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1 Introduction

The theory of dynamical systems deals with the long time behaviour of a particle
submitted to a law of iteration. The cornerstone of the theory is to understand this
behaviour. Obviously, this is an unrealistic quest, since it is easy to produce many
dynamics as the set of closed sets in the euclidean space with dimension at least two.

Even so, many research was done to understand this type of question for the
majority of orbits and for the majority of systems. The notion of majority here leads to
many viewpoints, like generic systems, generic points, Lebesgue almost every points
and so on. This is a fruitful field of research. It can be seen in [12, 17].

Inspired by the theory of group actions a natural question arises, what is the
actual dynamics if we randomly choose the law? This is still a difficult question, since
it deals with a notion of randomness and also with the regularity of the dynamical
systems.

In this spirit, people like Arbieto, Junqueira, Santiago, Thakkar, Das, Glavan,
Gutu decided to study the whole behaviour. This is called the Iterated Function Systems
(IFS) theory, where we deal with all possible orbits generated by all possible iterations
combining the maps. It turns out that this could upgrade trivial dynamics to non-trivial
ones, like, it is possible to use two Morse-Smale systems and show that their combined
iteration leads to minimal dynamics (even in a robust way!).

In this viewpoint, a natural question is to understand the omega-limit set of the
iterations (that now we call an orbit for the IFS). If we think of a contraction map, the
Banach fixed point tell us that the omega-limit set is only a point (fixed). However, we
can take two contractions on the interval as in [10], it can be showed that the omega-limit
set is the Cantor ternary set.

This remark was strong enough to link the IFS theory with the theory of Fractal
sets. This theory was very popular in other fields of science, like it is expressed in the
book of Barnsley [5].

One of the first and seminal work was developed by Hutchinson in [10]. He
address the general question of the dynamics of finitely many contractions. He realize
that the study of the omega-limit set of a collection of maps is connected with the
iteration of compact sets. It is like a collective dynamics, and he found that the base
space was already been study by topologists, the so called hyperspace of a compact
metric space, using the Hausdorff metric. This is very important in continuum theory
and so on, see [4, 13]
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He introduces an operator, nowadays called the Hutchinson-Barnsley operator,
that evolves any point in the hyperspace using the whole IFS. He realizes that uniform
contractions of the maps induces a uniform contraction in the hyperspace. Thus, using
Banach’s fixed point again an attractor appears. It turns out that this attractor is the
omega-limit set of all possible the iterations, and in applications is the Fractal that were
searched.

In some sense, this leads to investigations if weak sources of contractions could
be enough to obtain such attractors. Moreover, he also produces other type of attractors,
statistical ones, using other operator: the Transfer Operator acting on the set of measures.
However, we will not pursuit this here.

Eventually, people realize that the theory of IFS can be seen as the action of a
atomic measure on the space of dynamics over the phase space, generating a random
dynamical system. So, a natural question arises: Instead of an atomic measure (related
with finitely maps) could be used a Radon measure with compact support? In other
words, could be the parameter space compact instead of finite?

This was pursuit by many authors, and eventually Arbieto, Junqueira e Santiago
[2] obtained several results in this setting asking very weak sources of contractions.
After all, Melo [11] generalized this in his thesis.

One of the purposes of this work is to give the dynamical and topological basis
to this theory, also with examples, and to describe Hutchinson theory in the case of a
compact parameter space.

The theory of dynamical systems had a boost in mathematics with the advent
of hyperbolic theory due to Smale [15]. The horseshoe became the paradigmatic
example and had two important topological dynamical features: expansiveness and the
shadowing property. This two notions were extensively studied by many mathematicians
like Sakai, Kato, Thakkar, Das and many others. One of theirs best feature was that they
were heavily used in the stability of hyperbolic differentiable dynamics, see [18].

It turns out, that in topological dynamics, this also leads to some type of
stability (nowadays called topological stability), see [1]. Moreover, it was shown that the
shadowing property is a necessary condition to topological stability. This was a seminal
result that gives rise to the study of shadowing-type properties and even stronger forms
of stability, like the Gromov-Hausdorff Stability by Arbieto and Morales, see [3].

Naturally, this notion was exploited for IFS by some authors, see [14]. However,
in our opinion it is not so well precise. Moreover, the study is done in the finite case. So,
the second purpose of this work is to clarify this issues and to prove in the case of a
compact parameter space.

For this, we propose a new type of shadowing for IFS and a another definition of
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topological stability. These new definitions permit us to obtain our main results showing
that this new shadowing is a necessary condition for topological stability, extending the
original result of Pilyugin to the context of IFS and we also show that this shadowing
added to the expansiveness are sufficient condition for topological stability.

One interesting feature in the theory of dynamical systems is the concept of
entropy. It measures the complexity generated by the orbits in a system. This is a fruitful
area of research in many aspects, can be seen in [6]. It is natural to try to study this in
the theory of IFS. However, to formalize it is not too simple, and several definitions
appear. So, we will not pursuit it in this work, but we have some partial results and
many questions involving that. We hope that this could be analyzed in future works
and inspire more delicate questions.
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2 Iterated Function Systems

In 1981, Hutchinson introduced the IFS in the way of studying fractals in [10]. In
that case he studied only hyperbolic IFS with finite parameter space, a finite collection
of contractions. His theory and fractal theory was disseminated by different books, like
[5, 7].

One way of extend the results of Hutchinson is to enlarge the parameter space,
Thakkar and Das admitted the parameter space to be an infinite countable set in [16]
while others authors considered the parameter space as a compact metric space. Our
study was completely based on the last one, which permit us to work in a more general
case, without losing the vastness of examples that already exist.

A family {ωλ : λ ∈ Λ} ⊂ C0(X) such that Λ is a compact metric space and
ω : Λ × X→ X, given by ω(λ, x) := ωλ(x) is a continuous map, is said to be an IFS with
compact parameter space. We call ω its general map and we call each ωλ a partial map.
The space Λ is called the parameter space and X is called the phase space of this IFS. We
will often refer to an IFS by its general map but it is important observe that different
general maps can represent the same IFS.

The space ΛN endowed with the product topology will be denoted by Ω := ΛN.
For σ = (λ1, λ2, ...) ∈ Ω we will denote the map ωσk := ωλk ◦ ... ◦ ωλ1 and ωσ0 := id. A
sequence {xn} is called a chain for the IFS ω if for any n there exists λn ∈ Λ such that
xn+1 = ωλn(xn).

A first observation is that any finite set with the discrete metric is a compact
metric space. So any IFS with finitely many partial maps is automatically included in
our definition.

A second observation is that the family of partial maps is uniformly equicontinu-
ous, and it comes directly from the fact that the general maps is continuous, as we can
see bellow.

Proposition 1. The family of partial maps of an IFS is uniformly equicontinuous.

