ∈ X. Then

|V (x)− V ⋆(x)| ≤ ∥V − V ⋆∥∞ ≤
1

1− β BE(V ).

Proof. The first inequality is immediate from the definition of the L∞-norm.
Now, for the second inequality, we can repeatedly apply the triangle inequality
to obtain

∥V − V ⋆∥∞ ≤
I∑
i=0

∥∥∥Bi(V )−Bi+1(V )
∥∥∥

∞
+
∥∥∥BI+1(V )− V ⋆

∥∥∥
∞
.

Then, using that the Wald-Bellman operator is a contraction, we can bound
each term of the form ∥Bi(V )−Bi+1(V )∥∞ by βi ∥V −B(V )∥∞. Thus we get

∥V − V ⋆∥∞ ≤
I∑
i=0

βi ∥V −B(V )∥∞ +
∥∥∥BI+1(V )− V ⋆

∥∥∥
∞

= 1− βI+1

1− β ∥V −B(V )∥∞ +
∥∥∥BI+1(V )− V ⋆

∥∥∥
∞
.

Taking the limit when I → ∞, both βI+1 and
∥∥∥BI+1(V )− V ⋆

∥∥∥
∞

vanish to
zero, showing the desired result,

∥V − V ⋆∥∞ ≤
1

1− β ∥V −B(V )∥∞ = 1
1− β BE(V ).
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We now show that iterating V0 = 0 through the Wald-Bellman operator
yields a k-stage finite horizon problem. Let Vk = Bk(V0) for k ∈ N. For
example, V1 corresponds to an one-stage problem.

V1(x0) = B(V0)(x0) =


min
x1,u1

c(u1)
s.t. x1 = f(x0, u1),

u1 ∈ U(x0).

However, for the base of our induction, we show V2 is a two-stage problem, as
it better reflects the general case.

Lemma 4.1.13. For each x0 ∈ X, Vk(x0) is a k-stage finite horizon problem.

Proof. To begin with, by definition,

V2(x0) = B(V1)(x0) =


min
x1,u1

c(u1) + β

 min
x2=f(x1,u2),
u2∈U(x1)

c(u2)


s.t. x1 = f(x0, u1),

u1 ∈ U(x0).

The nested minima can be merged into a single minimum over all variables.
Denoting by x = (x1, x2) and u = (u1, u2), we have,

V2(x0) =


min
x,u

c(u1) + βc(u2)
s.t. xt = f(xt−1, ut), t ∈ [1..2],

ut ∈ U(xt−1), t ∈ [1..2].

Now, assume that for t ∈ [0..k], Vt corresponds to a t-stage subproblem.
Evaluating Vk+1, we obtain

Vk+1(x0) = B(Vk)(x0) =


min
x1,u1

c(u1) + βVk(x1)
s.t. x1 = f(x0, u1),

u1 ∈ U(x0).

Expanding Vk = B(Vk−1), the objective can be written as

c(u1) + β

 min
x2=f(x1,u2),
u2∈U(x1)

c(u2) + βVk−1(x2)

 .
Grouping the minimization operators as before,

Vk+1(x0) =


min
x,u

c(u1) + βc(u2) + β2Vk−1(x2)
s.t. xt = f(xt−1, ut), t ∈ [1..2],

ut ∈ U(xt−1), t ∈ [1..2].
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Repeating this process recursively, it finally yields,

Vk+1(x0) =


min
x,u

∑k+1
t=1 β

t−1c(ut)
s.t. xt = f(xt−1, ut), t ∈ [1..k + 1],

ut ∈ U(xt−1), t ∈ [1..k + 1].

The induction is complete. Note in this final problem, the symbols x and u
represent (k + 1) variables each, unlike the previous instances in this proof
where e.g. x = (x1, x2) represented two variables (also recall each xt is a vector
in Rnx). Furthermore, despite sharing the same symbol, the value of x⋆1 in an
optimal solution of Vk+1 and V2 need not be equal.

Our goal now is to show that both definitions of the infinite horizon
problem—as fixed-point of the Wald-Bellman operator, and as minimum of an
infinite series—are equivalent under the convexity, continuity, and compact-
ness assumptions of remark 4.1.6. In this setting, for any x0 ∈ X, there exists
a sequence {(xt, ut)}∞

t=1 such that xt = f(xt, ut) and ut ∈ U(xt−1). Recall U(x) is
non-empty for
every x ∈ X.

Also, we
assume c = 0, which ensures the limit in the equation below is well-defined
for every such feasible sequence of decisions. Denote by V∞ the formulation
of the infinite horizon problem given in equation 4.2, that is,

V∞(x0) =


min
x,u

lim
T→∞

T∑
t=1

βt−1ct(ut)

s.t. xt+1 = ft(xt, ut),
ut ∈ Ut(xt).

(4.8)

Theorem 4.1.14. Under the previously stated assumptions,

V∞ = V ⋆.

Proof. We split the objective of V∞ into the costs accumulated up to (and
including) a stage k, and the costs incurred at later stages.

min
x,u

k∑
t=1

βt−1ct(ut) + lim
T→∞

T∑
t=k+1

βt−1ct(ut)

s.t. xt+1 = ft(xt, ut),
ut ∈ Ut(xt).

The costs incurred from stage k+ 1 onwards can be bounded above regardless
of the (feasible) sequence of controls chosen.

lim
T→∞

T∑
t=k+1

βt−1ct(ut) ≤ lim
T→∞

T∑
t=k+1

βt−1c = βkc

1− β .

In particular, for any x0 ∈ X, V∞(x0) ≤ c
1−β .
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Now, fix x0 ∈ X. Let
{
(xk,⋆t , uk,⋆t )

}k
t=1

be an optimal solution of Vk(x0) and
{(x∞,⋆

t , u∞,⋆
t )}∞

t=1 be an optimal solution of V∞(x0). Denote by {(x̂∞,⋆
t , û∞,⋆

t )}∞
t=1

the sequence of decisions formed by appending to the optimal solution of Vk(x0)
an optimal solution of V∞(xk,⋆k ).

Vk(x0) =
k∑
t=1

βt−1c(uk,⋆t ) ≤
k∑
t=1

βt−1c(u∞,⋆
t ) (By optimality of Vk(x0).)

≤
k∑
t=1

βt−1c(u∞,⋆
t ) +

∞∑
t=k+1

βt−1c(u∞,⋆
t ) = V∞(x0)

≤
k∑
t=1

βt−1c(û∞,⋆
t ) +

∞∑
t=k+1

βt−1c(û∞,⋆
t ) = Vk(x0) + βkV∞(xk,⋆k )

(By optimality of V∞(x0).)

≤ Vk(x0) + βkc

1− β .

In summary,

Vk(x0) ≤ V∞(x0) ≤ Vk(x0) + βkc

1− β .

Because x0 ∈ X was fixed arbitrarily, ∥V∞ − Vk∥∞ ≤
βkc
1−β . Taking the limit

when k →∞ completes the proof.

See proposition 1.2.1 of [5] for an alternative proof.

4.2 Algorithms
In this section, solution methods for infinite horizon problems are discussed.
We briefly interrupt our previous focus to present the relatively simpler case
of discrete state and control spaces, as much of the theory developed so far
is directly applicable. Afterwards, we examine algorithms for the continuous
state and control space case.

4.2.1 Discrete infinite horizon problems
First, we consider algorithms for solving discounted infinite horizon problems
where the state, control, and random variables can take a finite number of
values. In this case, the value function V ⋆ and each other function in L∞(D⋆)
can be represented by a vector in R|X|. Because lemma 4.1.7 guarantees the
Wald-Bellman operator is a contraction, taking any initial value function V0,
the sequence

{
Bk(V0)

}
k∈N

converges to V ⋆. This algorithm is known as value
iteration, and by lemma 4.1.12 we can terminate it when the Bellman error of
the current value function estimate is sufficiently small.
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Algorithm 4.1: Value iteration.
Data: an initial value function V0 and a tolerance ε > 0.
Result: a value function.

