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Resumo

Gaussian Processes and Multi-Fidelity

Ivani Ivanova Ivanova

Resumo da dissertação de Mestrado apresentada ao Programa de Pós-graduação emMatemática,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do título de Mestre em Matemática.

Resumo: Vários fenômenos de interesse, originados na física, engenharia, biologia,
meteorologia, �nanças e muitas outras áreas importantes, podem ser explicados por
uma grande quantidade de modelos matemáticos. Tais modelos podem ter diferentes
ordens de acurácia quando usados para descrever o fenômeno analisado, assim como
as muitas simulações que podem ser realizadas baseadas em cada um deles. Não é
incomum que simulações computacionais precisas sejam bastante custosas, tornando,
desse modo, inviável obter observações de resposta su�cientes. Em tais casos, se
modelos mais baratos do mesmo fenômeno estiverem disponíveis, suas respostas,
assim como as observações de alta �delidade, podem ser usadas para uma melhor
predição e estimativa do fenômeno estudado. Isto é precisamente o objetivo de
modelos de multi-�delidade: integrar informação de alta e baixa �delidade.
Nesta dissertação, estudamos uma abordagem Bayesiana para o design de multi-
�delidade, em que os outputs de cada nível de �delidade são modelados por um
processo Gaussiano e tais níveis são combinados de uma maneira auto-regressiva.
Além disso, exploramos desenvolvimentos recentes nessa técnica que proporcionam
custos computacionais mais baixos para predição e validação cruzada.

Palavras�chave. Inferência Bayesiana, Processos gaussianos, Modelagem de multi-�delidade.

Rio de Janeiro
Outubro de 2019
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Abstract

Gaussian Processes and Multi-Fidelity

Ivani Ivanova Ivanova

Abstract da dissertação de Mestrado apresentada ao Programa de Pós-graduação emMatemática,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do título de Mestre em Matemática.

Abstract: Many phenomena of interest, originated in physics, engineering, biology,
meteorology, �nance, and many other important �elds, can be explained by a large
number of mathematical models. These models can have di�erent order of accuracy
when they are used to describe the targeted phenomenon, and so do the many
di�erent computer simulations one can perform based on each one of them. It is
not uncommon for precise computer simulations to be very expensive, thus making
obtaining enough response observations not viable. In such cases, if cheaper models of
the same phenomenon are available, their responses, in addition to the high-�delity
observations, can be used for better prediction and estimation of the underlying
phenomenon. This is precisely the objective of multi-�delity models, to integrate
high and low-�delity information. In this dissertation, we study a Bayesian approach
to multi-�delity design, where the output of each level of �delity is modeled by a
Gaussian process and the �delity levels are combined in an autoregressive manner.
Furthermore, we explore recent developments of this technique that provide lower
computational cost for prediction and cross-validation procedures.

Keywords. Bayesian inference, Gaussian processes, Multi-�delity modeling.

Rio de Janeiro
October 2019
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Chapter 1

Introduction

1.1 Once upon a time, in a golden land...

Danie Gerhardus Krige (1919-2013) was a South African statistician and mining engineer
who studied exploitation data of several orebodies, particularly gold ores. Specifying
accurately the tonnage and grade of ores in a mine is of extreme importance to carry out
appropriate selective mining when using these estimates. This means that for stoping
(the removal of the desired ore from an underground mine), only parcels of ore which
contain a su�cient amount of gold to cover the costs of extraction are selected and parcels
with insu�cient amount of gold are left intact. Krige observed in [Krige '51] that the
method used when trying to estimate the gold content of a block of ore was simply to
take the mean of the limited available observations on its boundary and sought ways to
determine the reliability and improve the accuracy of the estimate, see [Krige '51] and
[Chilès & Desassis '18].

D. G. Krige's contributions to ore grade estimation inspired the French mathematician
and civil engineer of mines Georges Matheron (1930-2000) in his development of a linear
unbiased predictor, a technique which he named kriging after Krige in [Matheron '63].
Matheron was also interested in inferring the grade of a panel using a weighted average
of available samples.

In the context of Matheron's work, we suppose that the spatial data Z(x1), . . . , Z(xn)
are observations of a process Z(x) with x ∈ X ⊂ Rd with d = 2 or 3 at the locations
x1, . . . , xn. Furthermore, we write the expression of this process as a sum of a known
mean m(x) and a deviation factor δ(x):

Z(x) = m(x) + δ(x).

The deviation δ(x) is a zero-mean stochastic process with known covariance function

k(x, x′) = Cov{δ(x), δ(x′)} = Cov{Z(x), Z(x′)}, x, x′ ∈ X .

This covariance function is not known a priori and must be de�ned or estimated using
the available data and their variability.

3
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Matheron proposed the simple kriging predictor in this setting when looking for an
unbiased predictor at a location x0 that is a linear combination of the available samples:

n∑
i=1

liZ(xi) + c,

with li for i = 1, . . . n and c unknown constants. The predictor is chosen by minimizing
the mean-squared prediction error

E

[(
Z(x0)−

( n∑
i=1

liZ(xi) + k

))2]
.

Thus, the minimum is obtained when

lT = kTK−1 and c = m(x0)− lTm(X),

with l = (l1, . . . , ln)T , k = (k(x0, x1), . . . , k(x0, xn))T , Kij = k(xi, xj) and m(X) =
(m(x1), . . . ,m(xn))T . Matheron's best linear unbiased predictor is then

pSK(x0) = m(x0) + kTK−1(Z(X)−m(X)),

with Z(X) = (Z(x1), . . . , Z(xn))T , and this predictor has a mean-squared prediction error
given by

E[(Z(x0)− pSK(x0))
2] = k(x0, x0)− kTK−1k.

Other forms of kriging on which Matheron worked are known as ordinary kriging and
univeral kriging, cases when the mean function m(x) is not assumed as known, and they
yield other optimal predictors linear in the data, but with larger prediction errors than
simple kriging, see [Cressie '93]. For these methods, predictive expressions with simple
dependences on the variogram, de�ned as

2γ(x, x′) = Var[Z(x)− Z(x′)] = E[((Z(x)−m(x))− (Z(x′)−m(x′))2],

for a stochastic process Z(x) with mean function m(x), at the locations x and x′, are
found, and a sample variogram could be used when determining the covariance structure
[Cressie '90].

Outside of the spatial context of kriging, similar approaches were proposed before
the work of Matheron. But, for an equivalent situation, using spatial data, we only
know that Russian meteorologist Lev Semenovich Gandin proposed a similar approach
in the �eld of meteorology. In his 1965 book �Objective Analysis of Meteorological
Fields�, concerned with both theory and application, Gandin presents analyses of spatial
prediction and design. There, simple kriging is called optimal interpolation and ordinary
kriging is called optimal interpolation with normalization of weighting factors [Cressie '90],
[Chilès & Desassis '18].
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1.2 It's all about that Gauss(ian)

The previously presented method, kriging, is concerned with estimating one part of a
random process using information about other parts. Kriging is widely used for spatial
data in geostatistics; however, a predictive procedure need not be restricted to these
cases. In a more general case, a predictor p(x0) for Z(x0) is one that minimized an
error characterized by a loss function L(a, b). Then, the optimal predictor is given by
minimizing the expected value of the loss when estimating Z(x0) using p(x0):

E[L(Z(x0), p(x0))].

The previous expression does not include the information of the available observations
Z(x1), . . . , Z(xn). This is done by conditioning the loss function on the data:

E[L(Z(x0), p(x0))|Z(X)].

When the squared error loss is used for L(a, b), we have

E[(Z(x0)− p(x0))2|Z(x1), . . . , Z(xn)].

By minimizing this expected error, the resulting best predictor is given by

p(x0) = E[Z(x0)|Z(X)].

So why is this all about Gaussian processes???
The conditional distribution Z(x0)|Z(x1), . . . Z(xn) is needed to determine the

predictor p(x0), however, the estimation of this distribution may not be available unless
some simplifying model assumptions are made. The most simple of these assumptions is
that Z(x) is a Gaussian random process (this means that the joint distribution of Z(x) at a
�nite number of locations is a multivariate Gaussian distribution, a precise de�nition will
be given in Section 2.1). In this case, when assuming Gaussian data, E[Z(x0)|Z(X)] has a
closed form expression and the predictor p(x0) is exactly the best linear unbiased predictor
pSK(x0) given by the simple kriging procedure. Also, both have the same predictive error
[Cressie '93]. Indeed... kriging and Gaussian processes are equivalent techniques.

And why the name �Gaussian Processes�? In his work �Theoria motus
corporum coelestium in sectionibus conicis solem ambientium�, German physicist and
mathematician Karl Friedrich Gauss (1777-1855) introduced several novel mathematical
objects, such as least squares, maximum likelihood and the famous normal (Gaussian)
distribution

1√
2πσ2

e−
(x−µ)2

2σ2 .

Gaussian processes take their name from Gauss simply because their construction is
entirely based on the Gaussian distribution.

Other famous researchers who contributed to the theory of Gaussian processes
were Soviet mathematician Andrey Nikolaevich Kolmogorov (1903-1987), and American
mathematician and philosopher Norbert Wiener (1894-1964). In his work on turbulence
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developed in the 40's, Kolmogorov also assumed the existence of the variogram, but
considered an equally spaced timeseries with known mean. He was interested in the limits
of mean-squared prediction errors for interpolation and extrapolation of data. During
World War II, Wiener obtained similar equations to Kolmogorov's in a spatial setting.
When he was studying the prediction of enemy aircraft movements from known radar
measurements. Their approach was not well adaptable for the sparse and irregular spatial
data found in the geological context [Chilès & Desassis '18], [Rasmussen & Williams '05].

More recently, the modern Gaussian process theory was developed in [O'Hagan '78],
where O'Hagan presents Gaussian process prediction in a general Bayesian regression
setting and uses this theory in a number of illustrative examples.

And why modern Gaussian process theory?
The need to obtain accurate predictions using known observations is a common topic

throughout science. When we have noisy data of the form

y = f(x) + ε,

and the function f(x) must be speci�ed, a regression procedure is usually performed.
Classical regression models, such as linear regression, are not �exible enough when dealing
with generic functions f(x) and may lead to over�tting if a large number of basis functions
are used in order to accommodate many possible latent functions.

A more �exible tool to tackle this kind of problem is precisely Gaussian processes (GP),
which can be seen as a kind of nonparametric regression. This regression technique can be
understood as carrying out Bayesian inference on the function space by placing a prior over
the functions and incorporating the information of observations through Bayes theorem
to obtain a posterior over all possible functions. The �exibility of the GP is achieved
through the covariance function k(x, x′), which is used to translate the variability of the
data throughout space and encodes other not so explicit features of the possible latent
functions, such as smoothness and length-scale.

This adaptability of GP explains its expanding use in the many areas of science.
Particularly in engineering, Gaussian processes are used for interpolation of data that
are responses of expensive computational experiments. In this situation, a few response
observations are obtained and a surrogate model such as a Gaussian process is employed to
interpolate and predict the outcome of the computational experiment at unknown design
points.

1.3 Gotta stack 'em all!

Many phenomena of interest, originating in physics, engineering, biology, meteorology,
�nance, and many other important �elds, can be explained by a large number of
mathematical models. These models can have di�erent levels of accuracy when compared
to the phenomenon, and so do the many di�erent computer simulations one can do
based on each one of them. As an example, take di�erential equations and versions
with linearizations and/or approximations, their �nite element simulation on a re�ned or
coarser grid. Unfortunately, in many cases, obtaining a large amount of responses of more
precise simulations of a complex model is computationally expensive, and only a small
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quantity of outputs can be acquired in a reasonable amount of time. This makes describing
the underlying modeled phenomenon di�cult. Methods for interpolation, regression and
prediction that work with the available simulation results of the computer codes may be
used to infer the desired quantities in input regions where there is no response data, but
this creates large errors in areas of no information and can lead to misleading conclusions,
especially when in high-dimensional input spaces.

Then... what can be done?
If cheaper computational models are available, we can use the data they provide

to aid us in estimating the desired quantities or to pro�le the phenomenon. In other
words, we can integrate the information of a large number of computationally cheap
data that captures a few important features, even if less precise, and a small number
of computationally expensive and accurate data to achieve better estimates than only
using the �good� data. This integration of various levels of accuracy is the idea behind
multi-�delity modeling. A great number of multi-�delity models are available, see
[Fernández-Godino et al. '16], and we will examine a particular class of models that uses
Gaussian processes as a tool for prediction.

Kennedy and O'Hagan propose an autoregressive multi-�delity model in
[Kennedy & O'Hagan '98] for combining the information of data obtained from
deterministic computational codes. In their work, the �delity levels are sorted by
increasing level of �delity (accuracy) and a Gaussian process prior is used for each one
of them. Even though it is a powerful model, di�culties arise when working with a large
number of data points, which is exactly what is desired as it means more information.
Since Gaussian process prediction requires the inversion of a matrix that has a number
of lines and columns equal to the number of data points, this process quickly becomes
expensive. In fact, in this original model the dimension of the matrix that needs to be
inverted is the sum of the number of observations of all levels of �delity. As we wish
to work with a large number of low-�delity data and several evaluations of the model
for selection of parameters and further elements, this can easily become an intractable
problem.

The more recent work of Le Gratiet [Le Gratiet & Garnier '14], [Le Gratiet '13],
[MuFiCokriging] explores a simple idea that reduces the computational cost by rewriting
the model of Kennedy and O'Hagan in a smart way that allows to break down the problem
of inverting the big matrix into several smaller inversion problems. Both models, in
fact, o�er the same predictive distributions, which shows the importance of the model
improvements made by Le Gratiet. Furthermore, this work provides formulas for a fast
cross-validation procedure that does not require several model �ttings when performing
model selection.



Chapter 2

Gaussian Process Regression

2.1 Basics

We begin with the de�nition of the main object that will permeate the next few chapters
and that is the fundamental tool in multi-�delity modeling via Gaussian Processes.

De�nition 2.1. A Gaussian process is a collection of random variables, any �nite number
of which have a joint Gaussian distribution.

A Gaussian process is completely speci�ed by its mean function and covariance
function, see [Rasmussen & Williams '05] and [Adler '09]. We de�ne the mean function
m(x) and the covariance function k(x, x′) of a real process Z(x) as

m(x) = E[Z(x)],

k(x, x′) = E[(Z(x)−m(x))(Z(x′)−m(x′))],
(2.1)

and denote the Gaussian process Z(x) as

Z(x) ∼ GP(m(x), k(x, x′)). (2.2)

In this case, the mentioned random variables represent values of the function Z(x) at
a location x, with the Gaussian process being de�ned, for example, over time or space.
In this dissertation, we will use Gaussian processes for x ∈ X ⊆ RD.

Usually, for simplicity, the mean function is taken to be zero, since it is usually
unknown and would require a parametrization and subsequent estimation of a larger
set of heyperparameters.

The covariance function may take many forms, as will be disscussed later, but for a
�rst example, consider the squared exponential covariance function, given by

kSE(x, x′) = exp

{
− ||x− x

′||2
2l2

}
,

where l is a length-scale parameter. This basic covariance function, the most widely used,
is based on the Gaussian function of Figure 2.1.

8
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Figure 2.1: The Gaussian function.

2.2 Prediction

For training the model, we have a training data set D with n observations of a latent
function z(x), D = {(xi, zi)}i=1,...,n, where xi ∈ RD denotes an input vector of dimension
D and zi ∈ R the associated scalar output called target. The n inputs are aggregated
in a n × D matrix X, and the outputs in a n-dimensional vector y. We want to make
inference about the output value for any given input. For this, �rst we will obtain the
necessary expressions for the zero-mean case, with which it is simple to generalize for an
arbitrary m(x).

2.2.1 Noise-free observations

For the noise-free case, our observations are of the form

z = z(x),

as in Figure 2.2. We model the latent function as a Gaussian process Z(x),

Z(x) ∼ GP(0, k(x, x′)), (2.3)

such that the output zi = z(xi) stands for a realization of the the random process at the
location xi.

Let our observations (training data) be {(xi, zi)}i=1,...,n with xi ∈ RD and yi ∈ R
for i = 1, . . . , n, and the test inputs, for which we wish to make inference, {x∗i}i=1,...,n∗

with x∗i ∈ RD for i = 1, . . . , n∗. We aggregate the training inputs and test inputs as
rows of matrices X and X∗, respectively, and aggregating in the same way, we have
Z(X) = (Z(x1), . . . , Z(xn))T ∈ Rn and Z(X∗) = (Z(x∗1), . . . , Z(x∗n))T ∈ Rn∗ . Let
K(X,X∗) be the n× n∗ covariance matrix of the process evaluated at all pairs of points
in the training and test sets,

K(X,X∗)ij = k(xi, x∗j),
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and consider the equivalent expressions for the matrices K(X∗, X), K(X,X) and
K(X∗, X∗). Then, the joint distribution of the training and test outputs, according to the
speci�ed Gaussian process prior (2.3) is[

Z(X)
Z(X∗)

]
∼ N

([
0
0

]
,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.4)

When observing Z(X) = y, we can condition the joint Gaussian distribution on the
observations using (A.2) to obtain

Z(X∗)|X, y ∼ N (z̄∗,Cov[z̄∗]),

with
z̄∗ = K(X∗, X)K(X,X)−1y, (2.5)

and
Cov[z∗] = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗). (2.6)

Notice that, since K(X,X) represents a covariance matrix, it is positive semi-de�nite
and, therefore, K(x∗, X)K(X,X)−1K(X, x∗) ≥ 0 for every x∗, which implies that, when
we condition on observed values, the predictive variance at any possible input x∗ decreases
when compared to the prior covariance K(x∗, x∗) = k(x∗, x∗). Also, on points used for
training, Cov[z∗] = 0, since we assumed that the exact value of the function is obtained in
the observations. Compare the prior and posterior distribution for the data of Figure 2.2
displayed in Figures 2.3 and 2.4. The decrease in variance on any input can be observed in
Figure (2.4a), where the hyperparameters are not optimized and have the same value as in
the prior model. In Figure (2.4b), the parameters are optimized via maximum likelihood,
this will be clari�ed in Section 2.7.1.

2.2.2 Noisy observations

In more realistic situations, we do not have access to the values of the desired function,
but to noisy versions of them,

y = z(x) + ε,

where ε denotes an additive independent and identically distributed Gaussian random
variable with mean 0 and variance σ2

n, see Figure 2.5.
In this case, we have

Cov{yi, yj} = k(xi, xj) + σ2
nδij =⇒ Cov[y] = K(X,X) + σ2

nI,

where δij denotes the Kronecker delta. The joint distribution of y and Z(X∗) then becomes[
y

Z(X∗)

]
∼ N

([
0
0

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (2.7)

with the noise only a�ecting the diagonal of the covariance submatrix relative to the
observations X only, since, for X∗, we wish to make inference on the latent function itself
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Figure 2.2: The latent function and noiseless observations.
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Figure 2.3: Prior samples of a GP modeled by a squared exponential kernel kSE(x, x′) =

σ2 exp{− ||x−x′||2
2l2

} with hyperparameters σ2 = 1 and l = 1. 95% con�dence intervals are shown.
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(a) Fixed hyperparameters σ2 = 1 and l = 1.

0 1 2 3 4 5 6 7 8

input x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

real function

GP mean

data point

(b) Optimized hyperparameters σ2 = 0.897 and l = 0.626.

Figure 2.4: Posterior samples of a GP with squared exponential kernel kSE(x, x′) =

σ2 exp{− ||x−x′||2
2l2

}. 95% con�dence intervals are shown.
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and not on it's noisy version. This, as in the noiseless case, gives rise to the predictive
distribution (

Z(X∗)|X, y
)
∼ N (z̄∗,Cov[z∗]),

with
z̄∗ = K(X∗, X)[K(X,X) + σ2

nI]−1y,

and
Cov[z∗] = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗).

As in the previous case, we know that [K(X,X) + σ2
nI] is positive de�nite, thus, we

also have a decrease in the variance when conditioning the Gaussian process on a set of
observations. It is interesting to remark that the predictive covariance Cov[z∗] does not
depend on the observed values, but only on the variances associated to training and test
locations.
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Figure 2.5: The latent function and noisy observations obtained using σ2n = 0.49.

2.2.3 Non-zero mean

For an arbitrary mean function m(x), we can obtain the predictive mean and variance
of Z(x) ∼ GP(m(x), k(x, x′)) simply by noting that Z(x) − m(x) ∼ GP(0, k(x, x′)).
Therefore, if Ky denotes the covariance matrix at the location of the observations, being
equal to K(X,X) or K(X,X) + σ2

nI for the noiseless and noisy case, respectively, then
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Figure 2.6: Posterior GP of the noisy observations modeled by the kernel σ2kSE(x, x′)+σ2nδ(x, x
′)

with optimized hyperparameters σ2 = 0.805, l = 0.416 and σ2n = 0.272.