Proof. Let λ ∈ Λ. Since ω is continuous and Λ × X is compact, then ω is uniformly
continuous which means that for any given ε > 0 there exists δ > 0 such that for any
d(x, y) = d

(
(λ, x), (λ, y

)
< δ implies that d

(
ω(λ, x), ω(λ, y)

)
= d

(
ωλ(x), ωλ(y)

)
< ε. �

A first and simple example with only two partial maps will be exhibited bellow.
This example will reappear in futures chapters when it will be clear its properties.
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Example 1. Let ω1, ω2 : [0, 1]→ [0, 1] given by:

ω1(x) = 1
3x, ω2(x) = 1

3x + 2
3

The collection {ω1, ω2} is an IFS with parameter space {1, 2} and phase space [0, 1].

To simplify the notation let us denote I := [0, 1]. If we apply both partial maps in I
repeatedly, we obtain the sets exhibited in the figure 1.

Figura 1 – Image of I by the partial maps.

Observe that the successive applications of the partial maps in I converges to the Cantor
ternary set.

The convergence of this example is not an isolated case, a large class of IFS has a
similar behavior and conditions for it happens will be studied in future chapters. By
now, we will focus on present another example, but differently than the before, now
with infinitely many partial maps

Example 2. Let us consider T1 = R/Z the unit circle and the IFS given for the following
general map:

ω :[0, 1] × T1
→ T1

(λ, x) 7→ x + λ mod 1

An interesting property of this IFS is that for any fixed x ∈ T1 we haveω([0, 1]×{x}) = T1

which implies that any sequence {xn} in T1 is a chain for the IFS.
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3 Examples

Example 3. Let us consider {1, ...,n}N = Σ with the metric d(x, y) = 2−k where k is the smallest
natural number where xk , yk and if x = y, d(x, y) = 0 and the IFS whose general map is
ω : Σ × Σ→ Σ where ω(λ, x)2i−1 = λi and ω(λ, x)2i = xi for all i.

For a fixed λ ∈ Σ we have that if d(x, y) = 2−k then d(ω(λ, x), ω(λ, y)) = 2−2k
≤ 2−2−k =

2−2d(x, y) for k ≥ 2. If k = 1 then d(ω(λ, x), ω(λ, y)) = 2−2 = 2−1d(x, y), so ω is uniformly
contracting with contraction ratio 2−1. Consequently, by theorem 9 it has strong shadowing
property.

Example 4. Consider the compact metric space Λ = {0} ∪ {1/n : n ∈ N} and the IFS
ω : Λ × [0, 1] → [0, 1], where ω0(x) = x and ω1/n(x) = (1 − 1/2n)x for n ≥ 1. We can show
that this IFS does not have shadowing property. If we take ε ≤ 1/10 for any δ > 0 there exists n0

such that 1/n0 < δ. The sequence {yk} where yk = k/n0 for 0 ≤ k ≤ n0 and yk = 1 for k > n0 is a
δ-chain for the sequence (0, 0, 0...) that cannot be shadowable, because for any x ∈ B(0, ε) and for
any sequence σ ∈ Ω the sequence {ωσk(x)} is decreasing, thus ωσk(x) < ε and it cannot shadow
{yk}.

Example 5. By now, we will consider T2 = R2/Z2 and the IFS defined by the general map
bellow.

ω : [0, 1] × T2
→ T2

(λ, x1, x2) 7→ (2x1 + x2, x1 + x2) − (λ, 0) mod 1

Firstly, we observe that this IFS is expansive. This is a consequence of the linearity
of f (x1, x2) = (2x1 + x2, x1 + x2). Let us consider x = (x1, x2), y = (y1, y2) ∈ T2 and σ =

(λ1, λ2, ...) ∈ Ω. So, we have:

ωλ1(x) = f (x) − (λ1, 0) mod 1

The second iterate for this sequence is:

ωσ2(x) = ωλ2(ωλ1(x))

= f ( f (x) − (λ1, 0)) − (λ2, 0) mod 1

= f 2(x) − f (λ1, 0) − (λ2, 0) mod 1

By induction, we obtain for each k:

ωσk(x) = f k(x) − f k−1(λ1, 0) − ... − f (λk−1, 0) − (λk, 0) mod 1
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For ωσk(y) we have the same expression. Thus, we have the following:

d(ωσk(x), ωσk(y)) = d( f k(x), f k(y))

Since f is an expansive map, the IFSωmust be too. More than this, the time of expansion
is independent of the sequence of parameters.
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4 The Hyperspace

In this chapter we will present the Hyperspace, that will be an important tool for
studying IFS. It will permit us to prove some important results for hyperbolic IFS and it
will also be important to understand the space of IFS of a compact metric space X.

Let (X, d) be a metric space, we will denoteK (X) as the collection of all nonempty
compact subsets of X, and call it the Hyperspace of X. We shall define a metric for this
space, known as Hausdorff Metric, and prove some interesting properties relating X
and its hyperspace.

For A,B ∈ K (X) we can define the following operation:

ρ(A,B) = sup
a∈A

d(a,B)

This operation and its properties will be important to define the Hausdorff
distance on the Hyperspace.

Proposition 2. Let x ∈ X and A,B,C ∈ K (X) then:

1. There exists a0 ∈ A and b0 ∈ B such that ρ(A,B) = d(a0, b0).

2. ρ(A,B) = 0 if and only if A ⊂ B.

3. ρ(A,C) ≤ ρ(A,B) + ρ(B,C).

Proof. To prove the first property, since ρ(A,B) = sup{d(a,B) : a ∈ B} there exists
a sequence {an} such that lim

n→∞
d(an,B) = ρ(A,B). As A is compact, we can consider

the sequence convergent and a0 its limit. Since B ∈ K(X) there exists b0 such that
d(a0,B) = d(a0, b0).

So, ρ(A,B) = lim
n→∞

d(an,B) = d(a0,B) = d(a0, b0).

For the third property, suppose A ⊂ B, then for each a ∈ A and consequently
a ∈ B. So d(a,B) = 0 for all a ∈ A. Hence, ρ(A,B) = 0.

Conversely, as ρ(A,B) = 0, if a ∈ A, then d(a,B) = 0. By property (1) there exists
b ∈ B such that d(a, b) = d(a,B) = 0. So, a = b and A ⊂ B.

Finally, we prove the last property using that, for each a ∈ A there exists b0 such
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that d(a, b0) = d(a,B). Then, we have:

d(a,C) = inf{d(a, c) : c ∈ C}

≤ inf{d(a, b0) + d(b0, c) : c ∈ C}

= d(a, b0) + inf{d(b0,C) : c ∈ C}

= d(a,B) + d(b0,C)

≤ ρ(A,B) + ρ(B,C)

As, a is arbitrary we obtain ρ(A,C) ≤ ρ(A,B) + ρ(B,C). �

Clearly ρ is not symmetrical. Because of this it cannot be a metric forK (X), but
this problem can be easily solved defining the Hausdorff Distance as bellow:

dH(A,B) := max{ρ(A,B), ρ(B,A)}.