1 set V ← V0
2 set Vnext ← V0
3 set bound←∞
4 while bound ≥ ε do
5 for i ∈ [1.. |X|] do
6 solve B(V )(xi) and save at Vnext(xi)
7 end
8 set bound← 1

1−β BE(V ) // Note that Vnext = B(V ).
9 set V ← Vnext

10 end

In line 8, it is possible to obtain a tighter bound by computing the maximum
and minimum of V −B(V ) instead (note the absence of absolute value), but we
use the Bellman error for a simpler pseudocode. Furthermore, the algorithm
above keeps two vectors of length nx stored in memory during its execution: V
and Vnext. An alternative, in line 6, is to overwrite V (xi) with B(V )(xi). Thus,
during the next iteration of the for-loop, we would be calculating B(V ′)(xi+1),
where V ′(xi) = B(V )(xi) is possibly different from V (xi). This is a variant
of the value iteration algorithm, known as the Gauss-Seidel version of value
iteration. We refer the reader to subsection 1.3.1 of [5] for a more detailed
discussion of value iteration with tighter error bounds, as well as subsection
1.3.2 which discusses variants (including Gauss-Seidel).

Although value iteration is guaranteed to converge to the optimal value
function, it may require an infinite number of iterations, unlike the DP al-
gorithm. Under the assumption both the state and control spaces are finite,
there is a finite number of decision-rules. As such, there is a finite number of
stationary policies, one of which is guaranteed to be optimal by theorem 4.1.9.
Recall that theorem 4.1.10 guarantees a policy can always be strictly improved
upon unless it is optimal. These properties suggest the following algorithm,
known as policy iteration.
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Algorithm 4.2: Policy iteration.
Data: an initial decision-rule π0.
Result: a decision-rule.

1 set π ← π0
2 while Vπ ̸= B(Vπ) do
3 set Vπ(x) = 1

1−β c(x, π(x)) // Policy evaluation step.
4 calculate πnext such that BπnextVπ = B(Vπ) // Policy

improvement step.
5 set π ← πnext
6 end

Note the policy improvement step requires solving nx optimization prob-
lems. Subsection 1.3.3 of [5] presents a comprehensive description of the policy
iteration method, as well as a combination of value and policy iteration called
asynchronous policy iteration.

4.2.2 Continuous infinite horizon problems

We now discuss algorithms of similar structure to the DDP algorithm for
solving discounted infinite horizon problems where the state and control spaces
are continuous. In this setting, the Wald-Bellman operator is a contraction,
and we can find T ∈ N such that a T -stage problem approximates the infinite
horizon problem to a specified degree of accuracy. However, such T can be very
large, and in that case be challenging to solve. We suggest two alternatives,
the first of which we call exhaustive, and the second we call exploratory. Both
algorithms keep a piecewise linear underestimator of the optimal value function.
The exhaustive algorithm operates by improving the estimate at a preselected
finite set of states. It is based on the GDDP algorithm (cf. [30]) and it is similar
to other existing algorithms such as approximate value iteration. For an early
work on discretization procedures in finite and infinite horizon settings, see
[3] (note its structure is not similar to DDP). The exploratory algorithm uses
the value function estimate to solve a finite horizon problem, and improves
the estimate at the states visited. The time horizon is then increased, and the
process is repeated using the updated estimate. It is based on the Benders
squared algorithm (cf. [21]), and can be seen as an extension of the DDP
algorithm to infinite horizon problems.

We now describe how the exhaustive algorithm attains a good approxi-
mation of the optimal value function V ⋆. Denote by V ∈ L∞(X) a known
underestimator of V ⋆. Let N be an ε-net of X, that is, for any x ∈ X there is
an xN ∈ N such that ∥x− xN∥ ≤ ε.

Letting M = maxx∈N BE(V )(x), and using a Lipschitz constant L, we
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get
∥V − V ⋆∥∞ ≤

1
1− β (M + Lε) .

Lemma 4.1.7 tells us that B(V ) is also an underestimator of V ⋆, and that

∥B(V )− V ⋆∥∞ ≤ β ∥V − V ⋆∥∞ .

However, rather than calculating the sequence of iterates
{
Bk(V )

}
k∈N

, we use
B(V ) to generate a new cut with which to improve our underestimator, that
is

V next(x) = max {V (x), ⟨a, x⟩+ b} .

This guarantees our iterates are nondecreasing. Under the assumption that
V ⋆ can be extended to a convex function on Xδ, where δ > 0, we can apply
lemma 2.5.5 to obtain a uniform Lipschitz constant to our iterates.

Prior to explaining the exploratory algorithm in depth, we need to discuss
one of its key features, that distinguishes it from simply solving a sufficiently
large finite horizon problem: cut sharing. In a finite horizon problem, the value
functions at each stage are different from each other, and an underestimator
of the value function of a specific stage is not necessarily an underestimator of
the value function at a different stage. In a stationary infinite horizon problem,
the optimal value function is the same in all stages, allowing us to use the
same underestimator across all stages. For that reason, we keep a set Ck of
cuts accumulated up to the k-th step of the algorithm, and in our notation
we use it as a superscript. The value function estimate given the accumulated
cuts is

V Ck(x) = max
(ai,bi)∈Ck

〈
ai, x

〉
+ bi,

and its image through the Wald-Bellman operator is

B
(
V Ck

)
(x) = min

u∈U(x)
c(u) + βV Ck ◦ f(x, u).

The initial state visited during each forward step is always the same, xCk
0 , so we

can omit the superscript. The control uCk
t minimizes B

(
V Ck

) (
xCk
t

)
. Finally,

xCk
t+1 = f

(
xCk
t , uCk

t

)
. Whenever strong duality holds, the cut generated at xCk

t

is equivalent to 〈
∂
x

Ck
t
B
(
V Ck

)
, x− xCk

t

〉
+B

(
V Ck

) (
xCk
t

)
.

Now that we have fixed the notation, the proof of convergence for the
exploratory algorithm requires the following three main ideas and additional
assumptions.
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Backwards induction This is a technique commonly used in SDDP-type
algorithm convergence proofs. The convergence of Qk

T to QT as k →∞ is
used to ensure Qk

T−1 → QT−1. In turn, the convergence of Qk
T−1 to QT−1

guarantees Qk
T−2 → QT−2, and so on until the proof that Qk

0 → Q0 is
attained. Recall that we assumed QT is the constant function everywhere
zero, and thus actually Qk

T = QT holds for all iterations k.

In the infinite horizon setting, there is no last stage to serve as the basis
of induction. However, we can compare V Ck with a T -stage truncation
of the original infinite horizon problem that is sufficiently close to the
original problem, whose future cost function at stage t is Vt. That is to
say, V0 is close to the optimal value function V ⋆ in L∞-norm. Importantly,
the finite horizon approximation is not computed during execution: it
serves as an analytical tool to show convergence.

Figure 4.3: Initial approximation V C0 (in orange, solid), optimal value function
V ⋆ (in black, solid), and finite horizon future cost functions Vt (in black,
dashed).

Let the lower bound on the control cost be 0 ≤ c = min
u∈
⋃

x
U(x)

c(u), and

denote by c the similarly defined upper bound. To our ends, we need to
fix a sufficiently large T (ε) (although we suppress the dependency on ε)
such that

∞∑
t=T

βt−1c = βT c

1− β <
ε

2 .
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Thus for any choice of initial estimate V C0 such that V ⋆ ≥ V C0 ≥ 0 we
guarantee that

∥∥∥V ⋆ −BT
(
V C0

)∥∥∥
∞
≤ βT

∥∥∥V ⋆ − V C0
∥∥∥

∞
≤ βT c

1− β .

Furthermore, we can assume that, for t > T , Vt is the constant function
equal to c

1−β , and otherwise Vt = BT−t+1(VT+1), that is, VT = B(VT+1),
and VT−1 = B(VT ) = B2(VT+1), and so on. (The constant cut c

1−β is
the highest available without further assumptions or information about
a particular problem instance.)