Z(X∗)|X, y ∼ N (z̄∗,Cov[z∗]),

with
z̄∗ = m(X∗) +K(X∗, X)K−1y (y −m(X)), (2.8)

while the predictive covariance remains equal

Cov[z∗] = K(X∗, X∗)−K(X∗, X)K−1y K(X,X∗). (2.9)

Here, we use m(X) = (m(x1), . . . ,m(xn))T and m(X∗) = (m(x∗1), . . . ,m(x∗n))T

While incorporating a mean function may be useful for interpretability of the model
and integration of prior knowledge, setting it to zero does not restrict the model too
much, since the posterior is not con�ned to be zero too. Specifying the mean may be a
di�cult task, however. A more practical approach is to perform regression, expressing
the mean of the Gaussian process as a combination of �xed basis functions. For this, we
let h(x) = (h1(x), . . . , hp(x))T be p �xed basis functions, for example, polynomials up to
order p−1, (1, x, x2, . . . , xp−1)T , and β ∈ Rp a parameter vector, which must inferred from
the data. The new model consists of assuming that the observations y are realizations of
a process W (x), and

W (x) = Z(x) + hT (x)β,

with Z(x) ∼ GP(0, k(x, x′)) in a noiseless or noisy case.
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It is common to put an independent Gaussian prior on the parameters β, such that
β ∼ N (b, B). In this case, the prior distribution at any input point x is given by

W (x) ∼ GP
(
hT (x)β, k(x, x′) + hT (x)Bh(x′)

)
.

Hence, using equations (2.8) and (2.9), the predictive distribution W (X∗)|X,W (X) =
y at the test inputs X∗ is given by N (w̄∗,Cov[w̄∗]) with

w̄∗ = HT
∗ b+ (KT

∗ +HT
∗ BH)(Ky +HTBH)−1(y −HT b),

and

Cov[w∗] = K(X∗, X∗) +HT
∗ BH∗ − (KT

∗ +HT
∗ BH)T (Ky +HTBH)−1(K∗ +HTBH∗),

where H and H∗ are the matrices that collect the vectors h(x) in their rows at the
training and test locations, respectively. That is, the i row of H is equal to the vector
h(xi) =

(
h1(xi), . . . hp(xi)

)
, and similarly for H∗. Moreover, for simplicity we will denote

K∗ = K(X,X∗) = K(X∗, X)T . After rearranging the terms [see section (A.5)], the
predictive mean and covariance can be rewritten as

w̄∗ = HT
∗ β̄ +KT

∗ K
−1
y (y −HT β̄) = z̄∗ +RT β̄, (2.10)

Cov[w∗] = Cov[z∗] +RT (B−1 +HK−1y HT )−1R, (2.11)

with β̄ = (B−1 + HK−1y HT )−1(HK−1y y + B−1b) and R = H∗ −HK−1y K∗. We can, now,

interpret the predictive mean as the mean linear output HT
∗ β̄ plus the prediction of the

Gaussian process for the residuals KT
∗ K

−1
y (y−HT β̄) and the covariance as the sum of the

usual covariance and a term RT (B−1 +HK−1y HT )−1R with non-negative diagonal entries
(uncertainty is added in the predictions when we include uncertainty on β).

2.2.4 Marginal likelihood

The marginal likelihood p(y|X) is obtained when we integrate the latent function at the
training locations Z(X) from the likelihood p(y|X,Z(X)) = p(y|Z(X)), obtaining just
the probability of the outputs given the inputs. This will be important when performing
model selection in Section 2.7. Observe that

p(y|X) =

∫
p(y|X,Z(X))p(Z(X)|X)dZ(X).

For the noisy zero mean case, we know that y|Z(X) ∼ N (Z(X), σ2
nI) and Z(X)|X ∼

N (0, K), with K = K(X,X). Since we have a product of two Gaussian functions, using
equation (A.3), we easily obtain

y|X ∼ N (0, K + σ2
nI). (2.12)

For the non-zero mean case, we have that y|X, b,B ∼ N (HT b,Ky + HTBH). We
may integrate out b and B if a prior is available or use b = 0 and the limit B−1 → O (a
matrix of zeros) if the prior is vague, see [Rasmussen & Williams '05].
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2.3 General properties of Gaussian Processes

De�nition 2.2. A stochastic process Z(x) is said to be strictly stationary if its �nite
dimensional distributions are invariant under translations in the location x. That means
that, for any set of points τ, x1, . . . , xn ∈ RD, the joint distribution of Z(x1), . . . , Z(xn)
should be the same as the joint distribution of Z(x1 + τ), . . . , Z(xn + τ). For this type of
process, it is evident that the mean function must be constant.

A less restrictive condition than strict stationarity, when dealing with random
processes, is to impose the mean E[Z(x)] to be a constant m and that the covariance
function E[(Z(x)−m)(Z(x′)−m)] to be a function of r = x − x′ only. These processes
are known as second order, wide-sense (WSS), or weakly stationary. Evidently, strict
stationarity implies weak stationarity, though the reverse need not be true. For a Gaussian
process, however, the wide-sense stationarity conditions for the mean and covariance are
necessary and su�cient for it to be strictly stationary. This follows from the fact that a
Gaussian distribution is fully characterized by its �rst and second moments. If, moreover,
the covariance function is a function of x−x′ only through the Euclidean distance ||x−x′||,
the process is said to be isotropic. The concept of isotropy arises when there is no special
meaning attached to the axes being used.

For weakly stationary processes, there is a representation of the covariance funtion in
the Fourier transform space:

Theorem 2.3 (Bochner's Theorem, Theorem 1 of [Stein '99]). A complex valued function
k(r) on RD is the autocovariance function for a weakly stationary mean square continuous
complex-valued random process on RD if and only if it can be represented as

k(r) =

∫
RD

e2πis·rdµ(s),

where µ is a positive �nite measure.

If µ has a density S(s), then

k(r) =

∫
RD

e2πis·rS(s)ds,

and S(s) is known as the spectral density (or power spectrum) of k(r). The criterion to
guarantee that the spectral density exists is to verify if k(r) is an absolutely integrable
function in RD. If, additionally, the covariance is isotropic and the spectral density exists,
then S(s) is a function of ||s|| only. Refer to [Gihman & Skorohod '74] for the proof of
Bochner's Theorem and further details.

If both k(r) and S(s) satisfy the conditions for the Fourier inversion to be valid, then
by the Wiener-Khinchin theorem k(r) and S(s) are duals of each other and

S(s) =

∫
k(r)e−2πis·rdr.

It is immediate that the power spectrum must be integrable, since
∫
S(s)ds = k(0).
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2.4 Continuity and di�erentiability

In many situations, when modeling a physical phenomenon, we may want the underlying
stochastic process to be continuous, di�erentiable, or even smooth in time or space, for
example. This required continuity or di�erentiability in a given sense translates the
necessary physical realism. In some cases, we can relate the autocovariance function
to these properties of the stochastic process.

Continuity and di�erentiability of a function f(x), for x ∈ RD, at a point x∗ can be
stated in terms of the convergence of sequences of the form {f(xn)}, when ||xn−x∗|| → 0
as n → ∞. For stochastic processes, there are many forms of convergence. We will
consider mean square (m.s.) and almost sure (a.s.) convergence and state properties that
imply continuity and di�erentiability of a Gaussian process.

Theorem 2.4 (Theorem 2.2.1 of [Adler '09]). A random processes Z(x) is continuous in
mean square at the point x∗ ∈ RD if and only if its covariance function

k(x, x′) = E[(Z(x)− E[Z(x)])(Z(x′)− E[Z(x′)])]

is continuous at the point x = x′ = x∗. Also, if k(x, x′) is continuous at every diagonal
point x = x′, then the process is everywhere continuous in mean square.

For a stationary process, this reduces to checking if k(r) is continuous at r = 0. We
stress that continuity in mean square does not imply sample path continuity, which is
de�ned in the following.

De�nition 2.5. Let z(x) be an Rm-valued function that is a realization of the random
process Z(x) for x ∈ Rn. Then, the set in Rn+m determined by the points {(x, z(x)), x ∈
Rn} is called a sample function, or sample path of the process Z(x).

Theorem 2.6 (Theorem 2.2.2 of [Adler '09]). If the derivative ∂2k(x, x′)/∂xi∂x
′
i exists

and is �nite at the point (x∗, x∗) ∈ R2D, then, if ei denotes the i-th canonical basis vector,
the limit

∂Z(x∗)

∂xi
= lim

h→0

Z(x∗ + hei)− Z(x∗)

h

exists, and ∂Z(x∗)/∂xi is called the mean square derivative of Z(x) at the point x∗. If this
exists for every x ∈ RD, then Z(x) is said to posses a m.s. derivative. The covariance
function of Zi(x) is then given by

∂2k(x, x′)

∂xi∂x′i
.

Similarly, the second order derivatives of Z(x), ∂2Z(x)/∂xi∂xj, for 1 ≤ i, j ≤ D, are
de�ned as

∂2Z(x)

∂xi∂xj
= lim

h,l→0

Z(x+ hei + lej)− Z(x+ hei)− Z(x+ lej) + Z(x)

hl
,



CHAPTER 2. GAUSSIAN PROCESS REGRESSION 18

and are Gaussian Processes whose covariance function is the fourth order derivative of
k(x, x′)

∂4k(x, x′)

∂xi∂xj∂x′i∂x
′
j

.

For a stationary process with covariance function k(x, x′), we can write k(x, x′) = k(r),
where r = x − x′, and the m.s. continuity and di�erentiability properties of the process
are determined by the smoothness of k(r) at the point r = 0. In this case, if the 2m-th
order partial derivative of k(r), ∂2mk(r)/∂2ri1 . . . ∂

2rim , exists and is �nite at r = 0, then
the m-th order partial derivative of Z(x), ∂mZ(x)/∂xi1 . . . ∂xim , exists for every x as a
mean square limit.

A stronger de�nition of continuity is given by means of almost sure convergence.

De�nition 2.7. A stochastic process Z(x) is said to be almost surely continuous at x∗

if for every sequence {xn}n=1,... for which ||xn − x∗|| → 0 as n → ∞, and is denoted by

Z(xn)
a.s.−→ Z(x∗). We say that Z(x) is almost surely continuous throughout a set A ⊆ RD

if it is almost surely continuous at each point x ∈ A. This type of continuity is referred
as sample path continuity.

In particular, for Gaussian Processes, a.s. continuity is, again, a consequence of a
certain condition on the covariance function, as we see in the following.

Theorem 2.8 (Theorem 3.4.1 of [Adler '09]). Let Z(x), with x ∈ RD, be a real-valued,
zero-mean, Gaussian process with a continuous covariance function. Then, if for some
0 < C <∞ and some ε ≥ 0,

E[(Z(x)− Z(x′))2] ≤ C

| log(||x− x′||)|1+ε ,

for all x, x′ in the unit cube I0, Z has, with probability one, continuous sample functions
over I0.

If the Gaussian process Z(x) is stationary, this translates as requiring that

k(0)− k(r) ≤ C

| log(||r||)|1+ε ,

for some 0 < C <∞ and some ε ≥ 0.

2.5 Length-scale

For a 1-dimensional Gaussian process, the length-scale of the process can be understood
in terms of the number of upcrossings at a certain level u as in [Adler '09].

De�nition 2.9. Let f(x), with x ∈ R, be a continuous function on an interval I = [a, b]
such that f(x) is not identically equal to u in any subinterval, and neither f(a) nor f(b)



CHAPTER 2. GAUSSIAN PROCESS REGRESSION 19

is equal to u. Then f is said to have an upcrossing of level u at the point x0 if there exists
an ε > 0 such that f(x) ≤ u in (x0 − ε, x0) and f(x) ≥ u in (x0, x0 + ε).

The number of such points x0 in I is called the number of upcrossings of u by f in I,
and it is denoted by Nu.

Theorem 2.10 (Theorem 4.1.1 of [Adler '09]). If Nu is the number of upcrossings of the
level u by a zero-mean stationary almost surely continuous Gaussian process on [0, 1], then

E[Nu] =
1

2π

√
−k

′′(0)

k(0)
exp

{
− u2

2k(0)

}
. (2.13)

This theorem is valid regardless of the �niteness of k′′(0). Thus, only if the Gaussian
process is mean square di�erentiable, there is a �nite number of upcrossings in a given
�nite interval (refer to Theorem 2.6). For the squared exponential kernel in dimension
1, kSE(d) = exp{−d2/(2l2)}, with d = ||x − x′||, the expected number of upcrossing of
the corresponding 1-dimensional Gaussian process in the interval [0, 1] is (2πl)−1, which
con�rms l as a length-scale parameter, see Figure 2.7 for an illustrative example of the
behavior of sample paths when di�erent length-scales are �xed.
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Figure 2.7: Sample functions of GP with squared exponential kernel kSE(d) = exp{−d2/(2l2)},
with d = ||x− x′||, and di�erent length-scales l.
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2.6 Examples of covariance functions

In the study of integral operators, any integral transform of a function f can be written
as

(Tf)(x) =

∫
χ

f(x)k(x, x′)dµ(x′),

where µ denotes a measure and k(x, x′) is the kernel or nucleus of the transform, a
function mapping a pair of inputs x ∈ χ and x′ ∈ χ into R. An arbitrary function will
not necessarily be a covariance function, since the Gram matrix K for a set {xi}i=1,...,n

with entries Kij = k(xi, xj) must be a valid covariance matrix for any number of arbitrary
input points. A valid covariance matrix K is symmetric and positive semide�nite, this
translates to a kernel that is symmetric, k(x, x′) = k(x′, x), and positive semide�nite, that
is ∫

χ×χ
f(x)k(x, x′)f(x′)dµ(x)dµ(x′) ≥ 0,

for all functions f ∈ L2(χ, µ), which means that f : χ → R is such that ||f ||L2(χ,µ) =( ∫
χ
|f(x)|2dµ(x)

)1/2
<∞.

We present a selection of the most relevant covariance functions used for inputs in
RD. For a broader discussion refer to [Rasmussen & Williams '05], [MacKay '98], and
[Duvenaud '14].

1. The squared exponential covariance function is the most widely used covariance
kernel in machine learning. It is given by the Gaussian function

kSE(x, x′) = exp

{
− ||x− x

′||2
2l2

}
,

and gives rise to an in�nitely m.s. di�erentiable Gaussian process, given that it
is a stationary kernel with smooth covariance function at the origin. Furthermore,
the squared exponential is a function of d = ||x − x′||, and has an analytic Fourier
transform, which is also a Gaussian function,

F(kSE)(s) = S(s) = (2πl2)D/2 exp{−2π2l2s2}.

2. A class of more realistic isotropic covariance functions, that unlike the squared
exponential do not confer in�nite derivatives to the GP, are the Matérn covariance
functions named after the Swedish forestry statistician Bertil Matérn (1917-2007).
They are given by

kν(d) =
21−ν

Γ(ν)

(√
2νd

l

)ν
Kν

(√
2νd

l

)
,

with ν, l > 0 and Kν is the modi�ed Bessel function of the second kind of order
ν. The parameter ν is a smoothness parameter which relates to kν(d) being
dνe − 1 times di�erentiable, while l has a role of length-scale parameter. As seen
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in [Rasmussen & Williams '05], for ν = p + 1/2, and p a non-negative integer, the
expression of the covariance simpli�es to

kν=p+1/2(d) = exp

{
−
√

2νd

l

}
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νd

l

)p−i
.

For p = 1 and p = 2, we obtain the most interesting cases, which are di�erentiable
but yet distinguishable from a smooth process. Their covariance functions are

kν=3/2(d) = exp

{
−
√

3d

l

}(
1 +

√
3d

l

)
,

and

kν=5/2(d) = exp

{
−
√

5d

l

}(
1 +

√
5d

l
+

5d2

3l2

)
.

All covariance functions of the Matérn have analytic expressions for their respective
spectral densities and for ν → ∞ they converge to the squared exponential kernel.
See [Stein '99] and [Rasmussen & Williams '05] for further details.

In Figure (2.8), we have the functions for di�erent value of the parameter ν, and
Figures (2.9) and (2.10) exemplify the behavior of sample paths corresponding to
such kernels.
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Figure 2.8: Matérn kernels for di�erent values of ν and l = 1
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Figure 2.9: Prior Matérn samples for di�erent values of ν and l = 1.
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Figure 2.10: Posterior samples for di�erent values of ν and optimized hyperparameter l.
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3. When the parameter ν of the Matérn class is equal to 1/2, we have a rough
process which is known as the Ornstein-Uhlenbeck (OU) process with the exponential
covariance function

kOU(d) = exp

{
− d

l

}
.

4. A similar covariance kernel to the Ornstein-Uhlenbeck is given by the γ-exponential
class with covariance function

kγ−exp(d) = exp

{
−
(
d

l

)γ}
,

for 0 < γ ≤ 2, which is an alternative but less �exible class than the Matérn as
mentioned in [Stein '99], since it is not m.s. di�erentiable except for γ = 2. In
Figure (2.11), we see the kernel for di�erent values of the parameter γ.
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0.8

1.0
γ = 1/2

γ = 1

γ = 2

Figure 2.11: γ-exponential kernels for di�erent values of γ and l = 1.

5. The rational quadratic covariance function, with parameters α, l > 0, is given by

kRQ(d) =

(
1 +

d2

2αl2

)−α
.

A Gaussian process with this covariance kernel is m.s. di�erentiable for any value
of α, see [Rasmussen & Williams '05].

In Figure (2.12), we observe the kernel for di�erent values of the parameter α, and
Figures (2.13) and (2.14) exemplify the behavior of sample paths.
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Figure 2.12: Rational quadratic kernels for di�erent values of α and l = 1
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Figure 2.13: Prior samples with rational quadratic kernel for di�erent values of α and l = 1.
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Figure 2.14: Posterior samples with rational quadratic kernel di�erent values of α and
hyperparameter l optimized.

6. For non-stationary processes, a simple covariance function is given by using a general
covariance matrix Σ to create a dot product kernel:

k(x, x′) = σ2
0 + xTΣx′.

The special case Σ = I, yields k(x, x′) = σ2
0 + xTx′, while Σ = 0, yields the constant

covariance function k(x, x′) = σ2
0. Another possible choice is the polynomial one,

k(x, x′) = (σ2
0 + xTΣx′)p, for a positive integer p.

7. Periodization may be obtained by mapping the inputs by a periodic function, as
u(x) = (sin(x), cos(x)) for 1-dimensional inputs, and using this in a known kernel.
For the squared exponential, this gives us

k(x, x′) = exp

{
− 2 sin2(x−x

′

2
)

l2

}
.

This kind of approach is known as warping or embedding as in [MacKay '98].

8. We may expect to have di�erent length-scale behavior throughout the input space.
Simply replacing the length-scale parameter l with a function l(x) in the covariance
expression will not necessarily produce a positive semide�nite kernel. [Gibbs '97]
constructs a covariance kernel based on the squared exponential for which the
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characteristic length-scale is a function of the input points. This function is given
by

k(x, x′) =
D∏
d=1

(
2ld(x)ld(x

′)

l2d(x) + l2d(x
′)

)1/2

exp

{
−

D∑
d=1

(xd − x′d)2
l2d(x) + l2d(x

′)

}
,

where each ld(x) is a positive function.

Finally, it is worth mentioning that there are straightforward ways to construct new
covariance functions from previously known ones. For this, if k1(x, x

′) and k2(x, x
′)

are valid covariance functions, so is their sum k1(x, x
′) + k2(x, x

′) and their product
k1(x, x

′)k2(x, x
′). If k(x, x′) is a covariance function, a deterministic function a(x)

produces the covariance kernel a(x)k(x, x′)a(x′). An extension of this is called the blurring
e�ect when performing a convolution with a �xed kernel h(w,w′), with which it is possible
to construct the covariance function

∫
h(x, z)k(z, z′)h(z′, x′)dzdz′.

2.7 Model selection

The families of covariance functions presented previously have free hyperparameters such
as length-scale which must be chosen in some way. While some hyperparameters may be
easily interpretable, this is not always the case. Nevertheless, e�ciently selecting the best
values is extremely important in order to make accurate predictions. Furthermore, while
the context may give us some information about properties like stationarity, isotropicity
or periodicity, for example, our knowledge about the exact form of the covariance function
is vague. Therefore, we must compare di�erent covariance functions, and values for their
respective hyperparameter in order to determine these elements of the modeling. This may
be made level-wise, �rst selecting the general model (GP vs. other types of regression),
then the covariance kernel, and then the hyper-parameters, for example.