Theorem 1. The Hausdorff Distance is a metric for the hyperspace.

Proof. Firstly, the symmetry is an immediate consequence of the definition of dH. By
definition we have d ≥ 0, which implies ρ ≥ 0 and consequently dH ≥ 0.

Let A,B ∈ K(X). By property (2), if A = B, then ρ(A,B) = ρ(B,A) = 0 and then
dH(A,B) = 0. Conversely, if dH(A,B) = 0, then ρ(A,B) = ρ(B,A) = 0 and also by property
(2), we have A = B. So, dH(A,B) = 0 if and only if A = B.

Lastly, the triangle inequality is obtained by the property (3), added to the
definition of dH. Let C ∈ K (x), so we have:

ρ(A,C) ≤ ρ(A,B) + ρ(B,C) ≤ dH(A,B) + dH(B,C)

Similarly, we have:

ρ(C,A) ≤ dH(A,B) + dH(B,C)

So, by definition of dH:

dH(A,C) ≤ dH(A,B) + dH(B,C)

�

The Hausdorff metric is important in the sense that it makes the hyperspace
inherits topological properties from the original space, as examples we have completeness
and compactness that will be proved during this chapter. The first one of those has a
fundamental role in the main theorem of the next chapter.

In the way of prove the completeness, we will use the notion of closed ε-
neighborhood. For A ⊂ X and ε > 0 we can define A + ε := {x ∈ X : d(x,A) ≤ ε}.
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Theorem 2. If A ∈ K (X) and ε > 0, then A + ε is closed.

Proof. Let x be a limit point of A + ε. Then there exists a sequence {xn} of points in
A + ε\{x} converging to x. As xn ∈ A + ε, we obtain that d(xn,A) ≤ ε for all n ∈ N. For
each n there exists an ∈ A such that d(xn,A) = d(xn, an). By compactness of A we can
consider an convergent and a ∈ A its limit. Thus, d(x,A) ≤ d(x, a) ≤ ε which implies
x ∈ A + ε and then A + ε is closed. �

Remark. Although being closed A + ε is not necessarily compact. If we consider
Rwith the discrete metric, A ⊂ R a nonempty set and ε > 1 then A + ε = R that is not
compact.

This concept will be useful for the study of convergence of sequences in the
hyperspace in the sense that it makes easier verify if two compact sets are ε-close in the
Hausdorff metric. A simplification is given by the following theorem.

Proposition 3. Suppose A,B ∈ K(X) and ε > 0. Then dH(A,B) ≤ ε if and only if A ⊂ B + ε

and B ⊂ A + ε

Proof. By symmetry it is sufficient to prove ρ(B,A) ≤ ε if and only if B ⊂ A + ε.

If B ⊂ A + ε, then by definition d(b,A) ≤ ε for all b ∈ B. It follows that ρ(B,A) ≤ ε.
Conversely, if ρ(B,A) ≤ ε, then d(b,A) ≤ ε for all b ∈ B which implies B ⊂ A + ε. �

As said before, we want to prove that the completeness of the hyperspace is
inherited from the completeness of the original space. For this we will take a Cauchy
sequence in the hyperspace and we will exhibit a limit for it.

The first step for the construction of this limit is an extension lemma.

Lemma 1. If {An} be a Cauchy sequence inK (X), {nk} an increasing sequence of natural number
and {xnk} a Cauchy sequence in X satisfying xnk ∈ Ank for all k, then there exists {yn} a Cauchy
sequence in X such that ynk = xnk for all k and yn ∈ An for all n.

Proof. We can consider n1 = 1. For each nk−1 < n ≤ nk we take yn such that d(xnk ,An) =

d(xnk , yn). Since xnk ∈ Ank we obtain d(xnk ,Ank) = 0 and consequently ynk = xnk as desired.
From the construction we also obtain:

d(xnk , yn) = d(xnk ,An) ≤ ρ(Ank ,An) ≤ dH(Ank ,An)

Given ε > 0, since {xnk} is a Cauchy sequence, there exists k0 such that d(xnk , xn j) <
ε
3

for all k, j ≥ k0. Since {An} is also a Cauchy sequence, there exists n0 ≥ nk0 such that
d(An,Am) for all n,m ≥ n0.
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For each n,m ≥ n0 there exists k, j > nk0 such that nk−1 < n ≤ nk and n j−1 < m ≤ n j.
Then we have:

d
(
yn, ym

)
≤ d

(
yn, xnk

)
+ d

(
xnk , xn j

)
+ d

(
xn j , ym

)
= d

(
xnk ,An

)
+ d

(
xnk , xn j

)
+

(
xn j ,Am

)
≤ dH

(
Ank ,An

)
+ d

(
xnk , xn j

)
+ dH

(
An j ,Am

)
<
ε
3

+
ε
3

+
ε
3

= ε

Therefore, the sequence {yn} is also a Cauchy sequence with all the properties
desired. �

For a sequence {An} we can define the set A as the set of all x ∈ X such that there
exists a sequence {xn} converging to x satisfying xn ∈ An for all n. If {An} is a Cauchy
sequence in, then A will be a candidate for its limit. If we want completeness of the
hyperspace, then A must be compact and its compactness will be given by the next
lemmas.

Lemma 2. If {An} is a Cauchy sequence in K(X) and X is complete, then A is a nonempty
closed set.

Proof. We start by proving that A is nonempty. As {An} is a Cauchy sequence, there
exists n1 such that dH(An,Am) < 1

2 for all n,m ≥ n1. There is also n2 > n1 such that
dH(An,Am) < 1

22 . By continuing the process we obtain an increasing sequence {nk} such
that dH(An,Am) < 1

2k for all n,m ≥ nk.

Let xn1 be a fixed point in An1 . There exists xn2 ∈ An2 such that d(xn1 ,An2) =

d(xn1 , xn2). So we can construct a sequence {xnk} by using this method and we obtain xnk+1

satisfying d(xnk ,Ank+1) = d(xnk , xnk+1) for all k.

We claim that {xnk} is a Cauchy sequence. It follows directly from the construction
of {nk}.

d(xn1 , xn2) = d(xn1 ,An2) ≤ ρ(An1 ,An2 ≤ dH(An1 ,An2) <
1
2

Similarly, we obtain:

d(xnk , xnk+1) ≤ dH(Ank ,Ank+1) <
1
2k

So {xnk} is a Cauchy sequence. By the extension lemma there exists {yn} Cauchy
sequence satisfying yn ∈ An. Since X is complete {yn} is convergent and by definition its
limit is in A. Hence, A is nonempty.