Monotone limit Because we do not remove cuts, the sequence of lower esti-
mates

{
V Ck

}
k∈N

is nondecreasing. Lemma 4.1.7 guarantees the sequence
{Vt}Tt=0 is monotone and approaching V ⋆ from below. When comparing
our optimal value function estimate with the finite horizon future cost
functions, our goal will be to show that, at the states explored by the
algorithm, our estimate will eventually be above the future cost functions
Vt. Actually, we try to show that a ε

2 -relaxed condition holds,

V Ck+1(xCk
t ) ≥ Vt(xCk

t )− ε

2 . (4.9)

Local improvement The final step is to prove that condition 4.9 holds not
only at xCk

t , but for every state in an open ball of radius r > 0 around it.
(the radius r can depend on t, but not the state, however we suppress the
dependency.) By assumption, the state variable belongs to a compact
set, which has a finite packing number, i.e. the maximum cardinality of
separated sets of a given size. In particular, the maximum cardinality
of an r-separated set is finite, suggesting that the condition can only be
violated at a finite number of xCk

t for each t.

Local improvement requires that each Vt is Lipschitz with constant Lt,
and that all functions V Ck are Lipschitz with constant bounded above
by ℓ. The first part can be verified as in section III of [3] (there the Vt
are denoted by Jk). The work uses assumptions B defined in section
II and modified in section IV for the stationary infinite horizon setting.
The second part can be verified if the conditions of lemma 2.5.5 hold.
By construction, the family

{
V Ck

}
k∈N
∪ {V ⋆} is nondecreasing, and

their elements are below V ⋆. Also, as each V Ck is a maximum of affine
functions, they have readily available extensions to Xδ. The missing
piece is whether V ⋆ can be extended to Xδ, which we assume to hold.
We consider this assumption to resemble, for example, assumption H1(6)
of [14], used in the proof of convergence of SDDP-type algorithms. (An
alternative would be to assume V ⋆ is Lipschitz continuous directly, and
build an extension to Xδ.)
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Theorem 4.2.1 (Convergence of the exploratory algorithm). For any ε > 0,
for sufficiently large iteration number k, the value function estimate at the
state visited by the exploratory algorithm in the t-th stage satisfies

V Ck+1(xCk
t ) ≥ Vt(xCk

t )− ε

2 .

Proof. Fix T such that the contribution of stages larger than T to the cost of
the infinite horizon problem is less than ε

2 . Also, assume that the cut given
by the constant function equal to c

1−β is implied by Ck (e.g. by initializing
C0 with it, since we do not remove cuts). Note that this implies the theorem
statement for t > T .

Now, choose εT < · · · < εt < · · · < ε1 ≤ ε
2 . We are going to show that, for

large enough k,
V Ck+1(xCk

t ) ≥ Vt(xCk
t )− εt,

which implies the inequality in this theorem’s statement.

At the k-th step of the algorithm, let τ ∈ [1..T ] be the largest index such
that

V Ck(xCk
τ ) < Vτ (xCk

τ )− ετ .

Denote the optimal objective function estimate starting from state xCk
τ by

v = B
(
V Ck

)
(xCk

τ ) = c(uCk
τ ) + βV Ck(xCk

τ+1).

By assumption, V Ck(xCk
τ+1) ≥ Vτ+1(xCk

τ+1)− ετ+1. This implies that

v ≥ c(uCk
τ ) + βVτ+1(xCk

τ+1)− βετ+1.

Also, c(uCk
τ ) + βVτ+1(xCk

τ+1) is the cost of performing the control uCk
τ starting

from state xCk
τ at stage τ , i.e., it is underestimated by Vτ (xCk

τ ),

v ≥ c(uCk
τ ) + βVτ+1(xCk

τ+1) ≥ Vτ (xCk
τ )− βετ+1.

Then

V Ck(xCk
τ ) < Vτ (xCk

τ )− ετ < Vτ (xCk
τ )− ετ+1 < Vτ (xCk

τ )− βετ+1 ≤ v,

resulting in an useful Benders cut that improves our estimate at xCk
τ by at

least εt − βεt+1. We set ε̂t = εt − εt+1, which is an even lower bound on our
improvement, but simplifies a later calculation. These inequalities and the
strict improvement are illustrated in figure 4.4.

It is possible to use a backwards update scheme, similar to the DDP
algorithm, where the new cut at xCk

t is calculated using an estimate that
contains more cuts (e.g. the cut at xCk

t+1). In that case, we have k′ ≥ k,
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Figure 4.4: The approximation V Ck (in orange, solid), and its image
through the Wald-Bellman operator (in blue, solid). Note we only compute
B
(
V Ck

)
(xCk

τ ), rather than B
(
V Ck

)
in its entirety. The figure also depicts

the optimal value function V ⋆ (in black, solid); the future cost function Vτ (in
black, dashed); and the three translations of Vτ by −βετ+1, −ετ+1, and −ετ
(in gray, dashed).



64 CHAPTER 4. INFINITE HORIZON

implying that Ck′ ⊃ Ck and thus V Ck′ ≥ V Ck . During the update step,
we calculate B

(
V Ck′

)
(xCk

τ ), and monotonicity of the Wald-Bellman operator
guarantees that

B
(
V Ck′

)
(xCk

τ ) ≥ B
(
V Ck

)
(xCk

τ ) = v > V Ck(xCk
τ ),

and we have an improving Benders cut, as before.

Under the Lipschitz continuity conditions, the inequality Vt(x) − ε ≤
V Ck+1(x) can be guaranteed to hold for every x ∈ Br(xCk

t ), where r > 0
can be solved for in the following equation,

Vt(xCk
t )− εt + Ltr = Vt(xCk

t )− εt + ε̂t − ℓr.

The term Vt(xCk
t )−εt in the right-hand side arises from assuming v = Vt(xCk

t )−
εt + ε̂t, the least increase that can happen of the estimate at xCk

t
2. It is simple

to see that, whenever Lt and ℓ are nonzero, r = ε̂
Lt+ℓ > 0. This is illustrated

by figure 4.5. Recall that V Ck+1(xCk
τ ) = B

(
V Ck

)
(xCk

τ ), and thus figure 4.5
can be seen as a close-up of figure 4.4 around B

(
V Ck

)
(xCk

τ ) after our optimal
value function estimate is updated.

As previously discussed, compactness ensures the maximum cardinality
of a r-separated set is finite, and thus for each t the condition can only be
violated at a finite number of xCk

t . That is, the set{
k ∈ N : V Ck(xCk

t ) < Vt(xCk
t )− εt

}
is finite for each t. Also, if the condition is satisfied at a point for a given k,
it is satisfied at that point for all larger values of k.

2Actually, this assumes v is lower than the least increase, as we set ε̂t < εt − βεt+1.
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Figure 4.5: The approximation V Ck+1 (in orange, solid), after the update,
and translations of Vτ (in gray, dashed). Lipschitz estimates of each function
around xτ are also shown (in their respective color, dot-dashed), as well as a
translation of the Lipschitz estimate of V Ck+1 (in light orange, dot-dashed).
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4.3 Examples

In this section, we go over examples of infinite horizon problems that are of prac-
tical and theoretical interest. In particular, the hydrothermal model discussed
previously is modified to more closely resemble the Brazilian interconnected
power system problem. Some questions regarding infinite horizon problems are
posed, alongside relevant examples (sometimes indicating a negative answer).
Finally, we conclude with a final discussion.

The models here presented were implemented using the SDDP.jl library
(cf. [13] and [12]) in Julia 1.5.2, and solved with Gurobi.

4.3.1 Hydrothermal problem

The hydrothermal optimization models seen through this work have been
motivated by the Brazilian interconnected power system. The multistage
version in equation 3.11 was simplified for exposition. A subtle but important
distinction of scope must be made. We convert the model from one-dimensional
variables to multidimensional variables. For example, rather than representing
the generation target gt of a single thermal power plant (at stage t), gt is
a vector whose entries represent the generation targets of each plant in the
system.