In the following, we will brie�y explore two ways of performing model selection:
Bayesian and cross-validation.

2.7.1 Bayesian model selection

In a general framework, we can construct a hierarchical approach with a �nite number
of models Mi. For each model Mi (upper level), there are parameters w (lower level)
which depend on hyper-parameters θ (medium level), but there may be as many levels as
needed. We intend to select the model, hyperparameters and parameters which maximize
the posterior probability of each one of these elements.

First, we specify priors p(Mi), p(θ|Mi) and p(w|θ,Mi). Broad or non-informative
priors can be chosen if the prior knowledge about each set of elements is vague. Then,
one level at a time, we infer its free elements. To begin, we use Bayes rule to infer the
parameters of the bottom level

p(w|y,X, θ,Mi) =
p(y|X,w,Mi)p(w|θ,Mi)

p(y|X, θ,Mi)
,
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where p(y|X,w,Mi) is the likelihood with implicit dependence on θ through w, and

p(y|X, θ,Mi) =

∫
p(y|X,w,Mi)p(w|θ,Mi)dw

is the marginal likelihood (also called evidence). For the next level, the hyperparamenter
level, we again use Bayes rule and obtain the marginal likelihood

p(θ|y,X,Mi) =
p(y|X, θ,Mi)p(θ|Mi)

p(y|X,Mi)
,

with

p(y|X,Mi) =

∫
p(y|X, θ,Mi)p(θ|Mi)dθ.

Finally, at the top level we have

p(Mi|y,X) =
p(y|X,Mi)p(Mi)

p(y|X)
,

with normalizing constant

p(y|X) =
∑
i

p(y|X,Mi)p(Mi).

This approach demands many integral evaluations. If these integrals are not
analytically tractable, we must resort to analytical approximations such as Markov Chain
Monte Carlo (MCMC), and if a step is particularly di�cult, it may be substituted with
the maximization of the likelihood instead of using the full knowledge (of the prior and
marginal). When the expressions or approximation of the posteriors are available, the
selection is straightforward.

For Gaussian process regression, the role of hyper-parameters and models is quite
unambiguous, with the various covariance functions determining the model and the free
variables in each covariance function being the hyperparameters. For other models,
such as neural networks, the parameters are also identi�able and interpretable (see
[Rasmussen & Williams '05] and [MacKay '03]), but since Gaussian Processes are non-
parametric models this may not be so simple in this case. The parameters in the Gaussian
process modeling are the noise-free values of the latent function z(x) at the training
locations, thus we have as many parameters as training points. The positive side is that
the bottom level Bayesian inference concerning the parameters has already been performed
in Section 2.2.

By Equation (2.12), thus, we have a log marginal likelihood given by

log p(y|X, θ) =
1

2
yTK−1y y − 1

2
log det(Ky)−

n

2
log(2π),

with dependence on the hyperparameters θ through Ky, see Figure 2.15 for an illustrative
example of a negative log marginal likelihood.
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Figure 2.15: Negative log marginal likelihood for the data and model of Figure 2.6 with
hyperparameter σ2 = 0.8972.

Maximizing on the hyperparameters passes through obtaining the derivatives

∂

∂θi
log p(y|X, θ) =

1

2
yTK−1y

∂Ky

∂θi
K−1y y − 1

2
tr
(
K−1y

∂Ky

∂θi

)
.

For this, observe that

yTK−1y
∂Ky

∂θi
K−1y y = tr(yTK−1y

∂Ky

∂θi
K−1y y) = tr(K−1y y(K−1y y)T

∂Ky

∂θi
)

=⇒ ∂

∂θi
log p(y|X, θ) =

1

2
tr
(

(K−1y y(K−1y y)T −K−1y )
∂Ky

∂θi

)
.

This procedure has a cost of O(n3) for the inversion of Ky and O(n2) for computing
the derivative of Ky with respect to each hyper-parameter θi, therefore a gradient based
optimizer may be used for maximizing the log marginal likelihood.

The use of the marginal likelihood (also refered as evidence), for example p(y|X,Mi)

in p(Mi|y,X) = p(y|X,Mi)p(Mi)
p(y|X)

, automatically incorporates a trade-o� between model

complexity and model �t. This happens because frequently �at priors p(Mi) are used for
the models, such that we have approximately

p(Mi|y,X) ∝ p(y|X,Mi).
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In Figure 2.16, we have a schematic plot of the marginal likelihood p(y|X,Mi) in the
vertical axis when the number of data points n and input data X are �xed for a particular
model Mi. The horizontal axis is a representation of all possible output sets y, with a
particular set indicated by the vertical dotted line. Since the curves describe probability
distributions, they must integrate 1 over all possible datasets.

A model which is too simple will describe well few possible data sets, for which the
marginal likelihood will attain a large value, but it is unlikely that this model will generate
a particular dataset {X, y}. A complex model has a broader range of possible targets,
which translates to a �atter marginal likelihood, thus, it describes well a large collection
of possible outputs, but since it must integrate 1, the value of the marginal likelihood
at any particular data set is small. Therefore, there is a preference for a model with an
intermediate level of complexity. This e�ect is known as Occam's Razor, a principle of
�parsimony of explanations�, which chooses the simplest model that still explains well the
data. For more details, see [Rasmussen & Ghahramani '01].

y

all data sets

p(
y
|X
,M

i)

too simple

intermediate

too complex

Figure 2.16: Schematic view of the marginal likelihood p(y|X,Mi) over all possible datasets,
with �xed inputs X, for three levels of model complexity. A speci�c data set {X, y} is indicated
by the vertical dotted line.

2.7.2 Cross-validation

Gaussian processes are a very powerful and �exible tool, but, because of that, attention
is needed when training the model. When using all the data for training, we may come
across problems like over�tting, when the training error is very small, yet the model fails
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to generalize for new points.
With the cross-validation (CV) procedure, we can lower the generalization error and

prevent over�tting. It consists in splitting the data set in two: the training set which
will be used for training the model and the validation set which is used to monitor the
performance of the model. Using this hold-out method, if the validation set is small,
one obtains estimates with large variance and one loses the information given by the
points in the validation set. To avoid these problems, generally the k-fold setting is used:
the original training set is split into k equally sized disjoint sets and a cross-validation
procedure is performed k times, each of them using one of the sets as the validation set
and the union of the remaining k − 1 as the training set. The value of k is usually set
between 3 and 10. When k = n, this is called leave-one-out cross-validation (LOO-CV)
and consists of training n models. In general, this is an extremely expensive procedure,
however some models including GP have computational shortcuts, which we will brie�y
discuss.

A possible objective function used for measuring the �t, which will be maximized w.r.t.
the hyper-parameters, is the log predictive probability when leaving out of the training
a validation set. In short, maximizing the log predictive probability means that we wish
to select parameters that favor the dataset we have, giving higher probability on closer
values of the outputs than to other ones.

Let ξ be the set of indices of the points in the validation set. When training with the
points in the set X−ξ, which consists of all data points except for the ones with indices
in ξ, the equations for the predictive mean and variance of a zero-mean GP (we drop the
subscript y of Ky in a possible noisy case for simplicity of notation) give us

yξ|X, y−ξ, θ ∼ N
(
K(Xξ, X−ξ)(K(X−ξ, X−ξ)

−1y−ξ
)
,

K(Xξ, Xξ)−K(Xξ, X−ξ)(K(X−ξ, X−ξ))
−1K(X−ξ, Xξ)).

The notation in this section and in the next chapter will be as follows. We will use
vζ for a vector containing the entries of v with indices in the set ζ, v−ζ for the vector of
entries of v with indices not in ζ, [A][ζ,γ] for the submatrix of A containing the rows with
indices in the set ζ and columns with indices in the set γ, and similarly as in the vector
case for the submatrices [A][−ζ,γ], [A][ζ,−γ] and [A][−ζ,−γ]. The sets ζ and γ may consist of
only one index i, in this case we will simply use i instead of a set.

Back to our Gaussian process prediction, observe that the costly part is the inversion
of the matrix K(X−ξ, X−ξ), which will be of size (n−#ξ)× (n−#ξ), with #ξ = n/k in
the k-fold setting. If we rearrange the points so that the ones with indices in ξ come last,
we can rewrite the matrix K as

K = K(X,X) =

[
[K][−ξ,−ξ] [K][−ξ,ξ]
[K][ξ,−ξ] [K][ξ,ξ]

]
.

Therefore, using Equations (2.5) and (2.6), we have that

yξ|X, y−ξ, θ ∼ N
(
[K][ξ,−ξ][K]−1[−ξ,−ξ]y−ξ, [K]ξ,ξ − [K][ξ,−ξ][K]−1[−ξ,−ξ][K][−ξ,ξ]

)
.
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By the block matrix inversion identity (A.7), we have that

K−1 =

[
A B
BT Q−1

]
,

with
A = [K]−1[−ξ,−ξ] + [K]−1[−ξ.−ξ][K][−ξ,ξ]Q−1[K][ξ,−ξ][K]−1[−ξ,−ξ],

BT = −Q−1[K][ξ,−ξ][K]−1[−ξ,−ξ],

and

Q =
[
[K−1][ξ,ξ]

]−1
= [K][ξ,ξ] − [K][ξ,−ξ][K]−1[−ξ,−ξ][K]−ξ,ξ.

And this implies that[
[K−1][ξ,ξ]

]−1
[K−1y][ξ] =

[
[K−1][ξ,ξ]

]−1(
BTy−ξ +Q−1yξ

)
= −[K][ξ,−ξ][K]−1[−ξ,−ξ]y−ξ + yξ.

Observe that now we are able to rewrite the expression of p(yξ|X, y−ξ, θ) without
needing to obtain the inverse of [K][−ξ,−ξ] for each set ξ. This predictive probability is
given by

yξ|X, y−ξ, θ ∼ N
(
yξ −Q[K−1y]ξ,Q

)
.

For the particular case of the LOO-CV, the set of indices ξ consists only of a index i.
Then, Q = 1/[K−1]ii, and the predictive probability is given by

yi|X, y−i, θ ∼ N
(
µi, σ

2
i

)
.

with
µi = yi − [K−1y]i/[K

−1]ii,

and
σ2
i = 1/[K−1]ii.

Note that the computational cost is O(n3) for inverting K and O(n2) for the LOO-CV
when K−1 is known.

Thus, the log predictive probability of the LOO-CV scheme, which will be the objective
function for optimization, is given by

LLOO(X, y, θ) =
n∑
i=1

log p(yi|X, y−i, θ) =
n∑
i=1

−1

2
log(σ2

i )−
(yi − µi)2

2σ2
i

− 1

2
log(2π).

The derivatives for the means and variances w.r.t. the hyperparameters are

∂µi
∂θj

= −

[
K−1 ∂K

∂θj
K−1y

]
i
[K−1]ii − [K−1y]i

[
K−1 ∂K

∂θj
K−1

]
ii

[K−1]2ii
,

and

∂σ2
i

∂θj
= −

[
K−1 ∂K

∂θj
K−1

]
ii

[K−1]2ii
.
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Now, by the chain rule, the derivative of the log predictive probability is

∂LLOO
∂θj

=
n∑
i=1

∂ log p(yi|X, y−i, θ)
∂µi

∂µi
∂θj

+
∂ log p(yi|X, y−i, θ)

∂σ2
i

∂σ2
i

∂θj
=

n∑
i=1

[K−1y]i

([
K−1 ∂K

∂θj
K−1y

]
i

[K−1]ii
−

[K−1y]i

[
K−1 ∂K

∂θj
K−1

]
ii

2[K−1]2ii

)
−

[
K−1 ∂K

∂θj
K−1

]
ii

2[K−1]ii
.

The computational cost is O(n3) for inverting K and O(n3) for the computation
of the derivative for each hyper-parameter, since the matrix multiplication K−1 ∂K

∂θj
is

unavoidable. Therefore, this method is more costly than the previously discussed Bayesian
model selection which was based on the marginal likelihood.

A discussion about the CV procedure for a non-zero mean Gaussian process is present
in [Le Gratiet '13].



Chapter 3

Multi-Fidelity Modeling

3.1 A gist of multi-�delity

Many accurate computer simulations are too costly to be run a considerable amount of
times for them to describe appropriately the underlying modeled phenomenon, with only
a few data points that can be obtained in a reasonable amount of time. Another problem
that can be encountered when modeling a phenomenon is the need to specify a large
number of parameters, which can be di�cult to identify or measure directly.

However, in some situations, there are multiple computational models available which
describe the phenomenon of interest. These computational models can have varying
�delity and computational cost. High-�delity models represent the behavior of the system
accurately for the intended application, yet often are expensive and multiple realizations
cannot be a�orded. Low-�delity models estimate the same phenomenon with a lower
accuracy than the high-�delity model, but are less expensive and many realizations
are obtainable. The low-�delity models are usually obtained through, for example,
dimensionality reduction, linearization, simpler physics models, coarser domains, etc.

A method to integrate the information of the simpler and inexpensive simulations,
which capture basic features of the phenomenon, and data of the expensive and more
reliable simulations would be a practical approach for understanding the phenomenon
given the cost restrictions. This is precisely what multi-�delity models intend to
accomplish by combining the information of both low and high-�delity models.

The �delity level of a model concerns how well the model approximates a physical
phenomenon/system. It is commonly associated with:

(1) How close the mathematical model is to reality: many di�erential equations can
model the same systems (for example, inclusion or not of turbulent e�ects when
describing a �ow, linearization of equations, simpli�cation of boundary conditions,
etc.).

(2) Changing the discretization model by using �ner or coarser discretizations.

(3) Using experimental data, which constitute the high-�delity data.

In general, multi-�delity models require the construction of surrogate models to
reduce the computational cost when a large number of expensive simulations are needed.

33
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Surrogate models may be used for the low-�delity model and for the high-�delity one, but
usually even with this the high-�delity model alone would require too many evaluations.
The idea behind multi-�delity (surrogate) models is to correct the low-�delity models
using the high-�delity models. Many correction methods are known, some of which we
brie�y describe below for a 2-level �delity model (but which are easily extended for more
levels). We denote by ŷHF (x) the estimator of the high-�delity model at the point x
and yLF (x) the low-�delity model at x. The following are some of the most common
corrections:

1. Additive correction:
ŷHF (x) = yLF (x) + δ(x),

with δ(x) an additive correction/discrepancy function based on the di�erence
between the high and low �delity models.

2. Multiplicative correction:
ŷHF (x) = ρ(x)yLF (x),

with ρ(x) a multiplicative correction constructed using the ratio between the high
and low �delity models.

3. Comprehensive corrections: two examples are when both additive and multiplicative
corrections can be used as in

ŷHF (x) = ρ(x)yLF (x) + δ(x),

or a hybrid version of both of them

ŷHF (x) = w(x)ρ(x)yLF (x) + (1− w(x))(yLF (x) + δ(x)),

where w(x) is a weight function.

To illustrate one way of obtaining the corrections, we will use the additive and
multiplicative cases. In these cases, the di�erence yHF − yLF and ratio yHF/yLF on
sampling points are used to obtain the corrections δ(x) and ρ(x), respectively. We suppose
that we have M data points for the low-�delity model and m for the high-�delity, with
M � m. First, we observe if the low-�delity model is cheap enough to generate response
output at other necessary locations. If it isn't, we need to build a surrogate, such as a
Gaussian process model, to replace it. After, a surrogate is constructed for the di�erence
or ratio of high and low �delity models on the m common points. Last, we can either use
the surrogate for low-�delity points and create the multi-�delity model by adding (for the
di�erence) or multiplying (for the ratio) the two surrogate models or use the surrogate for
the di�erence or ratio to approximate the discrepancy at the M −m points where only
the low-�delity model is available and �t a surrogate model for the m high-�delity data
and M −m approximated data.

To summarize, the basic idea behind multi-�delity models is that high-�delity data is
used to establish accuracy and convergence, while the low-�delity are used for speedup.
More details and a survey on multi-�delity models can be found in [Peherstorfer et al. '18]
and [Fernández-Godino et al. '16].
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3.2 A �rst autoregressive model

The work of Kennedy and O'Hagan in [Kennedy & O'Hagan '98] concerns the use of an
autoregressive model based on Gaussian processes for combining data from deterministic
simulations of di�erent accuracies in order to infer about the most accurate and reliable
code and perform uncertainty analysis, that is, it is a multi-�delity (surrogate) model.
The following assumptions are made:

(1) Di�erent levels of code are correlated in some way.

(2) The codes have a degree of smoothness: the output values for similar inputs are
close. Individual runs of rough codes do not provide information outside of a very
small neighborhood.

(3) Prior beliefs of each level of the code can be modeled using Gaussian processes.

(4) The outputs of each level are scalars.

We suppose that we have s levels of code {zt(x)}t=1,...,s sorted by increasing order
of �delity and modeled by Gaussian processes {Zt(x)}t=1,...,s, with x ∈ D ⊆ Rn, thus
considering the zs(x) being the most accurate and costly code. This mean that we consider
each level zt(x), with x ∈ D, as a realization of the random process Z(x). The object
of inference is Zs(x), the highest-�delity level, conditioned on all outputs of all levels of
code that we have.

Furthermore, consider the following assumption about two levels Zt(x) and Zt−1(x):

Cov{Zt(x), Zt−1(x
′)|Zt−1(x)} = 0 for all x′ 6= x. (3.1)

It translates as a kind of Markov property: given the nearest point to Zt(x) at the level
t− 1, which is Zt−1(x), we learn nothing more about Zt(x) from any other point Zt−1(x

′),
for x′ 6= x.

In [O'Hagan '98], it is proved that this Markov property implies the following model.
Consider for t = 2, . . . , s:  Zt(x) = ρt−1(x)Zt−1(x) + δt(x)

Zt−1(x) ⊥ δt(x)
ρt−1(x) = gTt−1(x)βρt−1

, (3.2)

where
δt(x) ∼ GP(fTt (x)βt, σ

2
t rt(x, x

′)), (3.3)

and
Z1(x) ∼ GP(fT1 (x)β1, σ

2
1r1(x, x

′)). (3.4)

Also, gt−1(x) is a vector of qt−1 regression functions, ft(x) is a vector of pt regression
functions, rt(x, x

′) is a correlation function (rt(x, x
′) ∈ [−1, 1] for all x, x′ ∈ D and

σ2
t rt(x, x

′) is a valid covariance function), βt is a pt-dimensional parameter vector, βρt−1

is a qt−1-dimensional parameter vector, and σ2
t is a positive real number. We denote

σ2 = (σ2
1, . . . , σ

2
s), β = (βT1 , . . . , β

T
s )T and βρ = (βTρ1 , . . . , β

T
ρs−1

)T . In this way, we write
the expected value of Zt(x) as

E[Zt(x)|σ2, β, βρ] = E[ρt−1(x)Zt−1(x) + δt(x)|σ2, β, βρ] =
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ρt−1(x)E[Zt−1(x)|σ2, β, βρ] + fTt (x)βt = · · · =
t∑
i=1

(
t−1∏
j=1

ρj(x)

)
fTi (x)βi = ht(x)Tβ,

where

ht(x)T =

((
t−1∏
i=1

ρi(x)

)
fT1 (x),

(
t−1∏
i=2

ρi(x)

)
fT2 (x), . . . , ρt−1(x)fTt−1(x), fTt (x), 0, . . . , 0

)
,

with dim(ht(x)) = dim(β) =
∑s

i=1 pi, thus ht(x)T having
∑s

i=t+1 pi zeros at its right end.
The covariance of the process Zt(x) at two di�erent points is given by

Cov{Zt(x), Zt(x
′)|σ2, β, βρ} =

Cov{ρt−1(x)Zt−1(x) + δt(x), ρt−1(x
′)Zt−1(x

′) + δt(x
′)|σ2, β, βρ} =

ρt−1(x)ρt−1(x
′)Cov{Zt−1(x), Zt−1(x

′)|σ2, β, βρ}+ σ2
t rt(x, x

′) = · · · =
t∑

j=1

σ2
j

(
t−1∏
i=j

ρi(x)ρi(x
′)

)
rj(x, x

′).

(3.5)

We use the convention that the empty product is equal to 1.
Next, for di�erent levels t and t′, with t > t′, and di�erent input points x and x′, the

covariance is
Cov{Zt(x), Zt′(x

′)|σ2, β, βρ} =

Cov{ρt−1(x)Zt−1(x) + δt(x), Zt′(x
′)|σ2, β, βρ} =

ρt−1(x)Cov{Zt−1(x), Zt′(x
′)|σ2, β, βρ} = · · · =(

t−1∏
i=t′

ρi(x)

)
Cov{Zt′(x), Zt′(x

′)}.