Now, let a be a limit point of A. Then, there exists a sequence {ak} in A\{a}
converging to a. By definition of A, each ak is limit of a sequence {zn} converging to ak
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such that zn ∈ An for all n. So, there exists zn1 ∈ An1 such that d(a1, zn1) < 1. Similarly, we
obtain zn2 ∈ An2 such that d(a2, zn2) <

1
2 with n2 > n1. By repeating the process we obtain

a sequence {znk} such that d(ak, znk) <
1
k for all k.

Given ε > 0, there exists k1 such that 1
k1
< ε

2 . Since {ak} converges to a, there exists
k0 > k1 such that d(ak, a) < ε

2 for all k ≥ k0. Then, for all k ≥ k0 we have:

d(znk , a) ≤ d(znk , ak) + d(ak, a) <
ε
2

+
ε
2

= ε

So {znk} converges to a and since it is a convergent sequence, it is also a Cauchy
sequence. By the extension lemma there exists {yn} a Cauchy sequence satisfying yn ∈ An

for all n and ynk = znk . Since X is complete, the sequence {yn} is convergent and by the
uniqueness of the limit, it must converge to a and consequently a ∈ A. Therefore, A is
closed. �

As being closed is not enough to be a compact set, it is missing to check if the set
A as defined above is also totally bounded. The following lemma guarantee that in the
context we have for completeness, the set A will be in fact totally bounded.

Lemma 3. If A is a subset of X and {Dn} is a sequence in K(X) such that for any ε > 0 there
exists N such that A ⊂ DN + ε, then A is totally bounded.

Proof. Let ε > 0. By hypothesis there exists N such that A ⊂ DN + ε
4 . Since DN are compact,

they are totally bounded and there exists {x1, ...xq} such that DN ⊂
⋃q

i=1 Bd

(
xi, ε4

)
. We

can consider that Bd

(
xi, ε2

)
∩ A , ∅ for 1 ≤ i ≤ p and Bd

(
xi, ε2

)
∩ A = ∅ for p < i. For

each 1 ≤ i ≤ p, let yi ∈ Bd

(
xi, ε2

)
∩ A. We claim that A ⊆

⋃p
i=1 Bd

(
yi, ε

)
. Let a ∈ A, then

a ∈ DN + ε
4 which implies d(a,DN) ≤ ε

4 . Since DN is compact, there exists x ∈ DN such
that d(a, x) = d(a,DN). Since x ∈ DN, we have that x ∈ Bd(xi, ε4 ) for some 1 ≤ i ≤ q. On the
other hand, we have that:

d(a, xi) ≤ d(a, x) + d(x, xi) <
ε
4

+
ε
4

=
ε
2

Thus 1 ≤ i ≤ p and for the respective yi we have:

d(a, yi) ≤ d(a, xi) + d(xi, yi) <
ε
2

+
ε
2

= ε

Therefore, a ∈ Bd(yi, ε), consequently A ⊂
p⋃

i=1

Bd
(
yi, ε

)
and we obtain that A is

totally bounded. �

We are now ready to prove both theorems mentioned before about the properties
of the hyperspace inherited from the original space.
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Theorem 3. If (X, d) is complete, then (K (X), dH) is complete.

Proof. Let {An} be a Cauchy sequence inK (X) and A be the set of all points x ∈ X such
that there exists a sequence {xn} converging to x satisfying xn ∈ An for all n. By 2 we have
that A is a nonempty closed set.

Let ε > 0. Since {An}, there exists n0 > 0 such that dH(An,Am) < ε for all n,m ≥ n0

which implies Am ⊂ An + ε, by lemma 3. Fix N ≥ n0. For any sequence {xn} satisfying
xn ∈ An have that xn ∈ AN + ε for all n > N. By proposition 2 AN + ε is closed, so if {xn}

converges to x, then x ∈ AN + ε. Thus, A ⊂ AN + ε. By lemma 3 A is totally bounded and
consequently A is compact, so A ∈ K (X).

Since N > n0 is arbitrary, for all n ≥ n0 we have that A ⊂ An + ε for all n ≥ n0. As
{An} is Cauchy, there exists n1 > n0 such that dH(An,Am) < ε

22 for all n,m ≥ n1. We can
also obtain n2 > n1 such that dH(An,Am) < ε

23 for all n,m ≥ n2. By continuing the process
we obtain an increasing sequence {nk} such that dH(An,Am) < ε

2k+1 for all n,m ≥ nk.

Let n > n1 and y ∈ An. We have that An ⊂ An1 + ε
22 , so there exists xn1 ∈ An1

such that d(y,An1) = d(y, xn1) ≤
ε
22 . We also have that An1 ⊂ An2 + ε

22 , so there exists
xn2 such that d(xn1 ,An2) = d(xn1 , xn2) <

ε
22 . repeating the argument, we obtain xn3 ∈ An3

such that d(xn2 , xn3 <
ε
23 By continuing the process we obtain a sequence {xnk} such that

d(xnk , xnk+1 <
ε

2k+2 , so {xnk} is a Cauchy sequence and by construction xnk ∈ Ank . Since X is
complete we can admit that the sequence converges to a ∈ X. By the extension lemma
a ∈ A. On the other hand, for any k we find that

d(y, xnk) ≤ d(y, xn1) + d(xn1 , xn2) + d(xn2 , xn3) + ... + d(xnk−1 , xnk)

≤
ε
4

+
ε
4

+
ε
8

+ ... +
ε

2k
< ε

It follows that y ≤ ε, then y ∈ A + ε and consequently An ⊂ A + ε for all n ≥ n1.

Therefore, dH(An,A) ≤ ε for all n ≥ n1 andK (X) is complete. �

The second property mentioned above relating X and K(X) by the Hausdorff
metric says that the hyperspace inherits compactness from the original space and it is
proved in the next theorem.

Theorem 4. If (X, d) is compact, then (K (X), dH) is compact.

Proof. From the previous theorem, we obtain the completeness ofK (X). So it is missing
to prove thatK (X) is totally bounded.

Let ε > 0. Since X is totally bounded there exists {x1, ..., xn} such that X ⊂
n⋃

i=1

Bd

(
xi,
ε
3

)
.

Let {Ck : 1 ≤ k ≤ 2n
− 1} be the collection of all possibles nonempty union of the closures
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of these balls. Since X is compact the closure of each ball is also compact. As each Ck is
a finite union of compact sets, it is also compact. So, Ck ∈ K(X) for 1 ≤ k ≤ 2n

− 1. We

claim thatK (X) ⊂
n⋃

k=1

BdH (CK, ε).