Related to this change in dimensionality, the country is divided into four
subsystems or regions—Southeast, South, Northeast, and North—plus an addi-
tional transshipment node. Each subsystem can be thought of as an instance of
problem 3.11, with its own (hydro and thermal) power plants, demand, and so
on. However, some subsystems have the ability to exchange energy with each
other, justifying the construction of a single model containing all subsystems.
The energy from subsystem j transferred to subsystem k at stage t is denoted
by exj→k,t, and it is bounded above by exj→k,t.When j cannot

transfer energy
to k, exj→k,t = 0.

This process has a cost bj→k,t,
and only a fraction ℓj→k,t of the energy sent arrives at its destination (the
rest is lost). In this notation, the index 5 denotes the transshipment node,
which is not a region: it simply mediates the energy exchange between some
subsystems. We avoid using indices to represent the subsystem each variable
belongs to whenever there is no ambiguity. If necessary, we write e.g. gj,t to
denote the vector of generation targets of the thermal power plants that belong
to subsystem j.

Two minor details remain. First, the objective has a cost at penalizing
the spill st during stage t. Second, the thermal power plants have a mini-
mum generation target g

t
, which may be strictly positive for some particular
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plants.

min
h,g,df,
s,r,ex

T∑
t=1

βt−1
(
c⊤
t gt + p⊤

t dft + a⊤
t st + b⊤

t ext
)

s.t. hj,t + gj,t + dfj,t −
5∑

k=1
exj→k,t +

5∑
k=1

ℓk→j,texk→j,t = dj,t, j ∈ [1..4],
rj,t + hj,t + sj,t = rj,t−1 + ij,t, j ∈ [1..4],

4∑
j=1

exj→5,t =
4∑
j=1

ex5→j,t,

0 ≤ ht ≤ ht,
g
t
≤ gt ≤ gt,

0 ≤ dft ≤ df t,
0 ≤ rt ≤ rt,
0 ≤ st,
0 ≤ ext ≤ ext.

(4.10)

We consider two instances of this model, the Finite Horizon (FH) with
T = 120 stages representing 120 months, and the Infinite Horizon (IH) (corre-
sponding to T =∞). The problem data—consisting of all constants and the
distribution of the random inflow i—is 12-periodic, coinciding with a yearly
cycle. The discount factor is chosen as β = 0.9906, amounting to a yearly
discount rate of β−12 = 1.12.

Each model was trained for 2000 iterations using SDDP, then both were
simulated on the same sample of 2000 scenarios. Figure 4.6 shows the average
reservoir volume at the end of each stage. An end-of-horizon effect is particu-
larly noticeable in the Southeast region: at the final stages of the FH horizon
model, the stored volume plummets. Figure 4.7 illustrates the mean total
deficit along each stage, while figure 4.8 also shades the area corresponding
to one standard deviation above the mean. The IH model mostly produces
lower peaks than the FH model at stages that have a large deficit. In our
sample, at any given stage, 90% of scenarios had zero deficit, explaining the
large standard deviations as a small number of scenarios with high deficit
values.

For analyses of similar models: [28] compares risk neutral (average cost)
and risk averse finite horizon models; and [27] features numerical experiments
comparing finite and infinite, risk neutral and averse models.
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Figure 4.6: Mean reservoir volume at the end of each stage, divided by region,
for models FH (in orange, dashed) and IH (in blue, solid).

Figure 4.7: Mean total deficit, divided by region, for models FH (in orange,
dashed) and IH (in blue, solid).
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Figure 4.8: Mean total deficit, divided by region, for models FH (in orange,
dashed) and IH (in blue, solid). The area between the mean and one standard
deviation above it is shaded in the respective color.
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4.3.2 Simple counterexamples to natural conjectures
In the hydrothermal example, the average value of the state variable exhibited
periodical behaviour. It would be possible for the structure of a periodical
infinite horizon problem to imply certain properties of its solution. The ex-
amples in the remainder of this section were pursued in an attempt to answer
such questions. In order to formulate our questions precisely, we require the
following terminology.

Definition 4.3.1. An optimal trajectory or optimal orbit is a sequence {x⋆t}t∈N
of optimal solutions of an infinite horizon problem.

We begin with the two following questions.

Question 4.3.2. Does the period of the limit of an optimal trajectory match
the period of the model?

Answer. No. See examples 4.3.4, 4.3.5, 4.3.9, 4.3.10, and 4.3.11. We highlight
that lemma 4.3.6 and the discussion following it analyze example 4.3.5.

In particular, for stationary models, question 4.3.2 is equivalent to asking
if the optimal trajectory converges to a fixed point.

One can also wonder:

Question 4.3.3. Is the optimal value function nonincreasing along an optimal
trajectory?

Answer. No. See examples 4.3.5, 4.3.9, and 4.3.10.

We introduce a simple example that serves as a starting point for building
more interesting problems.

Example 4.3.4 (Deterministic uncontrolled 1D symmetric linear model).

V ⋆(x0) =

 min
x
|x|+ 1

2V
⋆(−x)

s.t. x = x0.

This model has a state variable x ∈ R, and no control variables. The present
cost is given by c(x) = |x| , and the transition function is f(x) = −x, a
reflection through the origin. There is a single constraint, x = x0. Note that
this problem is stationary.

The optimal solution to the problem 4.3.4 lacks the two properties of inter-
est from the preceding questions. First, with the exception of the trajectory
that begins at x0 = 0, all trajectories are 2-periodic. Second, the optimal
value function along each trajectory is constant. However, in informal terms,
the preceding example is a degenerate optimization problem. There are no
decisions to be made: its behaviour is deterministic and a straightforward
computation.
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Model 4.3.4 can be modified to be less degenerate by adding a control
variable u, and changing the transition function to f(x, u) = −x + u, which
allows the controller to move between states. Additionally, we bound the
control u by adding the constraint |u| ≤ 0.1. Another modification to make
the model more interesting is to make the present cost asymmetric with respect
to the origin, by changing it to c(x) = |x− 0.5|.

Example 4.3.5 (Deterministic 1D linear model).

V ⋆(x0) =


min
x,u

|x− 0.5|+ 1
2V

⋆(−x+ u)
s.t. x = x0,

|u| ≤ 0.1.

For an initial condition outside an interval around the origin, x0 /∈ (−0.4, 0.5),
the trajectory tends to the boundary of that interval, i.e. {−0.4, 0.5}. With
exception of x0 = 0.05, initial conditions inside the interval (−0.4, 0.5) follow
along 2-periodic orbits, alternating between the original state x0 and another
state. Figure 4.9 illustrates the behaviour of optimal trajectories {x⋆t}t∈N and
of the optimal value function {V ⋆(x⋆t )}t∈N along them.

Figure 4.9: Simulation results for the deterministic 1D linear model. On the
top, sample trajectories in different colors. On the bottom, the respective
evaluation of the optimal value function.

This example showcases two properties. The first property is that not all
initial conditions converge to the same limiting solution. In particular, there
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are optimal solutions that do not converge to either the global minimum of the
optimal value function or to a fixed point. Note that this model is stationary:
the objective function, the transition function, and the constraints are the
same at each stage. Hence the period of almost every optimal solution does
not match the period of the model. The second property is that the optimal
value function can indeed increase along an optimal trajectory.

We are going to verify analytically that the optimal value function of
example 4.3.5 satisfies the aforementioned properties, but, for simplicity, we
restrict the domain of the problem. As long as this domain restriction does
not affect the optimization procedure, we obtain the same result. Prior to
specifying what we mean and proving the lemma that shows the subsequent
analysis is sufficient, we need some definitions.