(3.6)

Let us now consider Zt, the Gaussian vector containing the values of Zt(x) evaluated
at the points in Dt = {xti}i=1,...,nt for t = 1, . . . , s, and let Z(s) = (ZT1 , . . . ,ZTs )T be the
Gaussian vector containing the values of all processes Zt(x) at their respective points in
Dt, and let us assume that Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. Namely, let

Z(s) = (Z1(x
1
1), . . . , Z1(x

1
n1

), Z2(x
2
1), . . . , Zs−1(x

s−1
ns−1

), Zs(x
s
1), . . . , Zs(x

s
ns)).

With the ht(·) vectors, it is easy to construct the mean of Z(s), which is given by Hsβ
with Hs being the matrix constructed by stacking h1(·)T evaluated at the points in D1,
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followed by the values of h2(·)T evaluated at the points in D2, and so forth,

Hs =


[ h1(D1) ]
[ h2(D2) ]

...
[ hs−1(Ds−1) ]
[ hs(Ds) ]

 =



h1(x
1
1)

...
h1(x

1
n1

)
h2(x

2
1)

...
hs−1(x

s−1
ns−1

)
hs(x

s
1)

...
hs(x

s
ns)


. (3.7)

The covariances are all conditioned by the values of the same hyperparameters,
therefore, for simplicity, the dependencies on the vectors σ2, β and βρ are left implicit.
Now, we can construct the vector ks(x) of covariances between Zs(x) and Z(s)

kTs (x) = (cT1 (x,D1), . . . , c
T
s (x,Ds))

T , (3.8)

with cTt (x,Dt) = Cov{Zs(x), Zt(Dt)} = (Cov{Zs(x), Zt(x
t
1)}, . . . ,Cov{Zs(x), Zt(x

t
nt)}).

Using (3.5) and (3.6), the expression of cTt (x,Dt) can be rewritten as

cTt (x,Dt) =

( s−1∏
i=t

ρi(x)

)
Cov{Zt(x), Zt(Dt)} =

( s−1∏
i=t

ρi(x)

)(
ρt−1(x)ρt−1(Dt)� Cov{Zt−1(x), Zt−1(Dt)}+ σ2

t rt(x,Dt)
)

=

ρt−1(Dt)� cTt−1(x,Dt) +

( s−1∏
i=t

ρi(x)

)
σ2
t rt(x,Dt),

(3.9)

where � represents the element by element matrix (or vector) product,

cTi (x,Dt) = Cov{Zs(x), Zi(Dt)} for i ≤ t,

rTt (x,Dt) = (rt(x, x
t
1), . . . , rt(x, x

t
nt)),

and

cT1 (x,Dt) =

( s−1∏
i=1

ρi(x)

)
Cov{Z1(x), Z1(Dt)} =

( s−1∏
i=1

ρi(x)

)
σ2
1r1(x,Dt).

The covariance matrix Vs of Z(s), can also be contructed using (3.5) and (3.6):

Vs = Cov{Z(s),Z(s)} =

V1,1 . . . V1,s
...

. . .
...

Vs,1 . . . Vs,s

 , (3.10)

with diagonal elements

Vt,t = Cov{Zt,Zt} = σ2
tRt +

t−1∑
j=1

σ2
j

( t−1∏
i=j

ρi(Dt)ρ
T
i (Dt)

)
�Rj,
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for t = 1, . . . , s, where Rj = [rj(x, x
′)]x,x′∈Dj , and o�-diagonal entries given by

Vt′,t = Cov{Zt′ ,Zt} = Cov{Zt′(Dt′), ρt−1(Dt)� Zt−1(Dt) + δt(Dt)} =

(1nt′ρ
T
t−1(Dt))� Cov{Zt′(Dt′), Zt−1(Dt)} = · · · =( t−1⊙
i=t′

1nt′ρ
T
i (Dt)

)
� Cov{Zt′(Dt′), Zt′(Dt)},

(3.11)

for 1 ≤ t′ < t ≤ s, and V T
t′,t otherwise. Here, for t > t′, we denote by Vt′,t′(Dt, Dt′) the

submatrix of Vt′,t′ with entries corresponding to the points in Dt ⊆ Dt′ in the rows and
points in Dt′ in the columns.

Last, let v2Zs(x) denote the variance of Zs(x). By Equation (3.5), this variance is

v2Zs(x) = Var[Zs(x)|σ2, β, βρ] = σ2
s +

s−1∑
i=1

σ2
i

( s−1∏
j=i

ρj(x)2
)

=
s∑
i=1

σ2
i

( s−1∏
j=i

ρj(x)2
)
.

Thus, the joint distribution of Zs(x) and Z(s), given σ2, β, βρ, is the following
multivariate normal:[

Zs(x)
Z(s)

∣∣∣σ2, β, βρ

]
∼ N

([
hs(x)Tβ
Hsβ

]
,

[
v2Zs(x) kTs (x)
ks(x) Vs

])
. (3.12)

By the predictive identities for Gaussian processes (2.8) and (2.9), it is straightforward
that, when observing Z(s) = z(s)

Zs(x)|Z(s) = z(s), σ2, β, βρ ∼ N (mZs(x), s2Zs(x)), (3.13)

with
mZs(x) = hTs (x)β + kTs (x)V −1s (z(s) −Hsβ), (3.14)

and
s2Zs(x) = v2Zs(x)− kTs (x)V −1s ks(x). (3.15)

Note that, since

k1(x)TV −11 = Cov{Z1(x), Z1(D1)}
R−11

σ2
1

= σ2
1r1(x,D1)

R−11

σ2
1

= r1(x,D1)R
−1
1

does not depend on σ2
1, by Proposition A.2, we have that kTs (x)V −1s is independent of

σ2
t , for t = 1, . . . , s, and, therefore, the predictive mean mZs(x) does not depend on the

variance hyperparameters of any level.

3.3 The recursive autoregressive model

The work in [Le Gratiet '13] and [Le Gratiet & Garnier '14] is an extension
and improvement of the autoregressive model of Kennedy and O'Hagan in
[Kennedy & O'Hagan '98] previously presented. In his work, Le Gratiet discusses a
new way of performing the co-kriging (this expression arises from the idea that multiple
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correlated kriging procedures are performed) with the aim of reducing the computational
complexity by breaking the s-level co-kriging into s independent Gaussian processes.

In this new model, for t = 2, . . . , s, let Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x)

Z̃t−1(x) ⊥ δt(x)
ρt−1(x) = gTt−1(x)βρt−1

, (3.16)

where Z̃t−1(x) is a Gaussian process with the distribution of

Zt−1(x)|Z(t−1) = z(t−1), σ2
t−1, βt−1, βρt−2 ,

δ(x) is a Gaussian process with distribution (3.3), and the experimental design sets have
the nested property

Ds ⊆ Ds−1 ⊆ . . . ,⊆ D1.

The only di�erence from the classical autoregressive multi-�delity model (3.2) is that,
instead of expressing Zt as a function of Zt−1, we �rst condition Zt−1 by the realization
of Zi at the points in Di, for i = 1, . . . , t − 1, that is, Z(t−1) is equal to the values
z(t−1) = (z1, . . . , zt−1).

Since the joint distribution of Zt−1(x) and Z(t−1) conditioned on σ2
t−1, βt−1, βρt−2 is

Gaussian, for t = 2, . . . , s, so will be the distribution of

[Z̃t−1(x) = Zt−1(x)|Z(t−1) = z(t−1), σ2
t−1, βt−1, βρt−2 ],

whose mean and variance we will denote by µZt−1(x) and σ2
Zt−1

(x). By Equation (3.16),
we have that

[Zt(x)|Z(t−1) = z(t−1), σ2
t , βt, βρt−1 ] = ρt−1(x)Z̃t−1(x) + δt(x)

∼ N (ρt−1(x)µZt−1(x) + fTt βt, ρ
2
t−1(x)σ2

Zt−1
(x) + σ2

t (x)),

since rt(x, x) = 1 ∀x, given that it is a correlation function. This way, the joint distribution
of Zt(x) and Zt conditioned by Z(t−1) = z(t−1), σ2

t , βt and βρt−1 is[
Zt(x)
Zt

∣∣∣Z(t−1) = z(t−1), σ2
t , βt, βρt−1

]
∼

N
([

ρt−1(x)µZt−1(x) + fTt (x)βt
ρt−1(Dt)� µZt−1(Dt) + Ftβt

]
,

[
ρ2t−1(x)σ2

Zt−1
(x) + σ2

t (x) rTt (x)
rt(x) Rt

])
.

(3.17)

For simplicity, we use Rt = [rt(x, x
′)]x,x′∈Dt for the correlation matrix of the Gaussian

process δ(x) at the points in Dt, r
T
t (x) for the correlation vector rTt (x) = (rt(x, x

′))x′∈Dt ,
ρt−1(Dt) for the vector containing the values ρt−1(x) for x ∈ Dt, and Ft the experience
matrix containing the values of fTt (x) on Dt as rows. In other words,

Rt = [rt(x, x
′)]x,x′∈Dt =

 rt(xt1, xt1) . . . rt(x
t
1, x

t
nt)

...
. . .

...
rt(x

t
nt , x

t
1) . . . rt(x

t
nt , x

t
nt)

 ,
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rTt (x) = (rt(x, x
t
1), . . . , rt(x, x

t
nt)),

ρTt−1(Dt) = (ρt−1(x1), . . . , ρt−1(x
t
nt)),

and

Ft =

 fTt (xt1)
...

fTt (xtnt)

 .
Observe that Equation (3.17) shows that the process Zt conditioned by Z(t−1) =

z(t−1), σ2
t , βt, and βρt−1 is Gaussian. Therefore, using again the Gaussian process predictive

equations, Equations (2.8) and (2.9), for further conditioning Zt(x) by Zt = zt, we obtain
the expressions for µZt(x) and σ2

Zt
(x) of the distribution of

Z̃t(x) = [Zt(x)|Z(t) = z(t), σ2
t , βt, βρt−1 ] ∼ N (µZt(x), σ2

Zt(x)). (3.18)

Thus, these functions are given by

µZt(x) = ρt−1(x)µZt−1(x) + fTt (x)βt + rTt (x)R−1t (zt−ρt−1(Dt)�µZt−1(Dt)−Ftβt), (3.19)
and

σ2
Zt(x) = ρ2t−1(x)σ2

Zt−1
(x) + σ2

t (1− rTt (x)R−1t rt(x)), (3.20)

These last predictive equations are referent to the simple co-kriging model (SK), when
we consider �xed values for the hyperparameters. Both the the predictive mean and
variance at the level t are expressed as functions of the predictive mean and variance at
the level t − 1, respectively. Furthermore, as in basic Gaussian process regression when
using covariance kernels of the form k(x, x′) = σ2r(x, x′), the predictive mean does not
depend on the variance parameters {σ2

t }t=1,...,s, and the variance does not depend on any
of the observed values z(t).

Note that, similarly, for t = 1,[
Z1(x)
Z1

∣∣∣σ2
1, β1

]
∼ N

([
fT1 β1
F1β1

]
,

[
σ2
1(x) rT1 (x)
r1(x) R1

])
=⇒ Z1(x)|Z(1) = z(1), σ2

1, β1 ∼ N (µZ1(x), σ2
Z1

(x)),

with {
µZ1(x) = fT1 (x)β1 + rT1 (x)R−11 (z1 − F1β1)
σ2
Z1

(x) = σ2
1(1− rT1 (x)R−11 r1(x)).

Remark 1. For the recursive model above, it is true that for, t = 1, . . . , s,

µZt(Dt) = zt,

where zt = zt(Dt) is the vector containing the observed values of Zt(x) at the points in
Dt.

Proof. For t = 1,
µZ1(x) = fT1 (x)β1 + rT1 (x)R−11 (z1 − F1β1)
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=⇒ µZ1(D1) = F1β1 +R1R
−1
1 (z1 − F1β1) = z1.

Equivalently, for t ≥ 1, we know that

µZt(x) = ρt−1(x)µZt−1(x) + fTt (x)βt + rTt (x)R−1t (zt − ρt−1(Dt)� µZt−1(Dt)− Ftβt)
=⇒ µZt(Dt) = ρt−1(Dt)� µZt−1(Dt) +Ftβt +RtR

−1
t (zt− ρt−1(Dt)� µZt−1(Dt)−Ftβt) =

= zt.

This, in addition to the nested property of the sets Dt, gives

µZt−1(Dt) = zt−1(Dt),

for t = 2, . . . , s, which can be replaced in equation (3.19) to obtain

µZt(x) = ρt−1(x)µZt−1(x) + fTt (x)βt + rTt (x)R−1t (zt − ρt−1(Dt)� zt−1(Dt)− Ftβt). (3.21)
Remark 2. In the same conditions of the previous remark,

σ2
Zt(x

t
i) = 0 ∀xti ∈ Dt.

Proof. Observe that the i-th column of Rt is equal to rt(x
t
i). Therefore, using the identity

given by Equation (A.10), we obtain

R−1t rt(x
t
i) =

 0(i−1)×1
1

0(nt−i)×1


=⇒ rTt (xti)R

−1
t rt(x

t
i) = rt(x

t
i, x

t
i) = 1.

Substituting this in the expression for σ2
Zt

(xti) and using the recursion of this expression
combined to the nested property of the sets gives us the desired relation.

Remark 3. The use of the nested property, Ds ⊆ Ds−1 ⊆ · · · ⊆ D1, can be relaxed. This
extension is found in Appendix B of the thesis of Loic Le Gratiet, [Le Gratiet '13].

Despite the di�erent formulation of the the classical autoregressive model (3.2) and
the recursive autoregressive model (3.16), both of them have, in fact, the same predictive
equations. This result is stated in the following proposition:

Proposition 3.1 (Proposition 1 of [Le Gratiet & Garnier '14]). Let us consider s
Gaussian processes {Zt(x)}t=1,...,s, and Z(s) = (Zt)t=1,...,s the Gaussian vector containing
the values of {Zt(x)}t=1,...,s at points in {Dt}t=1,...,s, with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. If we
consider the mean (3.14), and the variance (3.15) induced by the model (3.2) when we
condition the Gaussian process Zs(x) by the observed values z(s) of Z(s), and parameters
β, βρ and σ

2, and the mean (3.19) and variance (3.20) induced by the model (3.16) when
we condition Zs(s) by z(s) and parameters β, βρ and σ2, then, we have:

µZs(x) = mZs(x),

and
σ2
Zs(x) = s2Zs(x).
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Proof. Throughout this proof, we will use the nested property of the sets, speci�cally
that Dt ⊆ Dt−1, and a particular ordering of the points in each of these sets, that is
Dt = (Dt−1\Dt, Dt).

For the mean: By Equation (3.14), we know that for the classical model,

mZs(x) = hTs (x)β + kTs (x)V −1s (z(s) −Hsβ).

Then, for a t-level model with t = 2, . . . , s, we have

mZt(x) = hTt (x)β(t) + kTt (x)V −1t (z(t) −Htβ
(t)), (3.22)

where β(t) = (βT1 , . . . , β
T
t )T , z(t) = (zT1 , . . . , z

T
t )T , and

hTt (x) =

((
t−1∏
i=1

ρi(x)

)
fT1 (x),

(
t−1∏
i=2

ρi(x)

)
fT2 (x), . . . , ρt−1(x)fTt−1(x), fTt (x)

)
=⇒ hTt (x) = (ρt−1(x)hTt−1(x), fTt (x)).

This way,

hTt (x)β(t) =
t∑
i=1

(
t−1∏
j=i

ρj(x)

)
fTi (x)βi.

For t = 1, . . . , s, Ht can be constructed similarly to the Hs matrix of equation (3.7),
but it is simpler to observe that Ht is a submatrix of Hs containing its �rst

∑t
i=1 ni rows

and its �rst
∑t

i=1 pi columns. If t > 1, we can use the same idea to write Ht as

Ht =

[
Ht−1 0
A Ft(Dt)

]
,

where A is the submatrix of Ht containing its last nt rows and its �rst
∑t−1

i=1 pi columns:

A = [ρt−1(Dt)1
T∑t−1
i=1 pi

]� ht−1(Dt),

where

ht−1(Dt) =

 ht−1(xt1)...
ht−1(x

t
nt)

 .
By Proposition A.2 found in the Appendix,

kTt (x)V −1t =
(
ρt−1(x)kTt−1(x)V −1t−1 − (0, [ρTt−1(Dt)� rTt (x)]R−1t ), rTt (x)R−1t

)
.

This equality implies that

kTt (x)V −1t z(t) = kTt (x)V −1t

[
z(t−1)

zt

]
=

ρt−1(x)kTt−1(x)V −1t−1z
(t−1) − [ρTt−1(Dt)� rTt (x)]R−1t zt−1(Dt) + rTt (x)R−1t zt.

Using again Proposition A.2, and the expression we obtained for Ht, we get

kTt (x)V −1t Htβ
(t) = ρt−1(x)kTt−1(x)V −1t−1Ht−1β

(t−1)−
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[ρTt−1(Dt)� rT (x)]R−1t ht−1(Dt)β
(t−1)+

rT (x)R−1t
(
[ρt−1(Dt)1

T∑t−1
i=1 pi

]� ht−1(Dt)
)
β(t−1) + rT (x)R−1t Ftβt =

ρt−1(x)kTt−1(x)V −1t−1Ht−1β
(t−1) + rT (x)R−1t Ftβt,

since the two middle terms cancel each other. Therefore, using the obtained expressions
for hTt (x), kTt (x)V −1t z(s) and kTt (x)V −1t Htβ

(t) in Equation (3.22),

mZt(x) = ρt−1(x)ht−1(x)β(t−1) + fTt (x)βt+

ρt−1(x)kTt−1(x)V −1t−1z
(t−1) − [ρTt−1(Dt)� rTt (x)]R−1t zt−1(Dt) + rTt (x)R−1t zt−

ρt−1(x)kTt−1(x)V −1t−1Ht−1β
(t−1) − rT (x)R−1t Ftβt =

ρt−1(x)mZt−1(x) + fTt (x)βt + rTt (x)R−1t

(
zt − ρt−1(Dt)� zt−1(Dt)− Ftβt

)
.

From the last line of the previous equation, we notice that both mZt(x) and µZt(x)
follow the exact same recursive relations. This, added to the fact that µZ1(x) = mZ1(x) =
fT1 (x)β1, gives us the desired equality

µZs(x) = mZs(x).

For the variance: We follow similar steps as before.
For the t-level classical co-kriging model, equation (3.15) states that

s2Zt(x) = v2Zt(x)− kTt (x)V −1t kt(x). (3.23)

For the variance term v2Zt(x), we use equation (3.5), to obtain

v2Zt(x) = Var[Zt(x)] = ρ2t−1(x)Var[Zt−1(x)] + σ2
t = ρ2t−1(x)v2Zt−1

(x) + σ2
t . (3.24)

For the kTt (x)V −1t kt(x) term, we know from Proposition A.2 of the Appendix chapter
that

kTt (x)V −1t =
[
ρt−1(x)kTt−1(x)V −1t−1 − [0, [ρTt−1(Dt)� rTt (x)]R−1t ], rTt (x)R−1t

]
,

and, by Equations (A.22) and (3.5), it is clear that

kTt (x) = (ρt−1(x)kTt−1(x), Cov{Zt(x),Zt}) =

(ρt−1(x)kTt−1(x), ρt−1(x)ρTt−1(Dt)� Cov{Zt−1(x), Zt−1(Dt)}+ σ2
t r
T
t (x)).

These last two equalities, in turn, imply that

kTt (x)V −1t kt(x) =[
ρt−1(x)kTt−1(x)V −1t−1 − [0, [ρTt−1(Dt)� rTt (x)]R−1t ], rTt (x)R−1t

]
×[

ρt−1(x)kt−1(x)
ρt−1(x)ρt−1(Dt)� Cov{Zt−1(x), Zt−1(Dt)}T + σ2

t rt(x)

]
.