Let K ∈ K(X) and S = {i : K ∩ Bd

(
xi,
ε
3

)
, ∅}. Let C j =

⋃
S

Bd

(
xi,
ε
3

)
, so K ⊂ C j

which implies ρ(K,C j) = 0.Let x ∈ C j. Then x ∈ Bd(xi, ε3 ) for some i ∈ S. By definition of S
there exists z ∈ K ∩ Bd(xi, ε3). By triangle inequality we obtain that d(x,K) ≤ d(x, z) ≤ 2ε

3 .
Since x is arbitrary, we find that ρ(C j,K) ≤ 2ε

3 < ε. Therefore, dH(K,C j) < ε, so K ∈
BdH (C j, ε). Since K is arbitrary, we find thatK (X) is totally bounded and consequently is
compact. �

The notion of hyperspace and IFS are close related. In the next chapter we will
see that this new tool will permit us to find attractors for hyperbolic IFS. More than that,
after some studies we observed that the hyperspace were even more related to the IFS.
One of our results is to explicit the relation between them which is exposed in the next
theorem.

Theorem 5. The space of IFS with phase space X is the hyperspace of C0(X).

Proof. To see that K ∈ K (X) is an IFS we just need to consider the parameter space as K
with the C0-metric. The other continence requires a little bit more.

Let {ωλ : λ ∈ Λ} be an IFS, we want to show that it is a compact subset of C0(X).
For this, we define ϕ : Λ→ C0(X) given by ϕ(λ) = ωλ and we claim that ϕ is continuous.

Let {λn} be a sequence in Λ converging to λ. By the continuity of the first variable
of ω : Λ × X → X, we obtain that {ωλn} converges pointwise to ωλ. As {ωλ : λ ∈ Λ}

is equicontinuous, so is {ωλn}. Since X is compact, we obtain that the convergence is
uniform, which implies convergence in the C0-topology and consequently the continuity
of ϕ. Therefore, ϕ(Λ) = {ωλ : λ ∈ Λ} is compact and that completes the proof. �

The theorem 3 added to the last theorem permit us to conclude that the space of
IFS with phase space X is a complete metric space with the Hausdorff metric, and it
comes from the fact that if X is a compact metric space, then C0(X) is a complete space
with C0-topology. So, to fix the notation, by now for ω : Λ × X→ X and ω̃ : Λ̃ × X→ X
both IFS, we will denote dH(ω, ω̃) := dH({ωλ : λ ∈ Λ}, {ω̃λ : λ ∈ Λ̃}).
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5 The Hyperbolic Case

Hutchinson introduced the notion of IFS in [10] and also proved an important
theorem guaranteeing the existence of a compact invariant attractor set for the IFS if all
the maps are contractions. He did it all for finitely many maps, but we can also obtain
the same result for IFS with compact parameter space by making simple changes.

In the way of proving the existence of this attractor for an IFS ω, we will use the
Hutchinson-Barnsley Operator F : K (X)→ K (X) which is given by:

F (K) :=
⋃
λ∈Λ

ωλ(K) = ω(Λ × K)

Since ω is continuous and Λ × K is compact for all K ∈ K (X), we obtain that the
operator is well defined.

We say that a K ∈ K(X) is invariant for the IFS ω if it is a fixed point for the
Hutchinson-Barnsley Operator, that is, F (K) = K. If for any A ∈ K(X) we have that
F

n(A)→ K in the Hausdorff topology, we say that K is an attractor for the IFS.

The proof of the existence of an invariant attractor for the IFS of contractions of
Hutchinson is based on the Banach Fixed-Point Theorem, applying it on the Hutchinson-
Barnsley operator. We will do the same, but to use the theorem, the operator must be a
contraction. This is easy to prove if we consider the IFS uniformly contracting.

We say that the an IFS {ωλ : λ ∈ Λ} is uniformly contracting if

β := sup
λ∈Λ

sup
x,y

d(ωλ(x), ωλ(y))
d(x, y)

< 1

And this number β is called contraction ratio.

Lemma 4. If an IFS ω is uniformly contracting with contraction ratio β, then the Hutchinson-
Barnsley generated by this IFS is a contraction with contractivity factor β.

Proof. We want to prove that dH(F (A),F (B)) ≤ βdH(A,B).

Let z ∈ F (A). By definition of the F there exists x ∈ A and λ ∈ Λ such that
z = ωλ(x). From the previous chapter we know that there exists y ∈ B such that
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d(x, y) = d(x,B). By construction and the contractivity of ωλ we obtain:

d(z,F (B)) ≤ d(ωλ(x), ωλ(y))

≤ βd(x, y)

= βd(x,B)

≤ βρ(A,B)

≤ βdH(A,B)

Since z is arbitrary if we take the supremum of z ∈ F (A) we obtain that:

ρ(F (A),F (B)) ≤ βdH(A,B)

Analogously, we obtain that:

ρ(F (B),F (A)) ≤ βdH(A,B)

Thus, by the definition of the Hausdorff metric, we conclude that:

dH(F (A),F (B)) ≤ βdH(A,B)

�

So we have an extension for Hutchinson’s theorem about the existence of an
unique invariant attractor for IFS with compact parameter space using the same strategy
of applying Banach Fixed-Point Theorem.

Theorem 6. If an IFS is uniformly contracting, then there exists an unique invariant attractor
for the IFS.

Proof. In the previous chapter, we proved that the Hyperspace of X inherited the
completeness from the completeness of X. The previous lemma guarantees that with
our hypothesis of the IFS be uniformly contracting, the Hutchinson-Barnsley operator is
a contraction onK (X). Thus, by Banach Fixed-Point Theorem there exists K ∈ K (X) an
unique fixed point for Hutchinson-Barnsley operator which means that K is the unique
invariant compact subset for the IFS. Moreover, if A ∈ K(X) then F n(A) converges to
K in the Hausdorff topology and we conclude that K is an invariant attractor for the
IFS. �

One example of attractor of an IFS is the Cantor Ternary set obtained in example 1.
Many others examples are exhibited in [5].
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6 Expansiveness

For maps, expansiveness means essentially that for any two different points,
their orbits move away from each other at least a constant. This notion can be translated
for IFS trading orbits for chains for any sequence.

Formally, we say that an IFS ω is expansive if there exists a constant η > 0, called
expansivity constant, such that for any σ ∈ Ω if x, y ∈M satisfy d(ωσn(x), ωσn(y)) ≤ η for
all n ∈N, then x = y. We usually say that ω is η − expansive.

The following theorem helps us to understand a little bit more about expansi-
veness and will be very important in the chapter of topological stability. Essentially, it
says that for an expansive IFS if two points have their chains with the same sequence
remaining close at most the expansivity constant for an enough long time, then these
points must be close too.

Theorem 7. If ω is an IFS η-expansive and σ = (λ1, λ2, ...) a sequence, then for any given
µ > 0 there exists N > 0 such that if x, y ∈ M and d(ωσn(x), ωσn(y)) ≤ η for all n ≤ N, then
d(x, y) < µ.