Denote by Z ⊂ X the restricted domain of interest, and assume it is convex,
compact, and non-empty. Naturally, we want to look at states x0 ∈ Z. We
would like that each subsequent state also belong to Z, and we can achieve
this by modifying the original infinite horizon problem. In order to keep
our previous structure, we must avoid constraining the state directly, so we
augment the original problem with a control variable z, and add constraints
on z. Our modified Wald-Bellman operator is

BZ(V )(x0) =



min
x,u,z

c (u) + βV (x)
s.t. x = f(x0, u),

u ∈ U (x0) ,
z ∈ Z,
z = x.

To conform to our usual notation, the constraints on the control variables
should be replaced by (u, z) ∈ W (x0), where the set-valued function W is
given by W (x0) = {(u, z) : u ∈ U(x0), z ∈ Z(f(x0, u))}, where Z is in turn
described by Z(x) = {z : z ∈ Z, z = x}. Note we are only interested in states
x0 for which Z(f(x0, u)) is non-empty.

Out of our remaining assumptions in remark 4.1.6, we only need to verify
that

{(x, u, z) : x ∈ X, u ∈ U(x), z ∈ Z(f(x, u))}

is a convex compact set. However, this is an intersection of closed convex sets
contained within the compact X × U × Z, where Z = ⋃

x∈X Z(x), showing
those properties hold.

We can finally assert the existence of V ⋆
Z = BZ(V ⋆

Z ), the optimal value
function for the modified Wald-Bellman operator. Our goal now is to show
that V ⋆

Z |Z = V ⋆|Z under the following assumption: for each x0 ∈ Z, there
exists S(x0) ⊂ Z, open relative to Z, with z⋆ = f(x0, u

⋆) ∈ S(x0), where z⋆ is
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an optimal solution of the variable z for V ⋆
Z (x0). We refer to this assumption

by saying the constraint z ∈ Z is inactive for every x0 ∈ Z. Now we achieve
this goal by iterating the original operator B on V ⋆

Z .

Lemma 4.3.6. Let Z ⊂ X be defined as before. Assume that for every x0 ∈ Z,
the constraint z ∈ Z is inactive in the modified problem. Then V ⋆

Z |Z = V ⋆|Z.

Proof. Whenever x0 ∈ Z, denote by

R(x0) = {u ∈ U(x0) : f(x0, u) ∈ S} ;

importantly, the set R(x0) is open relative to U(x0) as the inverse image of
S(x0) by a continuous function.

For every u ∈ R(x0) and any V ∈ L∞(X) we can write

c(u) + βV ◦ f(x0, u) + I [f(x0, u) ∈ Z] = c(u) + βV ◦ f(x0, u).

Note that if we minimize over u ∈ U(x0), the left-hand and right-hand side
are equivalent to the expressions inside BZ and B respectively. Instead, we
can minimize both sides of this equation over u ∈ R(x0). Whenever this
minimum is attained, we can conclude it is also the minimum over U(x0), as
R(x0) is open relative to U(x0) and this is a convex minimization problem (by
assumption).

In particular, setting V = V ⋆
Z , the right-hand side yields

min
u∈R(x0)

c(u) + βV ⋆
Z ◦ f(x0, u) = min

u∈U(x0)
c(u) + βV ⋆

Z ◦ f(x0, u) = B(V ⋆
Z )(x0),

where the first equality was justified by the previous paragraph. Similarly, for
the left-hand side,

min
u∈R(x0)

c(u) + βV ⋆
Z ◦ f(x0, u) + I [f(x0, u) ∈ Z] = BZ(V ⋆

Z )(x0) = V ⋆
Z (x0).

We have shown the base case: V ⋆
Z (x0) = B(V ⋆

Z )(x0) holds for every x0 ∈ Z.
Now, assume that V ⋆

Z (x0) = Bk(V ⋆
Z )(x0) for every x0 ∈ Z and some k ∈ N.

Then for every u ∈ R(x0), f(x0, u) ∈ Z and thus

c(u) + βBk(V ⋆
Z ) ◦ f(x0, u) = c(u) + βV ⋆

Z ◦ f(x0, u).

We know that the minimum over u ∈ R(x0) is attained on the right-hand side,
and therefore also on the left-hand side. As before, we have

min
u∈R(x0)

c(u) + βBk(V ⋆
Z ) ◦ f(x0, u) = min

u∈U(x0)
c(u) + βBk(V ⋆

Z ) ◦ f(x0, u) =

Bk+1(V ⋆
Z )(x0).

This completes the induction step and we may now take the limit as k →∞
to show that V ⋆

Z |Z = V ⋆|Z .
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We can finally proceed with our analysis of example 4.3.5, which is restricted
to the interval [−0.6, 0.6]. In this interval, the optimal value function is given
by

V ⋆(x) = max
{

1.5x− 0.15,−2
3x+ 14

15 ,−x+ 0.8
}
.

Indeed, we can verify this by checking the Bellman iteration: let x ∈ [−0.6, 0.6],
then we can compute

B(V ⋆)(x) = min
|u|≤0.1

|x− 0.5|+ 1
2V

⋆(−x+ u) = |x− 0.5|+ 1
2 min

|u|≤0.1
V ⋆(−x+ u)

by dividing it into three cases.

Case 1. For x ∈ [−0.6,−0.4], the solution is u = x + 0.5, as the global
minimizer of V ⋆ is 0.5. Thus V ⋆(−x+ u) = V ⋆(0.5) = 0.6, and

B(V ⋆)(x) = |x− 0.5|+ 0.3 = −x+ 0.8 = V ⋆(x).

Case 2. For x ∈ [−0.4, 0.5], we use that −x ∈ [−0.5, 0.4] ⊂ [−0.6, 0.5], where
V ⋆ is strictly decreasing. The solution is u = 0.1, and V ⋆(−x + 0.1) =
−2

3(−x+ 0.1) + 14
15 = 2

3x+ 13
15 , and

B(V ⋆)(x) = |x− 0.5|+ 1
3x+ 13

30 = −2
3x+ 14

15 = V ⋆(x).

Case 3. For x ∈ [0.5, 0.6], it is similar to the previous case: the solution is
u = 0.1, and V ⋆(−x + 0.1) = −(−x + 0.1) + 0.8 = x + 0.7. Bellman’s
iteration results in

B(V ⋆)(x) = |x− 0.5|+ 1
2x+ 0.35 = 1.5x− 0.15 = V ⋆(x).

The optimal solution for x ∈ [−0.6, 0.6] is u⋆(x) = min {0.1, x+ 0.5}. The
optimal transition function is

ϕ⋆(x) = f(x, u⋆(x)) = −x+ u⋆(x) = min {−x+ 0.1, 0.5} .

It allows us to verify the existence of multiple cycles of period 2 by looking at
the orbits {φ⋆n(x0)}n∈N of specific points:

n = 0 1 2 3 4
0.6 −0.5 0.5 −0.4 0.5
0.4 −0.3 0.4 −0.3 0.4
0.05 0.05 0.05 0.05 0.05
−0.1 0.2 −0.1 0.2 −0.1

After the preceding example, one may conjecture that models with a present
cost function that is strongly convex in both state and control variables would
exhibit a single limit optimal trajectory. Framed as a question:
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Question 4.3.7. Does the period of the limit of an optimal trajectory match
the period of a model with strongly convex immediate cost?

Answer. No. See examples 4.3.9 and 4.3.10.

Furthermore, one may ask:

Question 4.3.8. Does a strongly convex immediate cost guarantee an unique
limit that is independent of initial conditions?

Answer. No. See examples 4.3.9 and 4.3.10.

We modify the present cost to c(x) = |x− 0.5|2 + |u|2, and showcase some
simulation results in figure 4.10. Note that the sample trajectories begin at
different states than the linear example.

Example 4.3.9 (Deterministic 1D strongly convex model).

V ⋆(x0) =


min
x,u

|x− 0.5|2 + |u|2 + 1
2V

⋆(−x+ u)
s.t. x = x0,

|u| ≤ 0.1.