Note that, because of the ordering of the points in Dt−1, the last nt terms of kTt−1(x) are
exactly Cov{Zt−1(x), Zt−1(Dt)}. For this reason,

kTt (x)V −1t kt(x) = ρ2t−1(x)kTt−1V
−1
t−1kt−1(x)−
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[ρTt−1(Dt)� rTt (x)]R−1t ρt−1(x)Cov{Zt−1(x), Zt−1(Dt)}T+

rTt (x)R−1t
(
ρt−1(x)ρt−1(Ds)� Cov{Zt−1(x), Zt−1(Dt)}T + σ2

t r
T
t (x)

)
=

ρ2t−1(x)kTt−1V
−1
t−1kt−1(x) + σ2

t r
T
t (x)R−1t rt(x)

Using this result, together with Equation (3.24), in Equation (3.23), gives us

s2Zt(x) = ρ2t−1(x)(v2Zt−1
(x)− kTt−1V −1t−1kt−1(x)) + σ2

t (1− rTt (x)R−1t rt(x)) =

ρ2t−1(x)s2Zt−1
(x) + σ2

t (1− rTt (x)R−1t rt(x)).

This is the same recursive relation that σ2
Zt

(x) satis�es. Noting that σ2
Z1

= s2Z1
(x), we

obtain
σ2
Zs(x) = s2Zs(x).

An analogous argument proves the equivalence for predictive covariances, see
[Le Gratiet '13].

Therefore, we proved that both the classical autoregressive model (3.2) and
the recursive autoregressive model have the same predictive Gaussian distribution
for Zs(x), and, while the computational cost of the model (3.2) proposed in
[Kennedy & O'Hagan '98] is dominated by the inversion of the matrix Vs of size∑s

i=1 ni ×
∑s

i=1 ni, the recursive model proposed in [Le Gratiet & Garnier '14] is built
on s independent krigings, each having its computational cost dominated by the inversion
of the Rt matrix of size nt × nt for t = 1, . . . , s, which results in a lower computational
cost. Besides that, the memory cost is also lower for this model, since it requires storing
the s matrices {Rt}t=1,...,s instead of the matrix Vs for the classical approach.

3.3.1 Bayesian parameter estimation

The parameter vectors β, βρ, and σ2 of the recursive autoregressive model may be
determined using methods such as maximum likelihood or Bayesian estimation. Given
the recursive formulation, (βt, βρt , σ

2
t ), for t = 2 . . . , s, and (β1, σ

2
1) can be estimated

separately. For the Bayesian approach, a smart choice of prior distributions gives us
closed form expressions for the posterior distributions. We consider two such choices:

(i) all priors are informative

(ii) all priors are non-informative.

Case (ii): we consider the Je�reys priors

p(β1|σ2
1) ∝ 1, p(σ2

1) ∝ 1

σ2
1

, p(βρt−1 , βt|z(t−1), σ2
t ) ∝ 1, p(σ2

t |z(t−1)) ∝
1

σ2
t

. (3.25)

Case (i): all prior means and variances can be prescribed by using the following priors

[β1|σ2
1] ∼ Np1(b1, σ2

1W1)

[βρt−1 , βt|z(t−1), σ2
t ] ∼ Nqt−1+pt

(
bt =

[
bρt−1
bβt

]
, σ2

tWt = σ2
t

[
W ρ
t−1 0

0 W β
t

])
(3.26)
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[σ2
1] ∼ IG(α1, γ1), [σ2

t |z(t−1)] ∼ IG(αt, γt),

where

b1 is a vector of size p1,

bρt−1 a vector of size qt − 1,

bβt is a vector of size pt,

W1 is a p1 × p1 matrix,

W ρ
t−1 a qt−1 × qt−1 matrix,

W β
t a pt × pt matrix,

and α1, γ1, αt, γt > 0 parameters of inverse Gamma distributions.

The posterior distributions are obtained in Section A.7, and are given by

[β1|z1, σ2
1] ∼ Np1(Σ1ν1,Σ1), [βρt−1 , βt|z(t), σ2

t ] ∼ Nqt−1+pt(Σtνt,Σt), (3.27)

where

Σt =


[
HT
t
R−1
t

σt
Ht +

W−1
t

σ2
t

]−1
(i)[

HT
t
R−1
t

σt
Ht

]−1
(ii)

, (3.28)

νt =


[
HT
t
R−1
t

σt
zt +

W−1
t

σ2
t
bt

]
(i)[

HT
t
R−1
t

σt
zt

]
(ii)

, (3.29)

with H1 = F1, and Ht = [Gt−1 �
(
zt−1(Dt)1

T
qt−1

)
Ft], with Gt−1 being the experience

matrix containing the values of gt−1(x)T at the points in Dt as rows:

Gt−1 = gTt−1(Dt) =

 gTt−1(x
t
1)

...
gTt−1(x

t
nt)

 .
Also, for t ≥ 1,

[σ2
t |z(t)] ∼ IG

(
at,

Qt

2

)
, (3.30)

with

Qt =

{
γt + (bt + λ̂t)

T (Wt + [HT
t R
−1
t Ht]

−1)−1(bt − λ̂t) + Q̂t (i)

Q̂t (ii)
,

Q̂t = (zt +Hλ̂t)TR−1t (zt −Htλ̂t),

λ̂t = [HT
t R
−1
t Ht]

−1HT
t R
−1
t zt,

at =

{
nt
2

+ αt (i)
nt−pt−qt−1

2
(ii)

,

and q0 = 0.
Interestingly, there are some equivalences when using the non-informative case (ii) to

maximum likelihood estimates. It is straightforward that the posterior mean of (βt, βρt),
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for t = 2, . . . , s and β1, is the maximum likelihood estimator of these parameters given
that the prior distribution is constant.

For the variance, in [Patterson & Thompson '71] the concept of restricted likelihood
was introduced in order to reduce bias in estimates for variance components via maximum
likelihood. We follow [Santner et al. '03] and [Harville '74] to obtain the restricted
maximum likelihood estimate for σ2

t .
First, we need to transform our vector zt by a matrix CT of size nt × (nt − pt − qt−1)

with rank nt− pt− qt−1, such that the transformed vector CT zt has mean equal to 0 (the
particular choice of C is not important, see [Harville '74]). The idea behind this is that
the transformed vector will not depend on parameters other than σ2

t , and this implies that
there will not be an increase of bias due to the estimation of the parameters βt and βρt−1 ,

therefore prior information of these parameters is ignored. For simplicity, let β̃t =

[
βρt−1

βt

]
,

for t > 1, and β̃1 = β1. Observe that Zt conditioned by Z(t−1) = z(t−1), βt, βρt−1 , and σ
2
t

has distribution
Zt|z(t−1), β̃t, σ2

t ∼ N (Htβ̃t, σ
2
tRt).

To clarify where this distribution comes from, return to the expression of Zt(x) in Equation
(3.16), and the check Remarks 1 and 2.

Thus, a possible choice of C is one such that CCT = I−Ht(HT
t Ht)

−1HT
t and CTC = I.

Then, we have that

CTHt = (CTC)CTHt = CT (I −Ht(HT
t Ht)

−1HT
t )Ht = 0

=⇒ CTHtβ̃t = 0 ∀β̃t.
Then, the likelihood of ζt = CT zt (we let the dependencies on z

(t−1) implicit) is given
by

`rest(ζt;σ
2
t ) =

1

(2π)(nt−pt−qt−1)/2

1√
det(CT (σ2

tRt)C)
exp

{
− 1

2σ2
t

ζTt (CTRtC)−1ζt

}
,

which can be rewritten as

1

(2π)(nt−pt−qt−1)/2

√
det(HT

t Ht)√
det(σ2

tRt) det(HT
t (σ2

tRt)−1Ht)
exp

{
− 1

2σ2
t

(zt−Htλ̂t)
TR−1t (zt−Htλ̂t)

}
,

with λ̂t = [HT
t R
−1
t Ht]

−1HT
t R
−1
t zt being the maximum likelihood estimate of β̃t using the

data zt. This implies that the log-likelihood is

log(`rest(ζt;σ
2
t )) = −nt − pt − qt−1

2
log(2π) +

1

2
log(det(HT

t Ht))−
nt − pt − qt−1

2
log(σ2

t )−
1

2
log(det(Rt))−

1

2
log(det(HT

t R
−1
t Ht))−

1

2σ2
t

(zt −Htλ̂t)
TR−1t (zt −Htλ̂t)

=⇒ ∂ log(`rest(ζt;σ
2
t ))

∂σ2
t

= −nt − pt − qt−1
2

1

σ2
t

+
1

2(σ2
t )

2
(zt −Htλ̂t)

TR−1t (zt −Htλ̂t).

(3.31)
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Maximizing the log-likelihood by taking its derivative equal to zero, gives us the
maximum likelihood estimate of σ2

t ,

σ̂2
t,EML =

(zt −Htλ̂t)
TR−1t (zt −Htλ̂t)

nt − pt − qt−1
=
Qt

2at
,

which is closely related to the posterior distribution of σ2
t .

Note that {rt(x, x′)}x,x′∈Dt is considered as known, but in a practical application the
correlation function rt(x, x

′) would have to be chosen from a family of correlation functions
rt(x, x

′;ϕt). Thus, the matrix Rt is, in fact, a function Rt(ϕt). The hyperparameter ϕt
has to be estimated in some way. One possible approach is to maximize the concentrated
restricted log-likelihood, which is obtained by plugging the value σ̂2

t,EML(ϕt) (it depends

on ϕ through Rt(ϕt)) for σ
2
t in the expression of the log-likelihood (3.31). Therefore, we

would need to minimize

log(det(Rt(ϕt))) + log(det(HT
t R
−1
t (ϕt)Ht)) + (nt − pt − qt−1) log(σ̂2

t,EML(ϕt)),

and this has to be performed numerically.

3.3.2 Universal co-kriging model

The predictive distribution of Zs(x) given the observations Z(s) = z(s), and parameters
β, βρ and σ2

t of the recursive co-kriging model is given in (3.18). This corresponds to
the universal co-kriging model (UK), when the hyperparameters are not treated as known
constants. In a Bayesian approach, we need to integrate the uncertainty of the parameters
to obtain the distribution of Zs(x) conditioned by Z(s) = z(s) only. We already obtained
the posterior distributions of σ2

t |z(t) and βt, βρt−1|z(t), σ2
t , for t = 2, . . . , s, and σ2

1|z(1)
and β1|z(1), σ2

1. Thus, the desired marginal distribution for t = 1, . . . , s is obtained by
performing the following integration:

p(Zt(x)|z(t)) =

∫
p(Zt(x)|z(t), σ2

t , βt, βρt−1)p(βt, βρt−1|z(t), σ2
t )p(σ

2
t |z(t))dβtdβρt−1dσ

2
t .

Nevertheless, the distribution of Zt(x)|z(t) is not Gaussian and it does not have a
closed form expression, requiring approximations or Monte Carlo integration. However,
both mean and variance, E[Zt(x)|z(t)] and Var[Zt(x)|z(t)], respectively, have closed form
expressions. This is summarized in the following proposition.

Proposition 3.2 (Proposition 2 of [Le Gratiet & Garnier '14]). Let us consider s
Gaussian processes {Zt(x)}t=1,...,s, and Z(s) = (Zt)t=1,...,s the Gaussian vector containing
the values of {Zt(x)}t=1,...,s at the points in {Dt}t=1,...,s, with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. If
we consider the conditional predictive distribution in equation (3.18), and the posterior
distribution of the parameters given in equations (3.27) and (3.30), then we have, for
t = 1, . . . , s,

E[Zt(x)|Z(t) = z(t)] = uTt (x)Σtνt + rTt (x)R−1t (zt −HtΣtνt) (3.32)

with
uT1 = fT1 ,
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H1 = F1,

uTt (x) = (gTt−1(x)E[Zt−1(x)|Z(t−1) = z(t−1)], ft(x)T ),

and
Ht = [Gt−1 � zt−1(Dt)1

T
qt−1

, Ft],

for t > 1. Furthermore, we have

V ar[Zt(x)|Z(t) = z(t)] = σ̂2
ρt−1

(x)Var[Zt−1(x)|Z(t−1) = z(t−1)]

+
Qt

2(at − 1)
(1− rTt (x)R−1t rTt (x)) + (uTt (x)− rTt (x)R−1t Ht)Σ̂t(u

T
t (x)− rTt (x)R−1t Ht)

T

(3.33)
with

σ̂2
ρt−1

(x) = ρ̂2t−1(x) + gTt−1(x)Σ̂ρ,tgt−1(x),

and
ρ̂t−1(x) = gTt−1(x)[Σ̂t, ν̂t]1,...,qt−1 ,

where Σ̂ρ,t is the submatrix with the �rst qt−1 rows and columns of Σ̂t (relative to the
hyperparameter vector βρt−1), which has the same expression of Σt, but with σ

2
t replaced

by its posterior mean, and similarly for ν̂t.

Proof.
Mean for t > 1: By the law of total expectation (see Section A.3.1), we have that

E[Zt(x)|Z(t) = z(t)] = E[E[Zt(x)|Z(t) = z(t), σ2
t , βt, βρt−1 ]|Z(t) = z(t)].

Using equations (3.18) and (3.19), we have that, for t > 1,

[Zt(x)|Z(t) = z(t), σ2
t , βt, βρt−1 ] ∼ N (µZt(x), σ2

Zt(x))

=⇒ E[Zt(x)|Z(t) = z(t), σ2
t , βt, βρt−1 ] = µZt(x) =

ρt−1(x)µZt−1(x) + fTt (x)βt + rTt (x)R−1t (zt − ρt−1(Dt)� zt−1(Dt)− Ftβt),
thus, using the fact that ρt−1(x) = gTt−1(x)βρt−1 , and given that µZt−1(x) is independent
of both ρt−1(x) and zt (which is a constant vector of observed values), we obtain

E[Zt(x)|Z(t) = z(t)] = E[µZt(x)|Z(t) = z(t)] =

gTt−1(x)E[βρt−1|Z(t) = z(t)]E[µZt−1(x)|Z(t−1) = z(t−1)] + fTt (x)E[βt(x)|Z(t) = z(t)]

+rTt (x)R−1t
(
zt −Gt−1E[βρt−1|Z(t) = z(t)]� zt−1(Dt)− FtE[βt|Z(t) = z(t)]

)
.

Note that, when we take the expectation of (βρt−1 , βt) conditioned by z(t), we need
to use the law of total expectation again, since we only have their posterior distribution
conditioned by σ2

t , which is greatly facilitated by the fact that the posterior mean, Σtνt,
does not depend on σ2

t :

E[βρt−1 , βt|Z(t) = z(t)] = E[E[βρt−1 , βt|σ2
t , Z

(t) = z(t)]|Z(t) = z(t)] =

E[Σtνt|Z(t) = z(t)] = Σtνt = Σ̂tν̂t
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Thus,
E[Zt(x)|Z(t) = z(t)] = ut(x)Σ̂tν̂t + rTt (x)R−1t (zt −HtΣ̂tν̂t),

Mean for t = 1: Again, from the law of total expectation, we have that

E[Z1(x)|Z(1) = z(1)] = E[E[Z1(x)|Z(1) = z(1), σ2
1, β1]|Z(1) = z(1)].

We know that
[Z1(x)|Z(1) = z(1), σ2

1, β1] ∼ N (µZ1(x), σ2
Z1

(x)),

with {
µZ1(x) = fT1 (x)β1 + r1(x)R−11 (z(1) − F1β1)
σ2
Z1

= σ2
1(1− rT1 (x)R−11 r1(x))

.

Therefore,
E[Z1(x)|Z(1) = z(1)] = E[µZ1(x)|Z(1) = z(1)] =

fT1 (x)E[β1|Z(1) = z(1)] + rT1 (x)R−11 (z(1) − F1E[β1|Z(1) = z(1)]) =

fT1 (x)Σ̂1ν̂1 + rT1 (x)R−11 (z(1) − F1Σ̂1ν̂1) =

uT1 (x)Σ̂1ν̂1 + rT1 (x)R−11 (z(1) −H1Σ̂1ν̂1).

Variance for t > 1: For this step of the proof, we will use the law of total variance (see
Section A.3.2) twice to obtain the desired variance identity. We know that

E[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ
2
t ] = E[Z̃t(x)] = µZt(x)

=⇒ Var[E[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ
2
t ]|Z(t) = z(t), σ2

t ] =

Var[ρt−1(x)µZt−1(x) + fTt (x)βt + rTt (x)R−1t (zt − ρt−1(Dt)� µZt−1(Dt)− Ftβt)|Z(t) = z(t), σ2
t ] =

= (uTt (x)− rTt (x)R−1Ht)Σt(u
T
t (x)− rTt (x)R−1Ht)

T ,
(3.34)

when we observe that, here, µZt−1(x) and rTt (x)R−1t zt act as constants.
We also know that

Var[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ
2
t ] = Var[Z̃t(x) = σ2

Zt(x)

=⇒ E[Var[Zt(x)]|Z(t) = z(t), βt, βρt−1 , σ
2
t ]|Z(t) = z(t), σ2

t ] = E[σ2
Zt(x)||Z(t) = z(t), σ2

t ] =

E[ρ2t−1(x)|Z(t) = z(t), σ2
t ]E[σ2

Zt−1
(x)|Z(t) = z(t), σ2

t ] + σ2
t (1− rTt (x)R−1t rt(x)),

by observing that ρt−1(x) and σ2
Zt−1

(x) are independent. Furthermore, σ2
Zt−1

(x) depends

on Z(t) = z(t) through Z(t−1) = z(t−1) only, and it is independent of σ2
t . With this result,

we obtain

E[σ2
Zt−1

(x)|Z(t) = z(t), σ2
t ] = Var[Z̃t−1(x)] = Var[Zt−1(x)|Z(t−1) = z(t−1), βt−1, βρt−2 , σ

2
t−1].

Note that

E[ρ2t−1(x)|Z(t) = z(t), σ2
t ] = gTt−1(x)E[βρt−1β

T
ρt−1
|Z(t) = z(t), σ2

t ]gt−1(x) =
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gTt−1(x)(Σρ,t + [Σt, νt]1,...,qt−1)gt−1(x),

therefore, we obtain

Var[Zt(x)]|Z(t) = z(t), βt, βρt−1 , σ
2
t ] = σ̂2

ρt−1
(x)Var[Zt−1(x)|Z(t−1) = z(t−1)]

+σ2
t (1− rTt (x)R−1t rTt (x)).

(3.35)

By the law of total variance and equations (3.34) and (3.35), we get:

Var[Zt|Z(t) = z(t), σ2
t ] = Var

[
E[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ

2
t ]|Z(t) = z(t), σ2

t

]
+

+E
[
Var[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ

2
t ]|Z(t) = z(t), σ2

t

]
=

(uTt (x)− rTt (x)R−1Ht)Σt(u
T
t (x)− rTt (x)R−1Ht)

T+

+σ̂2
ρt−1

(x)Var[Zt−1(x)|Z(t−1) = z(t−1)] + σ2
t (1− rTt (x)R−1t rTt (x))

To drop the dependence on σ2
t in Var[Zt|Z(t) = z(t), σ2

t ], we use the law of total variance
again, and obtain

Var[Zt(x)|Z(t) = z(t)] =

= Var[E[Zt(x)|Z(t) = z(t), σ2
t ]|Z(t) = z(t)] + E[Var[Zt(x)|Z(t) = z(t), σ2

t ]|Z(t) = z(t)].

Note that, as previously stated, E[µZt(x)|Z(t) = z(t)] is independent of σ2
t , thus

E[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ
2
t ] = E[E[Zt(x)|Z(t) = z(t), βt, βρt−1 ]|Z(t) = z(t)] =

E[µZt(x)|Z(t) = z(t)]

=⇒ E[Zt(x)|Z(t) = z(t), βt, βρt−1 ] ⊥ σ2
t .

For this reason, the term Var[E[Zt(x)|Z(t) = z(t), σ2
t ]|Z(t) = z(t)] is equal to 0, since

E[Zt(x)|Z(t) = z(t), σ2
t ] = E[E[Zt(x)|Z(t) = z(t), βt, βρt−1 , σ

2
t ]|Z(t) = z(t), σ2

t ],

and this is independent of σ2
t .

Therefore, now, we only need to take the expectation in σ2
t of the term Var[Zt|Z(t) =

z(t), σ2
t ] which is equal to

(uTt (x)− rTt (x)R−1Ht)Σt(u
T
t (x)− rTt (x)R−1Ht)

T+

+σ̂2
ρt−1

(x)Var[Zt−1(x)|Z(t−1) = z(t−1)] + σ2
t (1− rTt (x)R−1t rTt (x)).

Observe that [σ2
t |z(t)] ∼ IG

(
at,

Qt
2

)
implies that the posterior mean of σ2

t is Qt
2(at−1) .