Proof. Suppose that exists µ that fails the lemma. Then for each N ∈N there exists xN and
yN such that d(ωσk(xN), ωσk(yN)) ≤ η for all k ≤ N but d(xN, yN) ≥ µ. So, we obtain {xN}N∈N

and {yN}N∈N and by compactness we can assume they are convergent, respectively to
x and y. Now fixed n ∈ N, by continuity of the IFS we have that ωσn(xN) converges
to ωσn(x) and ωσn(yN) converges to ωσn(y). As d(ωσn(xN), ωσn(yN)) ≤ η for all n ≤ N, we
obtain that d(ωσn(x), ωσn(y)) ≤ η. On the other hand, d(xN, yN) ≥ µ for all N ∈ N wich
implies d(x, y) ≥ µ. This contradicts the hypothesis of ω be η-expansive. �

In the last chapter we talked about uniformly contracting IFS, similarly, we say
that an IFS ω is uniformly expanding if

α := inf
λ∈Λ

inf
x,y

d(ωλ(x), ωλ(y)
d(x, y)

> 1

.

If an IFS ω is uniformly expanding with expanding ratio α, x , y ∈ X and σ ∈ Ω,
we have:

d(ωλ1(x), ωλ1(y)) ≥ αd(x, y).

By induction, we have that for any i ≥ 1:

d(ωσi(x), ωσi(y)) ≥ αid(x, y).
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Since α > 1 and d(x, y) > 0, for i large enough we have that

d(ωσi(x), ωσi(y)) > 1.

Thus, any uniformly expanding IFS is expansive. A natural question is if all
expansive IFS is also uniformly expansive. In 2018, Nia answered the question in [8]
exposing an example similar to the one bellow that is expansive but it is not uniformly
expanding.

Example 6. If we consider Σ as the space of binary sequences and d(x, y) =
∑
∞

i=1
|xi−yi|

2i the space
(Σ, d) is a compact metric space. It is well known that the shift map ω1 : Σ → Σ defined by
(ω1(x))i = xi+1 is continuous. Let us consider ω2 : Σ→ Σ defined by (ω2(x))i = xi+2 which is
continuous, since it is the composition of ω1 twice. So, ω : {1, 2} × Σ→ Σ is an IFS. If x , y
then, for any sequence σ ∈ {1, 2}N there exists k such that d(ωσk(x), ωσk(y) ≥ 1

4 , so it is expansive.
On the other hand if we consider x = (1, 0, 0, ...) and y = (0, 0, 0, ...) we have that d(ω1(x),ω1(y))

d(x,y) = 0
so, by definition, it cannot be uniformly expanding.
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7 Shadowing Property

In Dynamical Systems, a well known property studied for maps is the shadowing
property, which consists in guaranteeing the existence of a real orbit close to a pseudo-
orbit, which is a sequence similar to an orbit, but where small errors is permitted for
each iterate. We studied a similar idea for IFS.

Given a sequence {xk} in X and δ > 0, this sequence is said to be a δ-chain if for
each k there exists λk ∈ Λ such that d(xk, ωλk(xk−1)) ≤ δ. If the sequence is finite, we call it
finte δ-chain.

In the context of IFS, we say that an IFS ω has the Shadowing Property if for any
given ε > 0, there exists δ > 0 such that for any δ-chain {xk} there exists a chain {yk} such
that d(xk, yk) < ε for all k ≥ 0. In this case, we say that {yk} (ε)-shadows {xk}. Similarly,
we say that an IFS ω has the Finite Shadowing Property if for any given ε > 0, there
exists δ > 0 such that for any finite δ-chain {x1, ..., xn} there exists a chain {yk} such that
d(xk, yk) < ε, for k = 0, ...,n.

Remark.We remark that these definitions of shadowing property and finite
shadowing property do not guarantee any relations between the sequence of the shadow
and the sequence of the δ-chain.

As we are considering Λ and X compact, we have an equivalence between these
two definitions. Clearly shadowing property implies finite shadowing property and the
converse is given in the following lemma.

Theorem 8. If an IFS has finite shadowing property, then it has shadowing property.

Proof. Let ε > 0, by hypothesis there exists δ > 0 such that every finite δ-chain can be
ε-shadowable. Let {xk} be a δ-chain, then for each natural number i there exists yi ∈M
and σi = (λi

1, λ
i
2, ...) ∈ Ω such that:

d(ωσi
j
(yi), x j) < ε, j = 0, ..., i. (7.1)

By compactness of Λ and X, we can assume that {yi} converges to y and {λi
k}

converges to λk for all k. From this we can construct σ = (λ1, λ2, ...). Fixed n, we have
that (λi

1, ..., λ
i
n) converges to (λ1, ..., λn). As ω is continuous, ωσi

n
converges to ωσn and by

(7.1) d(ωσn(y), xn) < ε. Thus, as n is arbitrary, we have that {ωσk(y)} ε-shadows {xk} and
the IFS has the shadowing property. �

For some technical reasons sometimes we would like to be able to shadow the
δ-chain with a chain having the same sequence. We say that an IFS has Sequential
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Shadowing Property if for any ε > 0 there exists δ > 0 such that every δ-chain can be
ε-shadowable by a chain with the same sequence.

A natural question is: Is there any IFS with shadowing property by without
sequential shadowing property?

Fortunately, the answer is positive! The example 2 answers the question. By
the observation made in the example that any sequence of points in T1 is a chain we
conclude that the IFS has shadowing property, because any δ-chain is, in fact, a chain
and shadows itself. On the other hand, if we fix λ ∈ [0, 1] the partial map generated by λ
is a rotation, so it does not have the shadowing property. If we consider {xn} a δ-pseudo
orbit for the map ωλ that cannot be shadowable, it is a δ-chain for the IFS with sequence
σ = (λ, λ, ...) ∈ Ω. By the same observation made when the example was exposed this
δ-chain is also a chain for the IFS and also shadows itself, as the map ωλ does not have
shadowing property it is impossible to shadow {xn} by a chain with sequence σ. Another
curiosity about this example is that, since none rotation has shadowing property, we
conclude that it is not required the partial maps to have shadowing property to the
entire IFS to have it.

In 2001, Glavan and Gutu proved that sequential shadowing property comes
immediately from uniformly contraction in [9]. The results exhibited by them are really
general, in the sense that they work for any IFS regardless of the parameter space.

Theorem 9. Every IFS uniformly contracting has sequential shadowing property.