Figure 4.10: Simulation results for a deterministic 1D strongly convex model.
On the top, sample trajectories in different colors. On the bottom, the respec-
tive evaluation of the optimal value function.
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Another simple modification yields another strongly convex model whose
trajectories still do not converge to an unique limit. Rather than evaluating the
present cost at the initial state, c(x0, u), which we cannot influence, a possible
modification is to consider a present cost as a function of the subsequent state,
c(f(x0, u), u). As the transition function f is linear, this preceding composition
is convex. Substituting their definitions,

c(f(x, u), u) = |f(x, u)− 0.5|2 + |u|2 = |−x+ u− 0.5|2 + |u|2 =
x2 − 2ux+ 2u2 + x− u+ 0.25, (4.11)

is a strongly convex function of x and u, whose Hessian
(

4 −2
−2 2

)
has eigenvalues

3±
√

5 > 0.

Example 4.3.10 (Deterministic 1D strongly convex model with alternative
cost).

V ⋆(x0) =


min
x,u

|−x+ u− 0.5|2 + |u|2 + 1
2V

⋆(−x+ u)
s.t. x = x0,

|u| ≤ 0.1.

Figure 4.11: Simulation results for the alternative deterministic 1D strongly
convex model. On the top, sample trajectories in different colors. On the
bottom, the respective evaluation of the optimal value function.
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We have then seen two examples of stationary infinite horizon models
that suggest a strongly convex present cost is not enough to: guarantee sta-
tionary optimal trajectories; and an unique limit independent of initial condi-
tions.

Finally, we can construct a two-dimensional analogue of the one-dimensional
examples seen so far. In the linear model, the absolute value function in the
present cost function is replaced with the ℓ1-norm. The upper bound con-
straint on the absolute value of the control is replaced with an upper bound
constraint on the ℓ∞-norm of the control. The most noteworthy modification
is, however, the change to the transition function. Rather than a reflection
through the origin, given by −I, we choose to use a rotation of θ radians, given
by Rθ.

Example 4.3.11 (Deterministic 2D linear model).

V ⋆(x0) =


min
x,u

∥x− c0∥1 + 0.99V ⋆(Rθx+ u)
s.t. x = x0,

∥u∥∞ ≤ u.

The optimal trajectories of this model exhibit different behaviours for different
values of u. This is illustrated in figure 4.12 with trajectories starting from
x0 = (0.75,−0.25) and θ = π

36 I.e. 5 degrees.. A large value of u results in convergence to a
fixed point. As u diminishes, the limiting fixed point changes, and eventually
there is a phase transition: rather than converging to a limit, the optimal
trajectory seems to approach a closed curve. It is unclear if this trajectory is
at all periodic as previously defined in this work. If the answer is negative,
perhaps it could be possible to define periodicity in a continuous sense and to
characterize this trajectory as such.
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Figure 4.12: Optimal trajectories for the same initial condition but various
value of the parameter u in different colors. The star symbol marks the global
minimum of the present cost function.
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4.4 Final remarks
In this section, we discuss possible improvements or lines of study.

The stochastic model for the hydrothermal problem was based on historical
data. The realization at each stage corresponded with the rainfall of each re-
gion in the respective month of a particular year. In this manner, we aimed for
a model of weather patterns that is consistent country-wide, however indepen-
dent from each other across time. Moreover, model training and simulation
were based on the same data, although the specific scenarios at each step
may differ. Both aspects could be improved by developing an autoregressive-
moving-average (ARMA) model. This particular kind of stochastic model
can be incorporated into a multistage optimization model while preserving
the stagewise independency property via the addition of auxiliary state vari-
ables. By fitting ARMA models to different data (perhaps subsets of the
historical rainfall time series), the training results could be cross-validated on
out-of-sample realizations.

Despite the counterexamples to the questions asked in this section, gen-
eral properties of infinite horizon problems could be obtained under further
regularity conditions. By their very nature, such characterizations would be
useful to more detailed analysis and the development of alternative algorithms.
Example 4.3.11 suggests the behaviour of optimal trajectories can change
alongside parameters of the model. A deeper inquiry into models exhibiting
this quality—perhaps under the optics of dynamical systems—could aid in
identifying what conditions are necessary for certain properties to hold. De-
spite our focus on discrete-time problems, shifting to continuous-time infinite
horizon might facilitate the analysis.

Among the model parameters, β stands out as the contraction property of
the Wald-Bellman operator necessitates β < 1. Investigating the effects of the
limiting operation β → 1 could be interesting, i.e. moving from discounted to
undiscounted problems. Setting β = 1 can be interpreted as being indifferent
to when costs are incurred, as opposed to having a preference for delaying
costs as much as possible. The main issue is that the objective value becomes
unbounded unless costs are zero for infinitely many stages. A remedy could be
to multiply to objective value by 1−β, as multiplication by a positive constant
does not alter the solution of an optimization problem. Under assumptions
given in this chapter, the objective can be bounded below by 0 and above
by c

1−β , suggesting that lim
β→1−

(1 − β)V ⋆
β (x0) ∈ [0, c]. A different but related

approach would be to consider the optimal transition functions ϕβ(x0) =
f(x0, u

⋆
β). Although unecessary for the purposes of this dissertation, they

could prove useful if they were stable under the limit. That is to say, even
for problems where lim

β→1−
(1− β)V ⋆

β (x0) = 0 for every x0 ∈ X, if lim
β→1−

ϕβ(x0) =
ϕ1(x0) is well-defined, that might be sufficient as a solution of the undiscounted
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problem, even if the limiting value function is everywhere zero.
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Appendix

A.1 Algorithms
We present well-known methods for solving the optimization problems pre-
sented in chapter 2.

A.1.1 General convex problems
As we are going to see, the solution process of an optimization problem with
complicated structure can be reduced to solving multiple problems with a
simpler structure (e.g. the Barrier method in definition A.1.4). The same can
be said about the problems discussed in other chapters: a key topic in Finite
horizon is how to decompose a multistage problem into “one-stage” problems,
i.e. the kind of problem the current section explains how to solve.

A simple, well-known optimization algorithm is gradient descent. This
method attempts to build a sequence {xn}n∈N such that the iterates f(xn)
converge to the minimum of the function f . This sequence is called a mini-
mizing sequence, and it takes the form

xn+1 = xn + tn∆xn,

where, for gradient descent, ∆xn = −∇f(xn), and tn is chosen at each iteration
via a process known as line search. Gradient descent requires an unconstrained
minimization problem

min
x
f(x),

an initial feasible solution x0, For this problem,
feasibility means
f(x0) <∞.

and a differentiable objective f . Proofs of
convergence typically further require a twice-differentiable objective f , strong
convexity, and the existence of an optimal solution. Gradient descent belongs
to a larger class of optimization methods: descent methods.

Definition A.1.1 (Descent method). A descent method is an algorithm for
constructing a sequence {xn}n∈N such that

f(xn+1) < f(xn),

85
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except whenever xn = x⋆ is an optimal solution. This sequence is produced
iteratively by the equation

xn+1 = xn + tn∆xn,

where tn is called step size or step length, and ∆xn the step or search direction.

The main difference among descent methods is the process of choosing
the search direction. The step sizes are chosen by line search, which can be
exact or inexact. Exact line search requires solving the following minimization
problem in one variable:

min
t≥0

f(xn + t∆xn).

A simple option for inexact line search is backtracking: begin with a unit
step size tn0 = 1, which is reduced to tnk+1 = βtnk

where β ∈ (0, 1) until
f(xn + tnk

∆xn) decreases a sufficient amount when compared to a linear
extrapolation of f at xn. Despite line search being a constrained optimization
problem, it is easier to solve as it is an optimization problem in a single variable.
Section 9.2 of [10] describes general descent methods, alongside the two kinds
of line search here mentioned. Moreover, section 9.3 covers gradient descent.

A typical stopping criterion for descent methods is of the form ∥∇f(x)∥ < ε.
This is because when f is strongly convex with parameter m, f(x) is at most

1
2m ∥∇f(x)∥2 away from the true minimum. (Cf. subsection 9.1.2 of [10].) A
generic descent method is outlined below.