We also note that, since Σt is linear in σ
2
t , the expectation of Σt is the expression for Σt

with σ2
t replaced by its posterior mean. Thus,

Var[Zt(x)|Z(t) = z(t)] = σ̂2
ρt−1

(x)Var[Zt−1(x)|Z(t−1) = z(t−1)]+

+
Qt

2(at − 1)
(1− rTt (x)R−1t rTt (x)) + (uTt − rTt (x)R−1t Ht)Σ̂t(u

T
t − rTt (x)R−1t Ht)

T

Variance for t = 1: Follows from easier but similar steps as for the ones performed above
for t > 1, noting that every term ρt−1(x) must be equal to 0.

Remark 4. Where we need to take the expectation of Σtνt with respect to σ2
t , we, in fact,

have an expression that does not depend on σ2
t anymore. We have replaced that with Σ̂tν̂t

only to simplify the notation and understanding.
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3.3.3 Cross-validation procedure

Though a cross-validation procedure might be extremely time-consuming for a general
model, the recursive formulation of the co-kriging model allows shortcuts for it.

We let ξs be the set of indices of ntest test points in Ds, which constitute the test set
Dtest, and ξt, for 1 ≤ t < s, be the corresponding set of indices in Dt. Notice that this
is possible because of the nested property Ds ⊆ Ds−1 ⊆ · · · ⊆ D1, meaning that if we
remove a subset of the data from the highest level of code, we can remove it from all of
the other levels as well.

The following proposition gives the predictive error and variance vectors for the cross-
validation procedure for the non-informative case. This is an extension of the cross-
validation for Gaussian processes (subsection 2.7.2) and it provides the predictive error
and variance for known or unknown parameters (βt, βρt−1 , σ

2
t ), for 1 < t ≤ s, and (β1, σ

2
1),

the simple co-kriging and universal co-kriging models, respectively.
As in subsection 2.7.2, we use vζ for a vector containing the entries of v with indices in

the set ζ, v−ζ for the vector of entries of v with indices not in ζ, [A][ζ,γ] for the submatrix
of A containing the rows with indices in ζ and columns with indices in γ, and similarly
to the vector case for the submatrices [A][−ζ,γ], [A][ζ,−γ], and [A][−ζ,−γ].

Proposition 3.3 (Proposition 3 of [Le Gratiet & Garnier '14]). Let us consider s
Gaussian processes {Zt(x)}t=1,...,s, as in the recursive model presented in (3.16), and
Z(s) = (Z1, . . . ,Zs), with Zt containing the values of {Zt(x)}x∈Dt, for t = 1 . . . , s, and
Ds ⊆ Ds−1 ⊆ . . . D1. We denote by Dtest a set consisting of points of index ξs of Ds and ξt
the corresponding indices of the points in Dt for 1 ≤ t < s. Let λt,−ξt denote the posterior
mean of the regression, and adjustment parameters (βTρt−1

βTt )T . Then, if εZt,ξt are the
errors (i.e. observed values minus predicted values) of the cross-validation procedure at
the level t when we remove the points of Dtest from levels u to t, we have

(εZt,ξt − ρ̂t−1(Dtest)� εZt−1,ξt−1)[R
−1
t ][ξt,ξt] = [R−1t (zt −Htλt,−ξt)][ξt], (3.36)

with εZi,ξi = 0, for i < u,

λt,−ξt =
(
[Ht]

T
[−ξt]Kt[Ht][−ξt]

)−1
[Ht]

T
−ξtKtzt(Dt\Dtest), (3.37)

ρ̂t−1 = gTt−1(Dtest)[λt,−ξt ]1,...,qt−1 ,

and
Kt = [R−1t ][−ξt,−ξt] − [R−1t ][−ξt,ξt]

(
[R−1t ][ξt,ξt]

)−1
[R−1t ][ξt,−ξt].

Furthermore, if we denote by σ2
Zt,ξt

the variances of the corresponding cross-validation
procedure, we have

σ2
Zt,ξt = σ̂2

ρt−1,−ξt(Dtest)� σ2
Zt−1,ξt−1

+ σ2
t,−ξtdiag

((
[R−1t ][ξt,ξt]

)−1)
+ Vt, (3.38)

with

σ̂2
ρt−1,−ξt(Dtest) = gTt−1(Dtest)

(
Σρt−1,ξt + [λt,−ξt ]1,...,qt−1 [λt,−ξt ]

T
1,...,qt−1

)
gt−1(Dtest),

Σρt−1,ξt =
[(

[HT
t ][−ξt]Kt[Ht][−ξt]

)−1]
[1,...,qt−1,1,...,qt−1]

,
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and

σ2
t,−ξt =

(
zt(Dt\Dtest)− [Ht][−ξt]λt,−ξt

)T
Kt

(
zt(Dt\Dtest)− [Ht][−ξt]λt,−ξt

)
nt − pt − qt−1 − ntest

, (3.39)

where σ2
i,−ξi = 0 for i < u, ntest is the length of the index vector ξs, Ht = [Gt−1 �

(zt−1(Dt)1
T
qt−1

) Ft], and

Vt = Ut
(
[HT

t ][−ξt]Kt[Ht][−ξt]
)−1UTt ,

Ut = vt +
(
[R−1t ][ξt,ξt]

)−1
[R−1t Ht][ξt],

and vt = −[gTt−1(Dtest)� (εZt−1,ξt−11
T
qt−1

) 0].

Proof. We begin by ordering the points in Dt so that the points with index ξt are the ntest
last points of Dt for every t. Then,

Rt =

[
[Rt][−ξt,−ξt] [Rt][−ξt,ξt]
[Rt][ξt,−ξt] [Rt][ξt,ξt]

]
.

Using the blockwise inversion formula (A.7), we have that

R−1t =

[
A B
BT Q−1

]
,

with

A =
(
[Rt][−ξt,−ξt]

)−1
+
(
[Rt][−ξt,−ξt]

)−1
[Rt][−ξt,ξt]Q−1[Rt][ξt,−ξt]

(
[Rt][−ξt,−ξt]

)−1
,

BT = −Q−1[Rt][ξt,−ξt]
(
[Rt][−ξt,−ξt]

)−1
and

Q = [Rt][ξt,ξt] − [Rt][ξt,−ξt]
(
[Rt][−ξt,−ξt]

)−1
[Rt][−ξt,ξt].

Now, we must compute the prediction for the points in Dtest at level the t. This will
be done for two cases: the simple co-kriging, when the parameters are �xed, and the
universal co-kriging, when they must be estimated.

Simple co-kriging: In this case, we have the variance and trend parameters �xed: σ2
t,−ξt =

Qt
2(at−1) , λt,−ξt = Σtνt and Vt = 0 (refer to Equation (3.20) and compare to (3.33)); Vt is an
additive term related to the parameter estimations in the universal co-kriging case). Note

that Q =
(
[R−1t ][ξt,ξt]

)−1
, thus Qt

2(at−1)Q represents the covariance matrix of a Gaussian

process with kernel Qt
2(at−1)rt(x, x

′) on the points in Dtest, and conditioned by the value of

the process on the points in Dt\Dtest. Also,

Qi,i = 1− rt(xit, Dt\Dtest)
T
(
[Rt][−ξt,−ξt]

)−1
rt(x

i
t, Dt\Dtest).

Therefore, by Equation (3.20), achieving (3.38) is straightforward.
For the predictive mean, by Equation (3.19), we have that the predicted output values

for inputs in Dtest are

µZt(Dtest) = hTt (Dtest)Σtνt + [Rt][ξt,−ξt][Rt]
−1
[−ξt,−ξt](zt(Dt\Dtest)− [H]T[−ξt]Σtνt), (3.40)
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with hTt (x) = [µZt−1(x)gTt−1(x) fTt (x)] and Σtνt = λt,−ξt .
Now, note that

[R−1t (zt −HT
t λt,−ξt)][ξt] = [R−1t ][ξt,ξt](zt(Dtest)− [Ht]

T
[ξt]λt,−ξt)+

[R−1t ][ξt,−ξt](zt(Dt\Dtest)− [Ht]
T
[−ξt]λt,−ξt).

Since
(
[R−1t ][ξt,ξt]

)−1
[R−1t ][ξt,−ξt] = QBT = −[Rt][ξt,−ξt][Rt]

−1
[−ξt,−ξt], we have that(

[R−1t ][ξt,ξt]
)−1

[R−1t (zt −HT
t λt,−ξt)][ξt] = zt(Dtest)− [Ht]

T
[ξt]λt,−ξt−

[Rt][ξt,−ξt][Rt]
−1
[−ξt,−ξt](zt(Dt\Dtest)− [Ht]

T
[−ξt]λt,−ξt).

We then add and subtract hTt (Dtest) = [gTt−1(Dtest) � (µZt−1(Dtest)1
T
qt−1

) fTt (Dtest)]
multiplied by λt,−ξt in the previous equation. This, Equation (3.40), the equality
λt,−ξt = Σtνt, and the fact that εZt,ξt = zt(Dtest)− µZt(Dtest) imply that(

[R−1t ][ξt,ξt]
)−1

[R−1t (zt −HT
t λt,−ξt)][ξt] = εZt,ξt − ([Ht]

T
[ξt] − hTt (Dtest))λt,−ξt .

Finally, note that

[Ht]
T
[ξt] − hTt (Dtest) = [gTt−1(Dtest)� ((zt−1(Dtest)− µZt−1(Dtest))1

T
qt−1

) 0] =

[gTt−1(Dtest)� (εZt−1,ξt−11
T
qt−1

) 0]

=⇒ ([Ht]
T
[ξt] − hTt (Dtest))λt,−ξt = ρ̂t−1(Dtest)� εZt−1,ξt−1

=⇒
(
[R−1t ][ξt,ξt]

)−1
[R−1t (zt −HT

t λt,−ξt)][ξt] = εZt,ξt − ρ̂t−1(Dtest)� εZt−1,ξt−1 .

Universal co-kriging: When the trend and variance parameters are unknown, they must
be re-estimated with the data set with observations on the points in Dt\Dtest. We must
refer to Subsection 3.3.1, where we have expressions for the estimates of the parameters
when trained on Dt and obtain similar ones training only on Dt\Dtest.

Notice that all expressions in Subsection 3.3.1 involve R−1t . In our case, this must
be replaced by [Rt]

−1
[−ξt,−ξt]. Since we do not want to invert new (and big) matrices for

each di�erent set Dtest, we must write an expression for [Rt]
−1
[−ξt,−ξt] including only the

previously obtained inverse matrix R−1t and multiplications. For this, we will use the
block matrix inversion formula (A.7) again. We write the inverse of Rt as

R−1t =

[
[R−1t ][−ξt,−ξt] [R−1t ][−ξt,ξt]
[R−1t ][ξt,−ξt] [R−1t ][ξt,ξt]

]
=⇒ [Rt][−ξt,−ξt] =

(
[R−1t ][−ξt,−ξt] − [R−1t ][−ξt,ξt][R

−1
t ][ξt,ξt][R

−1
t ][ξt,−ξt]

)−1
.

Hence, [Rt]
−1
[−ξt,−ξt] = Kt. With this, it is easier to obtain the estimates for the trend

and variance parameters. By (3.30), we promptly obtain the estimate for the variance
parameter written in Equation (3.39). Similarly, the trend parameters estimate in 3.37 is
obtained using (3.28) and (3.29).
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For the mean, we recall Equation (3.32), with which we get the predictive mean when
training on the set Dt\Dtest:

E[Zt(x)|Z(t) = z(t)] = uTt (x)λt,−ξt + [rTt (x)][−ξt][Rt]
−1
[−ξt,−ξt](zt(Dt\Dtest)− [Ht][−ξt]λt,−ξt),

with uTt (x) = (gTt−1(x)E[Zt−1(x)|Z(t−1) = z(t−1)] ft(x)T ). We highlight that the
conditioning term in the expectations is on the known values of the Gaussian processes
Zi(x) on the points in Di\Dtest, for u ≤ i ≤ t and Di for i ≤ u, but we keep the previous
notation for simplicity. Then,

E[Zt(Dtest)|Z(t) = z(t)] = uTt (Dtest)λt,−ξt+[Rt][ξt,−ξt][Rt]
−1
[−ξt,−ξt](zt(Dt\Dtest)−[Ht][−ξt]λt,−ξt).

We obtained an equivalent expression to the one in the simple co-kriging case. This way,
the same algebraic manipulations performed in the previous case, only replacing ht with
ut, which also have similar expressions, yield equation (3.36).

The variance of the universal co-kriging is given by Equation (3.33), therefore when
training on Di\Dtest, for u ≤ i ≤ t and Di for i < u, we obtain an equivalent expression
to the simple co-kriging case except for the last term which then becomes

(uTt (Dtest)−[Rt][ξt,−ξt]Kt[Ht][−ξt])([HT
t ][−ξt]Kt[Ht][−ξt])

−1(uTt (Dtest)−[Rt][ξt,−ξt]Kt[Ht][−ξt])
T .

We have that

uTt (Dtest)− [Rt][ξt,−ξt]Kt[Ht][−ξt] = (uTt (Dtest)− [Ht][ξt]) + ([Ht][ξt] − [Rt][ξt,−ξt]Kt[Ht][−ξt]),

with
uTt (Dtest)− [Ht]

T
[ξt] = −[gTt−1(Dtest)� (εZt−1,ξt−11

T
qt−1

) 0] = vt,

and, since from the block matrix inversion of Rt we know that

[R−1t Ht]ξt = BT [Ht][−ξt] +Q−1[Ht][ξt]

=⇒ Q[R−1t Ht]ξt = QBT [Ht][−ξt] + [Ht][ξt] = Q(−Q−1[Rt][ξt,−ξt]Kt)[Ht][−ξt] + [Ht][ξt]

= [Ht][ξt] − [Rt][ξt,−ξt]Kt[Ht][−ξt].

Therefore, we obtained the expression for Vt:
Vt = Ut([HT

t ][−ξt]Kt[Ht][−ξt])
−1UTt

with Ut = vt + ([R−1t ][ξt,ξt])
−1[R−1t Ht][ξt].

Remark 5. The expressions for t = 1 are obtained by ignoring all terms that are
function of ρt−1(x), gt−1(x) and βρt−1. For example, hTt (x) = fTt (x) instead of hTt (x) =
[µZt−1(x)gTt−1(x) fTt (x)].

The equations presented in the previous propositions are closed form expressions for
the k-fold cross-validation procedure. They are still valid for s = 1, which de�nes a
simple Gaussian process model, and allow re-estimation of the parameters of the model
for each test set Dtest. The cost of the procedure is determined by the inversion of the
matrices [R−1t ][ξt,ξt] of size ntest × ntest for u ≤ t ≤ s and 1 ≤ u ≤ s �xed, when intending
to remove the points of Dtest from all sets Du. This is far less when compared to the
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standard estimation, which would require the inversion of matrices [Rt][−ξt,−ξt] of size
(nt − ntest) × (nt − ntest). Notice that, for small t, we expect a big number nt of data
points at level t.

Nevertheless, this proposition does not allow the re-estimation of the hyperparameters
of the correlation functions rt(x, x

′), this would have to be done separately. Even in this
case, however, the computational cost is reduced by using the aforementioned results.

3.4 Examples

In the next few sections, we present some toy data that exemplify the behavior of the
recursive co-kriging model for various settings.

3.4.1 1-dimensional input data and 2 levels of �delity

We consider the following functions for the high and low-�delity levels:

fhigh(x) = (6x− 2)2 sin(12x− 4),

flow(x) =
1

2
(6x− 2)2 sin(12x− 4) + 10x− 10 =

1

2
fhigh(x) + 10x− 10;

For the low-�delity level, we use 11 equally spaced points in the interval [0, 1], and for
the high-�delity level we use the �rst, fourth, seventh and last of them, see Figure 3.1.
The most basic Gaussian process with zero-mean in the noiseless case is �tted to the data
and the prediction is shown in Figure 3.2.

Di�erent universal co-kriging models are �tted to the data and their predictions are
shown in Figures 3.3 - 3.8. The root mean square error (RMSE) and mean absolute error
are computed on 200 equispaced points in [0, 1]. Respective summaries are exhibited in
Tables 3.1 - 3.6.
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Figure 3.1: Low and high �delity functions with 11 low �delity observations and 4 high �delity
observations.
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Figure 3.2: Noiseless Gaussian process regression with 95% con�dence intervals using only the
high �delity observations for training. The kernel used was σ2 exp{−(x − x′)2/2l2} and the
hyperparameters were optimized. The model presented a RMSE of 5.575 and a MAE of 3.947.
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Figure 3.3: UK model 1 �tted to the data with 95% con�dence intervals. The model presented
a RMSE of 3.861 and a MAE of 2.793.

Table 3.1: Model 1 summary.

Level Model speci�cations Estimates

Kernel
1 Matérn 5/2 l = 0.346
2 Matérn 5/2 l = 0.01

Trend
1 fT1 (x) = 1 βT1 = −1.028
2 fT2 (x) = 1 βT2 = 7.383

Variance
1 - σ21 = 59.888
2 - σ22 = 7.118

Adjustment 2 gT1 (x) = 1 βTρ1 = 0.93
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Figure 3.4: UK model 2 �tted to the data with 95% con�dence intervals. The model presented
a RMSE of 0.184 and a MAE of 0.079.

Table 3.2: Model 2 summary.

Level Model speci�cations Estimates

Kernel
1 Matérn 5/2 l = 0.346
2 Matérn 5/2 l = 0.103

Trend
1 fT1 (x) = 1 βT1 = −1.028
2 fT2 (x) = (1, x) βT2 = (20,−20)

Variance
1 - σ21 = 59.888
2 - σ22 = 1.3× 10−28

Adjustment 2 gT1 (x) = 1 βTρ1 = 2
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Figure 3.5: UK model 3 �tted to the data with 95% con�dence intervals. The model presented
a RMSE of 0.182 and a MAE of 0.08.

Table 3.3: Model 3 summary.

Level Model speci�cations Estimates

Kernel
1 Matérn 5/2 l = 0.346
2 Matérn 5/2 l = 0.01

Trend
1 fT1 (x) = 1 βT1 = −1.028
2 fT2 (x) = x βT2 = −17.067

Variance
1 - σ21 = 59.888
2 - σ22 = 114.965

Adjustment 2 gT1 (x) = 1 βTρ1 = 2.01
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Figure 3.6: UK model 4 �tted to the data with 95% con�dence intervals. The model presented
a RMSE of 1.544 and a MAE of 1.211.

Table 3.4: Model 4 summary.

Level Model speci�cations Estimates

Kernel
1 Matérn 5/2 l = 0.346
2 Matérn 5/2 l = 0.01

Trend
1 fT1 (x) = 1 βT1 = −1.028
2 fT2 (x) = 1 βT2 = 3.69

Variance
1 - σ21 = 59.888
2 - σ22 = 0.002

Adjustment 2 gT1 (x) = (1, x) βTρ1 = (0.082, 1.452)
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Figure 3.7: UK model 5 �tted to the data with 95% con�dence intervals. The model presented
a RMSE of 0.327 and a MAE of 0.233.

Table 3.5: Model 5 summary.

Level Model speci�cations Estimates

Kernel
1 Matérn 3/2 l = 0.279
2 Matérn 3/2 l = 2

Trend
1 fT1 (x) = (1, x) βT1 = (−10.159, 15.817)
2 fT2 (x) = x βT2 = −14.447

Variance
1 - σ21 = 15.455
2 - σ22 = 104.317

Adjustment 2 gT1 (x) = 1 βTρ1 = 1.923
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Figure 3.8: UK model 6 �tted to the data with 95% con�dence intervals.The model presented a
RMSE of 0.56 and a MAE of 0.369.

Table 3.6: Model 6 summary.

Level Model speci�cations Estimates

Kernel
1 OU l = 1.053
2 OU l = 0.01

Trend
1 fT1 (x) = 1 βT1 = −1.72
2 fT2 (x) = (1, x) βT2 = (20,−20)

Variance
1 - σ21 = 48.402
2 - σ22 = 1.2× 10−30

Adjustment 2 gT1 (x) = 1 βTρ1 = 2
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In Figure 3.9, we compare the errors for di�erent UK model setting. We use the
same high and low-�delity functions, but choose to use more observations, 20 equispaced
points in [0, 1] for D1 and D2, in order to better observe the behavior of the errors of the
cross-validation procedure.

The errors were obtained by sequentially removing observations in a randomized order
from the high �delity level only and computing the mean absolute error and the root
mean squared error on the removed observations. For the UK multi-�delity models, we
used a simple trend and adjustment setting, fT1 (x) = fT2 (x) = gTρ1(x) = 1, and di�erent
correlation kernels, using always the same for both levels. For comparison, the same
was done for a 1-level Gaussian process with Matérn 5/2 kernel and optimized constant
mean µ �t to the high-�delity data. The resulting errors were averaged over 100 runs of
observation removal.