Proof. Letω be an IFS uniformly contracting with contraction ratio β. For any given ε > 0
take δ = (1 − β) ε2 . Let {xn} be a δ-chain with sequence σ and y0 satisfying d(x0, y0) < ε

2 .
Let us consider the chain {yn} given by yn = ωσn(y0) Firstly, we observe that:

d(x1, y1) ≤ d(x1, ωλ1(x0)) + d(ωλ1(x0), ωλ1(y0)) ≤ δ + βd(x0, y0)

By induction we obtain that for any n ≥ 1

d(xn, yn) ≤ δ(1 + β + ... + βn−1) + βnd(x0, y0) ≤ δ
1

1 − β
+ βnd(x0, y0)

By definition of δ and the choice of y0 we finally conclude that:

d(xn, yn) ≤ δ
1

1 − β
+ βnd(x0, y0) ≤

ε
2

+ βnε
2
≤
ε
2

+
ε
2

= ε

Thus, {yn} ε-shadows {xn}. Since both of them have the same sequence we obtain
that ω has the sequential shadowing property. �

Also in [9], they proved that this statement is also true for IFS uniformly expanding
by adding the hypothesis of all partial maps being surjective.
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Theorem 10. Every IFS uniformly expanding with all partial maps being surjective has strong
shadowing property.

These theorems show us that we several examples with this new property.

Sometimes more than be able to shadow with the same sequence we want
uniqueness of this shadow and some IFS have this property. We say that an IFS has
Uniqueness Shadowing Property if it has sequential shadowing property and there exists
ε > 0 such that for its respective δ from the sequential shadowing property we have
that for any {xk} δ-chain with sequence σ there exists an unique y such that {ωσk(y)}
ε-shadows {xk}.

This uniqueness will have a fundamental role in the next chapter, when we show
sufficient conditions for an IFS be topologically stable. There we will use the following
proposition that is a version for IFS of a well known property for maps.

Proposition 4. If ω is an η-expansive IFS and it has sequential shadowing property, then ω
has the shadowing uniqueness property.

Proof. Let ε < η
2 . As ω has strong shadowing property, we obtain δ > 0 such that ever

δ-chain is ε-shadowable by a chain with the same sequence . Let {xk} be a δ-chain with
sequence σ, so there exists y such that {ωσk(y)} ε-shadows {xk}.

Now suppose there exists z such that {ωσk(z)} ε-shadows {xk}, then we have:

d(yk, zk) ≤ d(yk, xk) + d(yk, zk) < 2ε < η.

Thus, as ω is η-expansive z = y and ω has shadowing uniqueness property. �
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8 Topological Stability

In this chapter we introduce a property that permit us to understand, in a
topological point of view, the behaviour of another IFS sufficiently close to an IFS
with this particular property. We will also see consequences and relations between this
property and the others saw in the previous chapters.

For some technical reasons sometimes we will need the phase space to be a
smooth compact manifold, in those cases we will replace X by M and d will be a
Riemannian metric on M.

Differently than an orbit of a point for a map, for an IFS a point can have infinitely
many chains, which together consist the entire orbit of the point. It is impossible compare
any two chains between any different IFS, our goal is to analyze similar chains in similar
IFS, and because of this we introduce the notion of δ-compatibility, that will permit us to
define the topological stability.

For ω, ω̃ two IFS and σ, σ̃ sequences (both finite or infinite) in each parameter
space, we say that (σ, σ̃) is δ-compatible if for all k we have:

dC0(ωλk , ω̃λ̃k
) < δ.

Remark. A simple remark is that if dH(ω, ω̃) ≥ δ, then there is no δ-compatible
pair of sequences.

We say that an IFS ω is topologically stable if given ε > 0, there exists δ > 0 such
that if ω̃ is an IFS and dH(ω, ω̃) ≤ δ, then for each (σ, σ̃) δ-compatible there exists a
continuous map h : X→ X(respectively h : M→M) with the following properties:

(i) dC0(ωσk ◦ h, ω̃σ̃k) < ε for all k ∈N.

(ii) dC0(h, id) < ε.

One of our main results, extending and clarifying the work of Rezaei and Nia in
[14] is to show that a consequence of topological stability is the shadowing property,
actually we go further and we prove that topological stability implies sequential
shadowing property for IFS having a manifold with dimension at least 2 as phase space.

The hypothesis of having phase space being a manifold with dimension at least
2 is required because this structure permit us to obtain the following lemma which is
fundamental to the entire construction in the theorem. The proof is omitted in this work
but is completely exhibited in the master thesis of Bernardo de Carvalho [?].
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Lemma 5. Let M be a manifold with dimM ≥ 2. For any given ε > 0, there exists δ > 0 such
that if {x1, ..., xk, y1, .., yk} is a list of distinct points in M satisfying d(x j, y j) < δ, then there
exists a diffeomorphism f such that:

(i) dC0( f , id) < ε.

(ii) f (x j) = y j, j = 1, .., k.

The following is the key lemma for the proof of the first theorem of this chapter.
Having an IFS and a δ-chain we shall construct another IFS as close as wanted to the
one we have. We also construct a chain for this new IFS close to the initial δ-chain and
such that their sequences are δ-compatible, with this, the theorem becomes easy.

Lemma 6. Letω be an IFS with dimM ≥ 2. Given ∆ > 0, there exists δ > 0 such that if {x0, ...xn}

is δ-chain with sequence σ, then there exists an IFS ω̃ satisfying dH(ω, ω̃) < ∆, a sequence σ̃
such that (σ, σ̃) is ∆-compatible and y0 ∈M satisfying d(ω̃σ̃k(y0), xk) < ∆ for k = 0, ...,n.

Proof. As dimM ≥ 2, for ∆ > 0, from lemma 5 we obtain δ > 0 such that if {x0, ..., xk, y0, .., yk}

is a list of distinct points in M satisfying d(x j, y j) < 3δ, then there exists a diffeomorphism
f such that:

(i) dC0( f , id) < ∆.

(ii) f (x j) = y j, j = 0, .., k.

Let {x1, ..., xn} be a δ-chain. Since it is finite, using triangle inequality we obtain
{y1, ..., yn} a 3δ-chain such that:

(i) d(xk, yk) < ∆, k = 0, ..,n.

(ii) ωλk+1(yk) , yk+1, k = 0, ...,n − 1.

For k = 0, ....,n − 1 there exists hk such that dC0(hk, id) < ∆ and hk(ωλk+1(yk)) = yk+1.

We define Λ̃ = {0, ...,n − 1} ×Λ and ω̃ : Λ̃ ×M→M where ω̃(k, λ, x) := hk ◦ ωλ(x).
As ω is continuous, so is ω̃ and then it is a general map of an IFS. We claim that for each
k ∈ {0, ...,n − 1} and λ ∈ Λ we have dC0(ω̃(k,λ), ωλ) < ∆. Let x ∈M, then we have:

d(ω̃(k,λ)(x), ωλ(x)) = d(hk(ωλ(x)), ωλ(x)) ≤ dC0(hk, id) < ∆ (8.1)

As x was arbitrary, we have dC0(ω̃(k,λ), ωλ) < ∆ and then dH(ω, ω̃) < ∆.