Algorithm A.3: Descent method.
Data: an objective function f and an initial feasible point x.
Result: a suboptimal solution.

1 while stopping criterion not satisfied do
2 calculate descent direction ∆x // Method dependent.
3 calculate step size t // Line search.
4 set x← x+ t∆x
5 end

We now discuss a specific descent method that can be adapted to con-
strained optimization problems.

Definition A.1.2 (Newton’s method). Newton’s method is a descent method
where the search direction ∆xn is given by

∆xn = −∇2f(xn)−1∇f(xn).

A quantity of interest is the Newton decrement at x, given by

λ(x) =
√
∇f(x)⊤∇2f(x)−1∇f(x).
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The Newton decrement has multiple interpretations, one of which is the
directional derivative of f at x in the direction of ∆x:

−λ(x)2 = ∇f(x)⊤∆x.

It can be used to define a stopping criterion, and used to assess the convergence
rate of the method (cf. subsection 9.5.3 of [10]; a sharper estimate holds for self-
concordant strictly convex functions, and is shown in subsection 9.6.3).

Optimizing a constrained optimization problem requires different methods.
A common feature of such algorithms is the distinction between two stages
during their execution. If no initial feasible solution is provided, the method
either finds a feasible solution or shows no such solution can exist: this stage
is called phase I. Once an initial feasible solution is available, the method
attempts to find an optimal solution: this stage is called phase II. We now
discuss how to modify Newton’s method for equality constrained optimization
problems.

Definition A.1.3 (Newton’s method revisited). The modification for a phase
II Newton’s method is straightforward. Assume the problem is of the form

min
x

f(x)
s.t. Ax = b.

Then the modification is to calculate search direction as the solution to the
following system of equations(

∇2f(x) A⊤

A 0

)(
∆x
µ

)
= −

(
∇f(x)

0

)
.

Now, for the phase I method, assume f(x) < ∞, but not that x is feasible.
Then we solve (

∇2f(x) A⊤

A 0

)(
∆x
µ

)
= −

(
∇f(x)
Ax− b

)
.

Note that when x is feasible, Ax− b = 0, and phase I reduces to phase II.

This system of equations arises from the Karush-Kuhn-Tucker (KKT) con-
ditions, which under differentiability assumptions are satisfied by the optimal
solutions of a primal-dual pair of optimization problems. Here, this system
of equations can be interpreted as the KKT conditions for the problem of
minimizing the second-order approximation of f at x subject to Ax = b. For
this reason, µ can be thought of as a dual variable, and this problem as a
primal-dual method. Despite their importance for optimization, we do not
explicitly use the KKT conditions in the remainder of this dissertation, so we
refer to [10]: subsection 5.5.3 covers the KKT conditions specifically, while
chapter 10 presents algorithms for equality constrained optimization problems
(including Newton’s method in section 10.2).
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A technique for optimizing a constrained optimization problem with in-
equality constraints is the barrier method.

Definition A.1.4 (Barrier method). The main idea behind the barrier method
is to approximate the inequality constrained optimization problem via a se-
quence of optimization problems without inequality constraints (but possibly
with equality constraints). This approximation is done by first incorporating
the inequality constraints into the objective via indicator functions,

min
x

f(x) +∑m
i=1 I[fi(x) ≤ 0]

s.t. Ax = b,

and then approximating each indicator function with
1
t
ϕi(x) = −1

t
log(−fi(x)),

where t > 0 is a parameter. These functions are called logarithmic barrier
functions. Denoting ϕ(x) = ∑m

i=1 ϕi(x), the sequence of problems can be
described by

min
x

tf(x) + ϕ(x)
s.t. Ax = b.

(P(t))

Algorithm A.4: Barrier method.
Data: an objective function f , the logarithmic barrier functions

{ϕi}mi=1, an initial feasible point x, and tolerance ε > 0.
Result: a suboptimal solution.

1 while m
t
≥ ε do

2 calculate x⋆ by solving P (t) // Centering step.
3 set t← γt

4 end

The centering step has its name as the optimal solution x⋆(t) of P (t) is
called a central point.

Confer chapter 11 of [10] for a discussion of methods for constrained opti-
mization problems, including the barrier method.

A.1.2 Linear and mixed-integer problems
The solution techniques we have discussed so far can be applied to a broad
range of convex optimization problems. By focusing on a smaller class of prob-
lems, their structure can be exploited to develop more efficient algorithms. We
now look at an algorithm for solving linear programs, and then at a method
for solving integer and mixed-integer programs. The latter is often imple-
mented alongside linear approximations of the original problem via continuous
relaxations of the integer.
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Assume the LP is in standard form,

min
x∈Rn

c⊤x

s.t. Ax = b,
x ≥ 0.

(2.5 revisited)

We further assume that all redundant equality constraints have been removed,
and thus that the m× n matrix A has full rank m, where m < n. The dual
problem can then be written as

min
µ∈Rm

−µ⊤b

s.t. µ⊤A ≥ −c⊤.
(12)

Definition A.1.5 (Simplex method). An overview of the simplex method
is that it operates by examining a feasible solution with specific properties,
showing that: the examined solution is optimal; that the problem is unbounded
below; or finds another feasible solution with the same desired properties, which
is then examined.

A linear constraint is called active at x when it holds with equality, e.g.
the constraint

x1 + x2 ≤ 1
is active at (x1, x2) = (1, 0) and at (x1, x2) = (0.5, 0.5), but not at (x1, x2) =
(0, 0). A vector x ∈ Rn is called a basic solution if it satisfies all equality
constraints Note that a

satisfied equality
constraint is
active.

and if there are n linearly independent linear operators among the
constraints active at x.

Under our assumptions, rankA = m, and thus there is a set of m indexes
I ⊂ [1..n] such that the columns of A indexed by I form a nonsingular m×m
matrix, denoted by AI . The matrix AI is called a basis. We denote by
J = [1..n] \ I the complement of I. A vector with m linearly independent
active constraints can be obtained by calculating xb = A−1

I b. Setting xi = xbi
We do not
assume xbi ≥ 0.

for each i ∈ I, we can get a basic solution by fixing the remaining variables as
xj = 0 for each j ∈ J : this results in |J | = n−m active inequality constraints
plus the |I| = m active equality constraints; furthermore, they form a set of n
linearly independent constraints. We can reorder the problem’s variables such
that this basic solution can be written as

x = (xb, xn) = (A−1
I b, 0).

The variables of xb are called basic variables, while the variables of xn are the
nonbasic variables. When xb ≥ 0, x is feasible, and thus called a basic primal
feasible solution, while AI is a primal feasible basis.

Denote by AJ the m × (n −m) matrix such that, after reordering, A =
(AI , AJ). Similarly, denote by c = (cI , cJ) the components of the objective
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associated with the basic and nonbasic variables respectively. We define µ⊤ =
−cIA−1

I , and thus

µ⊤A+ c⊤ = µ⊤(AI , AJ) + (cI , cJ) = (−cI ,−cIA−1
I AJ) + (cI , cJ) =

(0,−cIA−1
I AJ + cJ),

showing: that x and µ⊤ are complementary; and that µ⊤ is dual feasible if
−cIA−1

I AJ ≥ −cJ . Whenever this last inequality holds, AI is called a dual
feasible basis.

If a basis AI is both primal and dual feasible, then x is an optimal solution
to the primal problem, and µ is an optimal solution to the dual problem. To
see this, note that

c⊤x = c⊤
I A

−1
I b = −µ⊤b.

Now, if x⋆ is an optimal solution of the primal problem, then c⊤x ≥ c⊤x⋆

by (primal) feasibility of x, and c⊤x⋆ ≥ −µ⊤b by weak duality and (dual)
feasibility of µ.

Recall the
negative sign

from equation 12.
The analogous argument holds for an optimal solution of the

dual.