Note that when we have almost all of the observations of the high-level of �delity, a
Gaussian process is as good or even better compared to the multi-�delity models. This
happens because we have almost equal input sets D1 and D2 and, we gain not much
more information from the low-�delity observations. However, when there are few high-
�delity observations, all multi-�delity models show smaller errors compared to the 1-level
Gaussian process. This is exactly the context in which multi-�delity is needed, when there
is only a small amount of high-�delity data.
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Figure 3.9: Comparison of the average cross-validation when 20 equally spaced observations in
[0,1] are used and they are removed from the highest level of �delity only.
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3.4.2 1-dimensional input data and 3 levels of �delity

For this brief example, we use the following functions for the three levels of �delity:

fhigh(x) = 6x2 + cos(12x) +
1

2
sin(24x),

fmedium(x) =
1

2
fhigh(x) + x2 + 1,

and

flow(x) =
(
x+

1

4

)
fmedium(x)− x− 1.
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Figure 3.10: 3 levels of �delity functions with 4 high �delity, 7 medium �delity and 13 low �delity
observations.

13 equispaced points in [0, 1] were used for the low �delity points, 7 for the medium
level, and 4 for the high �delity observations. A simple UK model, with fT1 (x) = fT2 (x) =
fT3 (x) = gTρ1(x) = gTρ2(x) = 1 is �tted to the data in Figure 3.11, and a slightly more

complex one with fT1 (x) = fT2 (x) = fT3 (x) = gTρ1(x) = gTρ2(x) = (1, x), in Figure 3.12.
Matérn 5/2 kernels were used for both. The average errors are more than halved in the
second model compared to the simpler one.
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Figure 3.11: UK model 1 �tted to the data with 95% con�dence intervals. Matérn 5/2 kernels
were used for all levels, fT1 (x) = fT2 (x) = fT3 (x) = gTρ1(x) = gTρ2(x) = 1. The RMSE on 200
equispaced points in [0, 1] is 0.366 and the MAE is 0.286.
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Figure 3.12: UK model 2 �tted to the data with 95% con�dence intervals. Matérn 5/2 kernels
were used for all levels, fT1 (x) = fT2 (x) = fT3 (x) = gTρ1(x) = gTρ2(x) = (1, x). The RMSE on 200
equispaced points in [0, 1] is 0.155 and the MAE is 0.127.
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3.4.3 2-dimensional input data and 2 levels of �delity

For this two-dimensional example, we used the functions

fhigh(x, y) = cos(x2 + y2) + 0.5(sin(xy)− x2),
and

flow(x, y) = (0.9 + 0.1x− 0.2y)fhigh(x, y) + 0.5(xy + 0.5y + 1)

for low and high-�delity. Observe the behavior of these two functions in the surface plots
of Figures 3.14 and 3.15, and contour plots in Figure 3.16.

100 input points were uniformly selected in [−2, 2]× [2, 2], 30 of which were randomly
selected for the high-�delity data. The distribution of the input data points is shown in
Figure 3.13.

We �t two models to the data, a simpler UK model, with fT1 (x, y) = fT2 (x, y) =
gTρ1(x, y) = 1 and compare it to a Gaussian process with optimized mean in Figure 3.17,

and a more complex UK model, with fT1 (x, y) = fT2 (x, y) = gTρ1(x, y) = (1, x, y, xy),
and compare it to the corresponding Gaussian process with prior mean (1, x, y, xy)η with
η ∈ R4 optimized via maximum likelihood (ML) in Figure 3.18. All kernels used are
Matérn 5/2 and the Gaussian processes are �tted only to the high-�delity data.

In Figures 3.19 and 3.20, we compare CV errors when using equispaced observations on
a 10× 10 grid in [−2, 2]× [−2, 2] for di�erent models. Matérn 5/2 kernels are used for all
models. For the UK models, observations are removed from the high-�delity level only,
and the Gaussian process has optimized constant mean and uses only the high-�delity
data.
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Figure 3.13: Location of the observations.
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Figure 3.14: High �delity function.
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Figure 3.15: Low �delity function.
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Figure 3.16: High and low �delity functions with inputs in [−2, 2] × [−2, 2] ⊂ R2 used for the
multi-�delity procedure.
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Figure 3.17: Comparative plots between the high �delity function, multi-�delity and Gaussian
process regression. A UK multi-�delity model with fT1 (x, y) = fT2 (x, y) = fT3 (x, y) = gTρ1(x, y) =

gTρ2(x, y) = 1 was �t to the data. The corresponding Gaussian process with prior mean η with
η ∈ R coe�cient estimated via ML is �t in the third panel.
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Figure 3.18: Comparative plots between the high �delity function, multi-�delity and Gaussian
process regression. A UK multi-�delity model with fT1 (x, y) = fT2 (x, y) = gTρ1(x, y) = (1, x, y, xy)
was �t to the data. The corresponding Gaussian process with prior mean (1, x, y, xy)η with
η ∈ R4 coe�cients estimated via ML is �t in the third panel.
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Figure 3.19: Comparison of average CV errors for a multi-�delity model with fT1 (x, y) =
fT2 (x, y) = gTρ1(x, y) = 1 and kernel Matérn 5/2 and a Gaussian process with optimized constant
mean and kernel Matérn 5/2. In the multi-�delity model, the observations are removed from the
high-�delity level only.



CHAPTER 3. MULTI-FIDELITY MODELING 73

1 20 40 60 80 97

number of observations removed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
V

M
A

E

(1)

(1, x, y)

(1, x, y, xy)

(1, x, y, xy, x2, y2)

(1, x, y, xy, x2, y2, xy2, x2y)

1 20 40 60 80 97

number of observations removed

0.0

0.2

0.4

0.6

0.8

C
V

R
M

S
E

(1)

(1, x, y)

(1, x, y, xy)

(1, x, y, xy, x2, y2)

(1, x, y, xy, x2, y2, xy2, x2y)

Figure 3.20: Comparison of average CV errors when removing observations from the high-level
of �delity for a multi-�delity model with kernel Matérn 5/2, and di�erent basis functions used
for fT1 (x, y) = fT2 (x, y) = gTρ1(x, y), which given in the legend.



Chapter 4

Conclusion and Perspectives

We present, in Chapter 3, the work of Le Gratiet in [Le Gratiet & Garnier '14] and
[Le Gratiet '13] in establishing the equivalence of the recursive formulation of the co-
kriging procedure and the classical co-kriging multi-�delity model of Kennedy and
O'Hagan proposed in [Kennedy & O'Hagan '98]. This new formulation provides a lower
computational cost for the inference steps, since, for the Gaussian process prediction,
the s-level model requires the inversion of s matrices of sizes nt × nt, with t = 1, . . . , s,
instead of the previous classical model, which required the inversion of a matrix of size∑s

t=1 nt ×
∑s

t=1 nt. Furthermore, closed form expressions for cross-validation error and
variance are available, which allow us to perform model selection via cross-validation at
a lower computational cost than carrying out several necessary �ttings.

In the examples of Section 3.4, we observed the �tting nature of multi-�delity models.
Models 1-6 of Section 3.4.1 show us how di�erent kernels for the correlation function, and
di�erent trend and adjustment basis functions in�uence the predictions. Furthermore, in
Figure 3.9 we note how the errors decrease for di�erent kernels when we have more high-
�delity observations, and we compare them to a 1 level Gaussian process. It is evident
that in the important case of few high-�delity observations available, the multi-�delity
co-kriging models greatly surpass the power of Gaussian processes. Also, in Figure 3.20,
we observe how increasing the number of basis functions for the trend and adjustment
improves the �tting results for a more interesting case in 2 dimensions.

Thus, we see that the recursive co-kriging multi-�delity model provides us a powerful
tool for situations where the high-�delity observations are scarse, yet we still have plenty
of low-�delity data.

In the future, we wish to further examine studies that are based on the recursive
model presented in [Le Gratiet & Garnier '14]. One important extension of this model is
the framework presented in [Perdikaris et al. '16] for high-dimensional input spaces and
big data sets. In this paper, the authors use a graph-theoretic approach to encode the
structure of the covariance matrix of the Gaussian processes priors of each level, and
frequency domain machine learning algorithms to reduce the overall cost of the inference
process.

Another work, presented in [Perdikaris et al. '17], generalized the recursive model with
the classical autoregressive formulation to include nonlinearity by rewriting the expression
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of Zt(x) as
Zt(x) = ft−1(Zt−1(x) + δt(x)),

where ft−1(x) is a function to be inferred from the data.



Chapter 5

Appendix

A.1 Probability distributions

A.1.1 Gaussian distribution

The multivariate normal (Gaussian) distribution of an n-dimensional random vector X =
(X1, . . . , Xn)T is written following the notation

X ∼ N (µ,Σ),

where µ denotes the mean vector and Σ the covariance matrix of X. This distribution
has density equal to

f(x) =
exp{−1

2
(x− µ)TΣ−1(x− µ)}√

(2π)n det(Σ)
.

A.1.2 Inverse-gamma distribution

The inverse-gamma distribution of a positive random variable X is written as

X ∼ IG(α, β),

with shape parameter α > 0 and scale parameter β > 0. Its density is given by

f(x) =
βα

Γ(α)
x−α−1 exp

{
− β

x

}
, for x > 0.

X ∼ IG(α, β) has mean equal to β
α−1 , for α > 1, and variance equal to β2

(α−1)(α−2) , for
α > 2.

A.2 Gaussian Identities

A.2.1 Conditional probability

Let x and y be jointly Gaussian random vectors[
x
y

]
∼ N

([
µx
µy

]
,

[
A C
CT B

])
. (A.1)
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Then, the conditional distribution of x given y is

x|y ∼ N (µx + CB−1(y − µy), A− CB−1CT ). (A.2)

A.2.2 Product of Gaussian functions

A product of two Gaussian distributions is another (un-normalized) Gaussian (we write
here N (x|m,Σ) for the density of the Gaussian distribution in RD with mean m and
covariance Σ at the point x):

N (x|a,A)N (x|b, B) = Z−1N (x|c, C) (A.3)

with
c = C(A−1a+B−1b)

C = (A−1 +B−1)−1

and

Z−1 = (2π)−D/2 det(A+B)−1/2 exp

{
− 1

2
(a− b)T (A+B)−1(a− b)

}

A.3 Probability identities

A.3.1 Law of total expectation

Let X and Y be random variables such that Y has �nite mean. Then

E[E[Y |X]] = E[Y ]. (A.4)

A.3.2 Law of total variance

If X and Y are arbitrary random variables for which the necessary expectations and
variances are �nite, then

Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]]. (A.5)

A.4 Matrix identities

A.4.1 Woodbury matrix identity

This identity, also known as matrix inversion lemma, states that

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (A.6)

when A is an n× n invertible matrix, C is an m×m invertible matrix, U is n×m, and
V is m× n.
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A.4.2 Block matrix inversion

If a matrix M is partitioned into four blocks, it's inverse can be partitioned blockwise as

M−1 =

[
A B
C D

]−1
=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

(A.7)
where we assume that both A and D are invertible. Alternatively, we can write

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(A.8)

A.4.3 A particular block multiplication

Suppose that we have M , an invertible m×m matrix, partitioned as

M =
[
M1 X

]
,

where M1 consists of the m− n �rst columns of M and X of its last n columns. Then

M−1X =

[
0
In

]
. (A.9)

This is derived simply by observing that if Y =

[
Y1
Z

]
, with Y1 of size (m− n)× n and Z

of size n× n,

M−1X = Y ⇐⇒ X = MY = M1Y1 +XZ,

which is true if Y1 = 0 and Z = In. The result follows from the fact that Y is unique.

Similarly, let
M =

[
M1 X M2

]
,

with M of size m×m, M1 of size m×m1, M2 of size m×m2 and X of size m× n. If

Y =

Y1Z
Y2

 ,
with Y of size m× n, M1 of size m1 × n, Y2 of size m2 × n and Z of size n× n, then

M−1X = Y ⇐⇒ X = MY = M1Y1 +XZ +M2Y2 ⇐⇒ Y1 = 0, Z = In and Y2 = 0.
(A.10)

A.5 Proof of equations (2.10) and (2.11)

Using the Matrix inversion lemma (A.6), it is possible to rewrite the expressions for the
mean and covariance

w̄∗ = HT
∗ b+ (KT

∗ +HT
∗ BH)(Ky +HTBH)−1(y −HT b),
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and

Cov[w∗] = K(X∗, X∗) +HT
∗ BH∗ − (KT

∗ +HT
∗ BH)T (Ky +HTBH)−1(K∗ +HTBH∗),

to obtain more interpretable ones. Indeed, note that

(Ky +HTBH)−1 = K−1y −K−1y HT (B−1 +HK−1y HT )−1HK−1y . (A.11)

For the expression of the predictive covariance, we have that

Cov[w̄∗] = K(X∗, X∗) +HT
∗ BH∗−

(KT
∗ +HT

∗ BH)(K−1y −K−1y HT (B−1 +HK−1y HT )−1HK−1y )(K∗ +HTBH∗).
(A.12)

Observe that

(B−1 +HK−1y HT )(B−1 +HK−1y HT )−1 = (B−1 +HK−1y HT )−1(B−1 +HK−1y HT ) = I

therefore

(KT
∗ +HT

∗ BH)K−1y (K∗ +HTBH∗) = KT
∗ K

−1
y K∗ +KT

∗ K
−1
y HTBH∗+

HT
∗ BHK

−1
y K∗ +HT

∗ BHK
−1
y HTBH∗ =

KT
∗ K

−1
y K∗ +KT

∗ K
−1
y HT (B−1 +HK−1y HT )−1(B−1 +HK−1y HT )BH∗+

HT
∗ B(B−1 +HK−1y HT )(B−1 +HK−1y HT )−1HK−1y K∗ +HT

∗ BHK
−1
y HTBH∗

(A.13)

The last term in the previous expression can be rewritten as

HT
∗ BHK

−1
y HTBH∗ = HT

∗ B(B−1 +HK−1y HT )BH∗ −HT
∗ BH∗ =

HT
∗ B(B−1 +HK−1y HT )(B−1 +HK−1y HT )−1(B−1 +HK−1y HT )BH∗ −HT

∗ BH∗.
(A.14)

In addition to this, we have that

(KT
∗ +HT

∗ BH)(K−1y HT (B−1 +HK−1y HT )−1HK−1y )(K∗ +HTBH∗) =

KT
∗ K

−1
y HT (B−1 +HK−1y HT )−1HK−1y K∗ +KT

∗ K
−1
y HT (B−1 +HK−1y HT )−1HK−1y HTBH∗+

HT
∗ BHK

−1
y HT (B−1 +HK−1y HT )−1HK−1y K∗+

HT
∗ BHK

−1
y HT (B−1 +HK−1y HT )−1HK−1y HTBH∗.

(A.15)

Lastly, observe that

−HT
∗ B(B−1 +HK−1y HT )(B−1 +HK−1y HT )−1(B−1 +HK−1y HT )BH∗+

HT
∗ BHK

−1
y HT (B−1 +HK−1y HT )−1HK−1y HTBH∗ =

−HT
∗ (B−1 +HK−1y HT )−1H∗ − 2HT

∗ BH∗.

(A.16)

Substituting all the terms of Equations (A.13)-(A.16) back in Equation (A.12) for Cov[w̄∗],
we obtain

Cov[w̄∗] = Cov[z̄∗] +RT (B−1 +HK−1y HT )−1R,

with
Cov[z̄∗] = K(X∗, X∗)−KT

∗ K
−1
y K∗.
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For the predictive mean, using Equation (A.11), we have that

w̄∗ = HT
∗ b+ (KT

∗ +HT
∗ BH)(K−1y −K−1y HT (B−1 +HK−1y HT )−1HK−1y )(y −HT b) =

HT
∗ b+ (KT

∗ +HT
∗ BH)K−1y (y −HT b)−

(KT
∗ +HT

∗ BH)K−1y HT (B−1 +HK−1y HT )−1HK−1y (y −HT b) =

KT
∗ K

−1
y y +

(
HT
∗ B − (KT

∗ +HT
∗ BH)K−1y HT (B−1 +HK−1y HT )−1

)
HK−1y y+(

HT
∗ − (KT

∗ +HT
∗ BH)K−1y HT + (KT

∗ +HT
∗ BH)K−1y HT (B−1 +HK−1y HT )−1HK−1y HT

)
b

(A.17)
We can now identify the term KT

∗ K
−1
y y = z̄∗. For the second term containing y, the

second term of the fourth row of the last equation, note that

HT
∗ B − (KT

∗ +HT
∗ BH)K−1y HT (B−1 +HK−1y HT )−1 =(

HT
∗ B(B−1 +HK−1y HT )− (KT

∗ +HT
∗ BH)K−1y HT

)
(B−1 +HK−1y HT )−1 =

RT (B−1 +HK−1y HT )−1,

(A.18)

and for the term with b,(
HT
∗ − (KT

∗ +HT
∗ BH)K−1y HT + (KT

∗ +HT
∗ BH)K−1y HT (B−1 +HK−1y HT )−1HK−1y HT

)
=(

H∗B(B−1 +HK−1y HT )(B−1 +HK−1y HT )−1B−1
)
−
(

(KT
∗ +HT

∗ BH)K−1y HT
)

+(
(KT
∗ +HT

∗ BH)K−1y HT − (KT
∗ +HT

∗ BH)K−1y HT (B−1 +HK−1y HT )−1B−1
)

=

RT (B−1 +HK−1y HT )B−1.
(A.19)

Using all these rewritten Equations (A.18) and (A.19) in Equation (A.17), we obtain

w̄∗ = z̄∗ +RT β̄.

A.6 Requisites for the proof of Proposition 3.1 of Section 3.3

We leave all dependences on hyperparameters implicit for the sake of notation.

Proposition A.1 (Proposition 3.1 of [Le Gratiet '13]). If we consider the covariance
matrix Vs in (3.10) and sort the experimental design arranged so that, for t = 2, . . . , s, �rst
come the points that are in Dt−1 but not in Dt, and then the points in Dt, (Dt−1\Dt, Dt),
then the inverse of Vs has the form

V −1s =

V −1s−1 +

[
0 0

0
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]
−
[

0
(ρs−1(Ds)1Tns )�R

−1
s

σ2
s

]
−
[
0

(1nsρ
T
s−1(Ds))�R

−1
s

σ2
s

]
R−1
s

σ2
s

 , (A.20)
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and

V −11 =
R−11

σ2
1

,

where Vs−1 is a (
∑s−1

i=1 ni×
∑s−1

i=1 ni) matrix, and Rs = [rs(x, x
′)]x,x′∈Ds an (ns×ns) matrix.

Proof. Let

Vs =

[
Vs−1 Us−1
UT
s−1 Vs,s

]
, with Us−1 =

 V1,s
...

Vs−1,s

 = Cov{Z(s−1),Zs},

where Vs−1 = Cov{Zs−1,Zs−1} and Vt,s = Cov{Zt,Zs}.
Using (A.7), we can write the inverse of Vs as[

Vs−1 Us−1
UT
s−1 Vs,s

]−1
=

[
V −1s−1 + V −1s−1Us−1Q

−1
s UT

s−1V
−1
s−1 −V −1s−1Us−1Q

−1
s

−Q−1s UT
s−1V

T
s−1 Q−1s

]
where Qs = Vs,s − UT

s−1V
−1
s−1Us−1. From (3.11), we know that for t < s,

Vt,s = [1ntρ
T
s−1(Ds)]� Vt,s−1(Dt, Ds)

=⇒ Us−1 =

 V1,s
...

Vs−1,s

 = [1∑s−1
i=1 ni

ρTs−1(Ds)]�

 V1,s−1(D1, Ds)
...

Vs−1,s−1(Ds−1, Ds)

 .
Note that the ns last columns of Vs−1 are precisely V1,s−1(D1, Ds)

...
Vs−1,s−1(Ds−1, Ds)

 .
By (A.9) and the fact that the Hadamard product is between a matrix with all identical

rows and the one made of the ns last columns of Vs−1, we obtain

V −1s−1Us−1 = V −1s−1[1∑s−1
i=1 ni

ρTs−1(Ds)]�

 V1,s−1(D1, Ds)
...

Vs−1,s−1(Ds−1, Ds)

 =

[1∑s−1
i=1 ni

ρTs−1(Ds)]�
[

0
Ins

]
,

with the 0 in the last equality being a (
∑s−1

i=1 ni − ns) × ns matrix with all entries equal
to 0.