We define σ̃ = {λ̃1, ..., λ̃n}, where λ̃k := (k, λk). For y0 obtained above we have
ω̃σ̃k(y0) = yk and from (8.1) (σ, σ̃) is ∆-compatible.

�
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Using the previous lemmas we show our first theorem of this chapter, which
says that under the conditions mentioned before about the phase space, topological
stability implies finite shadowing property, and using results of the last chapter, this is
equivalent to prove that topological stability implies shadowing property.

Theorem 11. Every IFS topologically stable having a manifold with dimension at least 2 as
phase space has finite shadowing property.

Proof. Let ω : Λ ×M → M be an IFS topologically stable with dimM ≥ 2. For a given
ε > 0, from the definition of topological stability we obtain a ∆ > 0 such that if ω̃ is
an IFS with dH(ω, ω̃) < ∆, for each (σ, σ̃) ∆-compatible there exists a continuous map
h : M→M with the following properties:

(i) dC0(ωσk ◦ h, ω̃σ̃k) <
ε
2 for all k ∈N.

(ii) dC0(h, id) < ε
2 .

We assume ∆ < ε
2 .

Let δ < ∆
6 and {x0, ..., xn} a δ-chain with sequence σ, then from the previous lemma

there exists ω̃ with dH(ω, ω̃) < ∆, σ̃ such that (σ, σ̃) is ∆-compatible and y0 such that
d(ω̃σ̃k(y0), xk) < ∆ for k = 0, ...,n.

We will consider, by now, σ and σ̃ infinite by complete withλk = λ1 and λ̃k = (1, λ1)
for k ≥ n. We remark that (σ, σ̃) is still δ-compatible.

So, we obtain h : M → M a continuous map with the properties mentioned
above.

We consider z0 = h(y0), then {ωσk(z0)}∞k=0 is clearly a chain for ω and we observe
that for k = 1, ...,n:

d(xk, ωσk(z0)) = d(xk, ωσk(h(y0))

≤ d(xk, ω̃σ̃k(y0)) + d(ω̃σ̃k(y0), ωσk(h(y0))

≤ ∆ +
ε
2

<
ε
2

+
ε
2

= ε.

�

Corollary 1. Every topologically stable IFS having a manifold with dimension at least 2 as
phase space has shadowing property.

The proof of the theorem gives us more than this, each finite δ-chain is shadowed
by chain whose sequence has the same first n elements of the sequence of the δ-chain,
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since the phase space is a compact manifold, by this observation we obtain another
stronger theorem.

Theorem 12. Every topologically stable IFS with dimension of phase space at least 2 has
sequential shadowing property.

Proof. Let ε > 0. Let us consider δ > 0 as obtained in the proof theorem 11 and let {xk}
∞

k=0

be a δ-chain with with sequence σ = (λ1, λ2, ...). Repeating the proof of that theorem
for each n ∈ N if we consider {xk}

n
k=0 we obtain zn and σn = (λn

1 , λ
n
2 , ...) such that for all

0 ≤ j ≤ n we have λn
j = λ j and consequently

d(xk, ωσk(zn)) = d(xk, ωσn
k
(zn)) < ε. (8.2)

By compactness of M we can consider {zn}n∈N convergent and z0 its limit. Fixed
k ∈N, from (8.2) we have that d(xk, ωσk(z0)) < ε. So, {ωσk(z0)}∞k=0 is a chain that ε-shadows
{xk}

∞

k=0 with the same sequence. �

For maps we have a converse for this theorem can be obtained by adding the
hypothesis of expansiveness, we expected that this should be true for IFS too. Using the
fact that expansiveness added to sequential shadowing property implies uniqueness
shadowing property we construct for each pair of sequences δ-compatible a continuous
map with the properties desired for topological stability. After give this proof, we
observed that it is essentially the same of the proof given by Thakkar and Das in [16]
the observation is that a chains with pair of sequences δ-compatible is equivalent to the
time varying maps δ-closed for them.

Theorem 13. Every expansive IFS with sequential shadowing property is topologically stable.

Proof. Let ε > 0, ω be an IFS expansive with sequential shadowing property and η > 0
be the expansivity constant of ω. From the theorem 4 in the last chapter, we obtain
that ω has shadowing uniqueness property, moreover from the proof we know that
any ε < η

2 satisfies the shadowing uniqueness property, so let us consider ε < η
2 , from

the sequential shadowing property we have δ > 0 such that any δ-chain is uniquely
ε-shadowable by a chain with the same sequence.

Let ω̃ be an IFS with dH(ω, ω̃) < δ. Fix σ ∈ Ω and x ∈ X. Let σ̃ be a sequence such
that (σ, σ̃) is δ-compatible.

Since (σ, σ̃) is δ-compatible, we observe that {ω̃σ̃k(x)}∞k=0 is a δ-chain for ω with
sequence σ, then there exists a unique point yx such that the chain {ωσk(yx)}∞k=0 ε-shadows
{ω̃σ̃k(x)}∞k=0.

We define h : X → X, by h(x) := yx and we observe that from the shadowing
uniqueness property h is well defined and by construction d(x, h(x)) < ε for all x ∈ X.
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Thus, if h is continuous, then dC0(h, id) < ε. We also observe that by construction
d(ωσk(h(x)), ω̃σ̃k(x)) < ε for all k ∈ N and x ∈ M. So, if h is continuous, we also have
dC0(ωσk ◦ h, ω̃σ̃k) < ε for all k ∈N.

We claim that h is continuous. Let µ > 0 be given. By theorem 7 there exists
N ∈ N such that if x, y ∈ X and d(ωσk(x), ωσk(y)) ≤ η, for all k ≤ N then d(x, y) < µ. For
each k ∈ {0, ...,N}, ωσk and ω̃σ̃k are continuous, as M is compact, they are uniformly
continuous and then for each k, there exists βk > 0 and β̃k > 0 such that if d(x, y) < βk, then
d(ωσk(x), ωσk(y)) < ε, and if d(x, y) < β̃k, then d(ω̃σ̃k(x), ω̃σ̃k(y)) < ε. Take β = min{βk, β̃k :
k = 0, ...,N}. We observe that if d(x, y) < β then for k = 0, ...,N we have:

d(ωσk(h(x)), ω̃σ̃k(h(y))) ≤ d(ωσk(h(x)), ω̃σ̃k(x)) + d(ω̃σ̃k(x), ω̃σ̃k(y))

+ d(ω̃σ̃k(y), ωσk(h(y)))

< ε + ε + ε < η

Thus, d(x, y) < β implies d(ωσk(h(x)), ω̃σ̃k(h(y))) < η for 0, ...,N, which implies
d(h(x), h(y)) < µ and consequently h continuous and ω is topologically stable. �

Remark. We remark that for this last theorem it is not required the phase space to
be a manifold, it works for any compact metric space.
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