Two basis AI and AI′ are said to be adjacent if they differ by a single
column, i.e., I and I ′ differ by a single index. The basic solutions associated
with adjacent basis are also said to be adjacent. When the simplex method
does not show neither optimality nor unboundedness, then it moves from the
current solution to an adjacent solution via a process similar to pivoting in
Gaussian elimination. A primal basic feasible solution x = (xb, xn) is called
degenerate if xbi = 0 for some i ∈ I. If x is nondegenerate, then for each j ∈ J ,
there is at most one basis to be obtained by replacing a column of AI with
the j-th column of A. In other words, a nondegenerate primal basic feasible
solution has at most |J | = m adjacent solutions.

Denote by K the index set of one of those adjacent solutions, and by
k ∈ J the element of K not in I. Also, let AK be the adjacent basis, and
x′ the adjacent solution. If, additionally, k is associated with a violated dual
inequality, that is, −

(
cIA

−1
I AJ

)
k
< −ck, then x′ is a strict improvement over

x,
c⊤x′ < c⊤x.

This strict improvement can be arbitrarily large if A−1
I ak ≤ 0, where ak is the

k-th column of A. In this case, the primal problem is unbounded below and
the dual problem is infeasible.

The algorithm below assumes all candidate solutions are nondegenerate.
The degenerate case is discussed afterwards.
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Algorithm A.5: Phase II primal simplex method.
Data: a primal feasible basis AI .
Result: an optimal solution.

1 while AI not dual feasible do
2 choose k ∈ J corresponding to a violated dual inequality
3 if A−1

I ak ≤ 0 then
4 return optimal value is −∞
5 end
6 calculate the adjacent primal feasible basis AK
7 set AI ← AK
8 end

Although rare in practice, it is possible that a degenerate solution, having
multiple basis associated with an index j ∈ J , causes the algorithm to return
to the same solution. This phenomenon is known as cycling, but it can be
avoided via additional rules for basis selection: the lexicographic rule and
Bland’s rule. Both are described in section 3.4 of [6].

A phase I method can be devised by solving an auxiliary LP that uses a
vector of artificial variables xa ∈ Rm,

min
(x,xa)∈Rn+m

∑m
j=1 x

a
j

s.t. Ax+ Ixa = b,
x ≥ 0, xa ≥ 0.

(13)

The basic feasible solution (x, xa) = (0, b) is known, and so the phase II
method can be applied to the preceding problem. Its solution yields a primal
basic feasible solution of the original problem (when the optimal value is
nonnegative); certificates the original problem is infeasible (when its optimal
value is strictly negative); or contains basic artificial variables that can be
removed via degenerate basis changes, or by removing redundant constraints
from the original problem (and the corresponding artificial variables from the
auxiliary problem).

We direct the reader to section 2.3 of part I of [22] for a presentation of the
simplex method (but note it considers a maximization primal problem instead
of minimization problem). Alternatively, confer chapter 3 of [6], and perhaps
the preceding chapters for a review of auxiliary definitions.

We now discuss a generic method for solving integer and mixed-integer
programs.

Definition A.1.6 (Branch-and-bound method). There are two main ideas
behind this method: relaxing the integer or mixed-integer problem by removing
the integrality constraints; and progressively dividing the feasible set and its
subdivisions until termination of the algorithm. There exist other branch-and-
bound methods, but we do not discuss them here.
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The ideas behind the method are essentially the same between integer and
mixed-integer problems, and so we discuss only the wholly integer case for
simplicity. The relaxation of the integer problem is a linear program whose
optimal value bounds the original optimal value from below. When the optimal
solution of this LP is integral, it coincides with the optimal solution of the
original IP. This is unlikely to happen without further assumptions.

The set of all feasible solutions of the original IP can be too large to be
searched for an optimal solution directly. An alternative is to divide it into
smaller sets, and optimize over those instead. This procedure can be visualized
by depicting it as a tree. A partial representation of the tree for a pure binary
program is given in figure A.1.6. Each node has all constraints of its parent
plus one additional constraint, and is thus a different optimization problem.
Note that, despite this depiction, the method does not require a representation
of the whole tree as an input. One can interpret the algorithm as constructing
the tree iteratively, or, rather, constructing only the nodes that are necessary
as they become relevant.

R

R0

R00 R01

R1

Figure 13: The root of the tree, R, represents the original problem. Its
children, R0 and R1, represent the feasible solutions where z1 = 0 and z1 = 1
respectively. The children of R0, R00 and R01, represent the feasible solutions
where (z1, z2) = (0, 0) and (z1, z2) = (0, 1), and so on.

Following through with the subdivision procedure would result into an enu-
meration of all feasible solutions. The key is to avoid unnecessary subdivisions
by eliminating a node and all its children: this process is called pruning. Let
N denote a node of the tree, and also the subproblem associated with it. We
can prune N whenever any of the following criterions hold:

Infeasibility. N is infeasible, i.e. its feasible set is empty;

Optimality. An optimal integer solution of N is known;

Value dominance. The optimal value ofN is bounded away from the optimal
value of the original problem.

An example for the value dominance criterion is when both an optimal non-
integer solution x⋆N of N and a feasible solution z of the original IP are known,
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satisfying
c⊤z ≤ c⊤x⋆N .

Alternatively, if p is a known upper bound for the optimal value of the IP, and
a feasible solution of the dual of N with value dN is known, then N can be
pruned if

p ≤ dN .

Algorithm A.6: Generic branch-and-bound method.
Data: a set of problems N , and upper and lower bounds.
Result: an optimal solution.

1 while N not empty do
2 select, remove, and solve a problem N from N
3 if N can be pruned then
4 Skip to next iteration // Note that N was already

removed.
5 end
6 divide N and add subdivisions to N
7 end

It remains to detail the node selection and problem division subroutines,
which we only discuss briefly (see references after this definition for further
details). Node selection can be done via a priori or adaptative rules. A
common (essentially) a priori rule is depth-first search with backtracking, or
last in, first out (LIFO). Intuitively, the set N can be thought of as a stack or
pile, where the problem on the top is accessible. Figure 14 illustrates a possible
depth-first search mid-execution. Computationally, it can be interesting to
represent N in such a way its elements can be readily accessed. For example,
whenever the upper or lower bounds are updated, one could verify if each node
can be pruned by the value dominance criterion.

Problem division is done by adding linear constraints to each node. In
practice, specific choices of coefficients are used, one of which is variable
dichotomy. It generates two subproblems, one with the constraint zi ≤ b
and another with the constraint zi ≥ b+ 1, where b ∈ Z and i is the index of
an optimization variable. We now briefly discuss how the coefficient b and the
index i can be chosen.

When a solution x⋆ to the linearly relaxed problem is known, an useful
choice of b is ⌊x⋆i ⌋, as it removes x⋆ from the feasible sets of its children (when
x⋆i /∈ Z). A benefit of variable dichotomy is that the kinds of constraints
added at each division are upper and lower bounds for each variable. Thus,
rather than accumulating more constraints, the method can simply update
the bounds of existing constraints.
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Figure 14: Initially, N = {R}. The first iteration of the method removes
and solves R, and then adds R1 and R0 to N , in that order. The second
iteration removes and solves R0, and adds R01 and R00. The third iteration
removes and solves R00, and determines it should be pruned. After the third
iteration, N = {R1, R01}, and the algorithm will remove and solve R01 in the
next iteration.

Index selection, whether for variable dichotomy or not, is shown by empiri-
cal evidence to be important for the running time of the method, as frequently
only a few variables need to be integer for the rest to turn out integer in
the LP. Common methods for index selection include: a priori user-specified
priorities (perhaps through heuristics based on interpretation of the model);
and automated index selection based on estimations of how coercing a variable
to be integer-valued degrades the optimal value (for minimization problems,
how much the optimal value increases).

For a brief introduction to the branch-and-bound method, see section 11.2
of [6]. A more in-depth discussion can be found in sections 4.1 and 4.2 of
part II of [22], covering a general branch-and-bound algorithm that uses LP
relaxations, including the previously mentioned node selection and problem
division submethods.
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