Now we can rewrite Qs as something more familiar:

Qs = Vs,s + UT
s−1V

−1
s−1Us−1 =
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= Cov{Zs,Zs} − Cov{Zs−1,Zs}TVar[Z(s−1)]Cov{Z(s−1),Zs}.
And this is exactly the predictive variance of Zs conditioned by Z(s−1). In addition to
this,

Zs = Zs(Ds) = ρs−1(Ds)� Zs−1(Ds) + δs(Ds)

=⇒ Var[Zs|Z(s−1)] = Var[ρs−1(Ds)� Zs−1(Ds) + δs(Ds)|Z(s−1)] =

= Var[δs(Ds)|Z(s−1)] = Var[δs(Ds)] = σ2
sRs,

since Zs−1(Ds) is a constant when conditioned by Z(s−1) and δs(x) is independent of
Z(s−1).

Having expressions for V −1s−1Us−1 and Qs, it becomes easier to construct the matrix
V −1s . Note that

V −1s−1Us−1Q
−1
s =

(
[1∑s−1

i=1 ni
ρTs−1(Ds)]�

[
0
Ins ,

])
R−1s
σ2
s

=

[
0(

∑s−1
i=1 ni−ns)×ns(

[1nsρ
T
s−1(Ds)]� Ins

)
R−1
s

σ2
s

]
=

[
0(

∑s−1
i=1 ni−ns)×ns

[ρs−1(Ds)1
T
ns ]� R−1

s

σ2
s

]
,

and this implies that

V −1s−1Us−1Q
−1
s UT

s−1V
−1
s−1 =

[
0(

∑s−1
i=1 ni−ns)×ns

[ρs−1(Ds)1
T
ns ]� R−1

s

σ2
s

] [
0ns×(

∑s−1
i=1 ni−ns)

[ρs−1(Ds)1
T
ns ]� Ins

]
=

=

[
0(

∑s−1
i=1 ni−ns)×(

∑s−1
i=1 ni−ns)

0(
∑s−1
i=1 ni−ns)×ns

0ns×(
∑s−1
i=1 ni−ns)

[
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]] .
Therefore, using everything we constructed, we obtain a recursive form for V −1s :

V −1s =

[
W1,1 W1,2

W T
1,2 W2,2

]
with

W1,1 =

[
V −1s−1 +

[
0 0

0
[
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]]]
,

W1,2 = −
[

0
[ρs−1(Ds)1Tns ]�R

−1
s

σ2
s

]
,

W T
1,2 = −

[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
,

W2,2 =
R−1s
σ2
s

,

and V −11 =
R−1

1

σ2
1
.
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Proposition A.2 (Proposition 3.2 of [Le Gratiet '13]). If Vs is the covariance matrix in
equation (3.10) and kTs (x) the covariance vector in equation (3.8), the following equality
is valid:

kTs (x)V −1s =
(
ρs−1(x)kTs−1(x)V −1s−1 − (0, [ρTs−1(Ds)� rTs (x,Ds)]R

−1
s ), rTs (x,Ds)R

−1
s

)
.

Proof. In (3.8) and (3.9), we obtained a recursive expression for kTs (x):

kTs (x) = Cov{Zs(x),Z(s)} = (cT1 (x,D1), . . . , c
T
s (x,Ds))

T ,

with
cTt (x,Dt) = Cov{Zs(x), Zt(Dt)}

=⇒ cTt (x,Dt) = ρt−1(Dt)� cTt−1(x,Dt) +

( s−1∏
i=t

ρi(x)

)
σ2
t r
T
t (x,Dt). (A.21)

By Proposition A.1,

V −1s =

V −1s−1 +

[
0 0

0
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]
−
[

0
(ρs−1(Ds)1Tns )�R

−1
s

σ2
s

]
−
[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
R−1
s

σ2
s

 ,
which we will split as V −1s =

[
A B

]
with

A =

V −1s−1 +

[
0 0

0
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]
−
[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
 and B =

−
[

0
(ρs−1(Ds)1Tns )�R

−1
s

σ2
s

]
R−1
s

σ2
s

 .
This implies that

kTs (x)V −1s =
[
kTs (x)A kTs (x)B

]
.

For A:

kTs (x)A = (cT1 (x,D1), . . . , c
T
s−1(x,Ds−1))

[
V −1s−1 +

[
0 0

0
(ρs−1(Ds)ρTs−1(Ds))�R

−1
s

σ2
s

]]
−

cTs (x,Ds)
[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
Note that Equation (3.6) implies that, for 1 ≤ t ≤ s− 1,

ct(x,Dt) = Cov{Zs(x), Zt(Dt)} = ρs−1(x)Cov{Zs−1(x), Zt(Dt)}

=⇒ (cT1 (x,D1), . . . , c
T
s−1(x,Ds−1))

T = ρs−1(x)kTs−1(x) = ρs−1(x)Cov{Zs−1(x),Z(s−1)}.
(A.22)
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As in Proposition A.1, the points in the sets Dt−1 are ordered such that �rst come
the points in Dt−1\Dt and after the ones in Dt. This ordering helps us manage many
expressions we come across. Therefore,

cTs−1(x,Ds−1) = (cTs−1(x,Ds−1\Ds), cTs−1(x,Ds)).

and with these last expressions we obtain

kTs (x)A = ρs−1(x)kTs−1(x)V −1s−1 +

(
0, cTs−1(x,Ds)

(ρs−1(Ds)ρ
T
s−1(Ds))�R−1s
σ2
s

)
−cTs (x,Ds)

[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
.

Also, by Equation (A.21), we know that

cTs (x,Ds) = ρs−1(Ds)� cTs−1(x,Ds) + σ2
sr
T
s (x,Ds) (A.23)

=⇒ cTs (x,Ds)
[
0

[1nsρ
T
s−1(Ds)]�R

−1
s

σ2
s

]
=(

0, cTs−1(x,Ds)
[ρs−1(Ds)ρ

T
s−1(Ds)]�R−1s
σ2
s

+ [ρTs−1(Ds)� rTs (x,Ds)]R
−1
s

)

=⇒ kTs (x)A = ρs−1(x)kTs−1(x)V −1s−1 − (01×(
∑s−1
i=1 ni−ns)

, [ρTs−1(Ds)� rTs (x,Ds)]R
−1
s ).

For B: We'll use the identities already obtained in the previous part of the proof.

kTs (x)B = −(cT1 (x,D1), . . . , c
T
s−1(x,Ds−1))

[
0

(ρs−1(Ds)1Tns )�R
−1
s

σ2
s

]
+ cTs (x,Ds)

R−1s
σ2
s

=

−cTs−1(x,Ds)
(ρs−1(Ds)1

T
ns)�R−1s

σ2
s

+ (ρs−1(Ds)� cTs−1(x,Ds) + σ2
sr
T
s (x,Ds))

R−1s
σ2
s

=

= rTs (x,Ds)R
−1
s .

And all together...

kTs (x)V −1s =
(
ρs−1(x)kTs−1(x)V −1s−1 − (0, [ρTs−1(Ds)� rTs (x,Ds)]R

−1
s ), rTs (x,Ds)R

−1
s

)
.
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A.7 Parameter estimation of subsection 3.3.1

We'll use the approach presented in [Ho� '09] for the problem of �nding the posterior of
two parameters θ and γ when their prior distributions are of the form p(θ|γ) and p(γ). If
we call the data X, we observe that the joint posterior distribution can be decomposed
as

p(θ, γ|X) = p(θ|γ,X)p(γ|X).

Then, the posterior distribution p(θ|X, γ) is obtained by noting that

p(θ|X, γ) =
p(θ|γ)p(X|θ, γ)

p(X|γ)
∝ p(θ|γ)p(X|θ, γ).

Next, the posterior distribution of γ is given by a marginalization:

p(γ|X) =
p(γ)p(X|γ)

p(X)
∝ p(γ)p(X|γ) = p(γ)

∫
p(X|θ, γ)p(θ|γ)dθ.

First considerations: Again, the obvious dependencies are left implicit.
We know that

Z1(D1) = δ1(D1) ∼ N (F1β1, σ
2
1R1),

and that

Zt(Dt) = ρt−1(Dt)� Z̃t−1(Dt) + δt(Dt) = [Gt−1βρt−1 ]� Z̃t−1(Dt) + δt(Dt) =

[Gt−1 � [Z̃t−1(Dt)1
T
qt−1

]βρt−1 + δt(Dt)

∼ N (Gt−1 � [zt−1(Dt)1
T
qt−1

]βρt−1 + Ftβt, σ
2
tRt)

(see Remarks 1 and 2 for clari�cation).
Let H1 = F1 and Ht =

[
Gt−1 � [zt−1(Dt)1

T
qt−1

Ft
]
, for t > 1. Also, for simplicity,

β̃t =

[
βρt−1

βt

]
, for t > 1, and β̃1 = β1. Then, we can rewrite the previous expressions

simply as
Zt(Dt)|z(t−1), β̃t, σ2

t ∼ N (Htβ̃t, σ
2
tRt),

for t = 1, . . . , s, with the convention z(0) = ∅.
Now we can construct the likelihood equations, for our observations zt for t = 1, . . . , s:

p(zt|z(t−1),β̃t, σ2
t ) =

1

(2π)nt/2
1√

det(σ2
tRt)

exp

{
− 1

2
(zt −Htβ̃t)

T R
−1
t

σ2
t

(zt −Htβ̃t)

}

All priors non-informative (ii):
Note that

(zt −Htβ̃t)
T R
−1
t

σ2
t

(zt −Htβ̃t) =
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zTt
R−1t
σ2
t

zt + β̃Tt (HT
t

R−1t
σ2
t

Ht)β̃t − β̃Tt HT
t

R−1t
σ2
t

zt − zTt
R−1t
σ2
t

Htβ̃t =

(β̃t − Σtνt)
TΣ−1t (β̃t − Σtνt) + zTt

R−1t
σ2
t

zt − νTt Σtνt,

where Σt =
[
HT
t
R−1
t

σ2
t
Ht

]−1
and νt =

[
HT
t
R−1
t

σ2
t
zt

]
. Therefore,

p(zt|z(t−1), β̃t, σ2
t ) =

1

(2π)nt/2
1√

det(σ2
tRt)

exp

{
−1

2

(
(β̃t−Σtνt)

TΣ−1t (β̃t−Σtνt)+z
T
t

R−1t
σ2
t

zt−νTt Σtνt

)}
. (A.24)

Since zTt
R−1
t

σ2
t
zt − νTt Σtνt is constant with respect to β̃t,

p(β̃t|z(t), σ2
t ) ∝ p(β̃t|z(t−1), σ2

t )p(zt|z(t−1)β̃t, σ2
t ) ∝ exp

{
− 1

2
(β̃t − Σtνt)

TΣ−1t (β̃t − Σtνt)

}
=⇒ [β̃t|z(t), σ2

t ] ∼ N (Σtνt,Σt).

For the posterior of σ2
t , we know that

p(σ2
t |z(t)) ∝ p(σ2

t |z(t−1))
∫
p(zt|z(t−1), β̃t, σ2

t )p(β̃t|z(t−1), σ2
t )dβ̃t ∝

1

σ2t

∫
1

(2π)nt/2
1√

det(σ2tRt)
exp

{
− 1

2

(
(β̃t−Σtνt)

TΣ−1t (β̃t−Σtνt)+zTt
R−1t
σ2t

zt−νTt Σtνt

)}
1dβ̃t ∝

1

σ2t

1

(σ2t )
nt/2

exp

{
− 1

2

(
zTt
R−1t
σ2t

zt− νTt Σtνt

)}∫
exp

{
− 1

2

(
(β̃t−Σtνt)

TΣ−1t (β̃t−Σtνt)

)}
dβ̃t ∝

1

σ2
t

1

(σ2
t )
nt/2

exp

{
− 1

2

(
zTt
R−1t
σ2
t

zt − νTt Σtνt

)}
det(Σt) ∝

1

σ2
t

1

(σ2
t )
nt/2

exp

{
− 1

2

(
zTt
R−1t
σ2
t

zt − νTt Σtνt

)}
(σ2

t )
(pt+qt−1)/2.

Note that

zTt
R−1t
σ2
t

zt − νTt Σtνt =
1

σ2
t

(
zTt R

−1
t zt − (HT

t R
−1
t zt)

T
[
HT
t R
−1
t Ht

]−1HT
t R
−1
t zt

)
,

and that if Q̂t = (zt −Htλ̂t)
TR−1t (zt −Htλ̂t), and λ̂t = [HT

t R
−1
t Ht]

−1HT
t R
−1
t zt, then

Q̂t = (zt −Htλ̂t)
TR−1t (zt −Htλ̂t) = zTt R

−1
t zt − zTt R−1t Ht[HT

t R
−1
t Ht]

−1HT
t R
−1
t zt−

(Ht[HT
t R
−1
t Ht]

−1HT
t R
−1
t zt)

TR−1t zt+
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(Ht[HT
t R
−1
t Ht]

−1HT
t R
−1
t zt)

TR−1t Ht[HT
t R
−1
t Ht]

−1HT
t R
−1
t zt

= zTt R
−1
t zt − (HT

t R
−1
t zt)

T
[
HT
t R
−1
t Ht

]−1HT
t R
−1
t zt

∴ p(σ2
t |z(t)) ∝

1

(σ2
t )

(nt−pt−qt−1)/2+1
exp

{
− Q̂t

2

}
=⇒ σ2

t |z(t) ∼ IG(at, Q̂t/2),

with at = (nt − pt − qt−1)/2 + 1 and the convention q0 = 0.

All priors are informative (i): We will follow the same steps as in the non-informative
case (ii), recycling many expressions we found there. First, recall the likelihood function

given in Equation (A.24). Now, observe that as a function of β̃t and σ
2
t ,

p(β̃t|z(t−1), σ2
t )p(zt|β̃t, σ2

t )

∝ 1

(σ2
t )

(pt+qt−1)/2
exp

{
− 1

2
(β̃t − b)T

W−1
t

σ2
t

(β̃t − b)
}

1

(σ2
t )
nt/2
×

exp

{
−1

2

(
β̃t−

[
HTt

R−1t
σ2t
Ht
]−1[
HTt

R−1t
σ2t

zt

])T [
HTt

R−1t
σ2t
Ht
](
β̃t−

[
HTt

R−1t
σ2t
Ht
]−1[
HTt

R−1t
σ2t

zt

])}
×

exp
{
− Q̂t

2σ2
t

}
For the sake of notation, let us complete squares without all indexes and parameters, with
C and D generic self-adjoint matrices and x, c and d vectors with appropriate dimensions:

(x− d)TD(x− d) + (x− C−1c)TC(x− C−1c) =

= xT (D + C)x− xTDd− (Dd)Tx+ dTDd− xT c− cTx+ cTC−1c =

= xT (D + C)x− xT (Dd+ c)− (Dd+ c)Tx+ dTDd+ cTC−1c =

= (x− (D + C)−1(Dd+ c))T (D + C)(x− (D + C)−1(Dd+ c))+

dTDd+ cTC−1c− (Dd+ c)T (D + C)−1(Dd+ c)

In our case, x = β̃t, d = b, D =
W−1
t

σ2
t
, c =

[
HT
t
R−1
t

σ2
t
zt

]
, and C =

[
HT
t
R−1
t

σ2
t
Ht

]
. Then,

D+C =
W−1
t

σ2
t

+HT
t
R−1
t

σ2
t
Ht = Σ−1t and Dd+ c =

W−1
t b

σ2
t

+HT
t
R−1
t

σ2
t
zt = νt (observe the change

in the expressions for Σt and νt compared to the non-informative case), and we have

p(β̃t|z(t−1), σ2
t )p(zt|β̃t, σ2

t ) ∝
1

(σ2
t )

(nt+pt+qt−1)/2
exp

{
− 1

2
(β̃t − Σtνt)

TΣ−1t (β̃t − Σtνt)

}
×

exp
{
− 1

2

(
bTt
W−1

σ2
t

bt +
[
HT
t

R−1t
σ2
t

zt

]T[
HT
t

R−1t
σ2
t

Ht

]−1[
HT
t

R−1t
σ2
t

zt

]
− νTt Σtνt

)}
exp

{
− Q̂t

2σ2
t

}
.
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To simplify the next algebraic manipulations, let us call HTR−1t zt = v and HT
t R
−1
t Ht = S,

and let's drop the index t. We will use the matrix inversion lemma (A.6) in the form

(W−1 + S)−1 = W −W (W + S−1)−1W,

and
(W−1 + S)−1 = S−1 − S−1(W + S−1)−1S−1.

Note that

bTW−1b+ vTS−1v − (W−1b+ v)T (W−1 + S)−1(W−1b+ v) = bTW−1b+ vTS−1v−(
bTW−1(W−1+S)−1W−1b+vT (W−1+S)−1W−1b+bTW−1(W−1+S)−1v+vT (W−1+S)−1v

)
,

and that, for the last 4 terms, which we will call

Θ = bTW−1(W−1 + S)−1W−1b,

Ω = vT (W−1 + S)−1W−1b,

Ξ = bTW−1(W−1 + S)−1v,

and
Λ = vT (W−1 + S)−1v,

we have

Θ = bTW−1(W −W (W + S−1)−1W )W−1b = bTW−1b− bT (W + S−1)−1b,

Ω = vTS−1(W + S−1)−1b,

Ξ = bT (W + S−1)−1S−1v,

and

Λ = vT (S−1 − S−1(W + S−1)−1S−1)v = vTS−1v − vTS−1(W + S−1)−1S−1v.

Therefore, it becomes clear that

bTW−1b+ vTS−1v − (W−1b+ v)T (W−1 + S)−1(W−1b+ v) =

bTW−1b+ vTS−1v − (Θ + Ω + Ξ + Λ) =

(b− S−1v)T (W + S−1)−1(b− S−1v),

and, therefore,

exp
{
− 1

2

(
bTt
W−1

σ2
t

bt +
[
HT
t

R−1t
σ2
t

zt

]T[
HT
t

R−1t
σ2
t

Ht

]−1[
HT
t

R−1t
σ2
t

zt

]
− νTt Σtνt

)}
=

exp
{
− 1

2σ2
t

(
(bt − S−1v)T (Wt + S−1)−1(bt − S−1v)

)}
=
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exp
{
− 1

2σ2
t

(
(bt − λ̂t)T (Wt + [HT

t R
−1
t Ht]

−1)−1(bt − λ̂t)
)}
.

We have already obtained all necessary expressions. Now, paying attention to what
goes into the multiplicative constant, it is easy to obtain the posterior of β̃t:

p(β̃t|z(t), σ2
t ) ∝ p(β̃t|z(t−1), σ2

t )p(zt|β̃t, σ2
t ) ∝ exp

{
− 1

2
(β̃t − Σtνt)

TΣ−1t (β̃t − Σtνt)

}
=⇒ β̃t|z(t), σ2

t ∼ N (Σtνt,Σt).

For the posterior of σ2
t , we have to integrate p(β̃t|z(t−1), σ2

t )p(zt|β̃t, σ2
t ), and using the

tediously obtained expressions above, we get

p(σ2
t |z(t)) ∝ p(σ2

t |z(t−1))
∫
p(zt|z(t−1), β̃t, σ2

t )p(β̃t|z(t−1), σ2
t )dβ̃t ∝

1

(σ2
t )
αt+1

exp

{
− γt
σ2
t

}∫
1

(σ2
t )

(nt+pt+qt−1)/2
exp

{
− 1

2
(β̃t − Σtνt)

TΣ−1t (β̃t − Σtνt)

}
×

exp
{
− 1

2σ2
t

(
(bt − λ̂t)T (Wt + [HT

t R
−1
t Ht]

−1)−1(bt − λ̂t)
)}

exp
{
− Q̂t

2σ2
t

}
dβ̃t =

1

(σ2
t )
αt+(nt+pt+qt−1)/2+1

exp

{
− 1

2σ2
t

(
2γt+(bt−λ̂t)T (Wt+[HT

t R
−1
t Ht]

−1)−1(bt−λ̂t)+Q̂t

)}
×

∫
exp

{
− 1

2
(β̃t − Σtνt)

TΣ−1t (β̃t − Σtνt)

}
dβ̃t =

1

(σ2
t )
αt+(nt+pt+qt−1)/2+1

exp

{
− 1

2σ2
t

Qt

}√
det(Σt) ∝

1

(σ2
t )
αt+nt/2+1

exp

{
− 1

2σ2
t

Qt

}
.

This way, we obtain

σ2
t |z(t) ∼ IG

(
nt
2

+ αt,
Qt

2

)
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