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Chapter 1

Introduction

It is not a mystery that humans, we are characterized as curious, and this is undoubtedly
what led the pioneers of the study of the epidemic models to try to answer if it is pos-
sible to estimate at a certain time, after the epidemic starts, who are infected?, who are
immune? or How quickly does the epidemic spread?.

In the present work "Shape theorem for the spread of epidemics", an epidemic model
is in such a way individual can only be in 3 states: 1 =healthy, i =infected or 0 =immune
(see [4] and [14]); so that a healthy individual goes to the infected state when one of his
neighbors, who is infected, sends him a germ. An individual in infected state emits germs
for some time (this time is called lifetime) and then moves to the state immune, and, being
immune, it never changes again. An example to what was exposed, would be the current
epidemic known as smallpox. Of course, we will focus on the oriented epidemic model,
that is, the event that x infects y, is different from the event that y infects x. Later we
will give a formal definition of these events. It should be noted that this epidemic model
has another interpretation, for a forest fire: 1 =a live tree, i =on fire, and 0 =burned (see
[16] and [17]).

This dissertation is mainly based on the study of Cox and Durrett result in [7], where
they worked the epidemic model on Z2, for individuals whose lifetime is random and only
subject to a condition of integrability, and for contamination taking place between nearest
neighbors. They showed that if the epidemic spreads with positive probability (or that
there is percolation), and assuming that initially only the origin is infected and the rest
of the individuals are healthy, then the set of infected sites is linearly asymptotic to the
boundary of a convex set that contains the set of points in immune state. This result is
known as the "Shape Theorem". It was further extended by Zhang (see [19]), Chabot
(see [5]) and Andjel, Chabot and Saada (see [2]). The most recent result so far is that of
[2], who demonstrated the shape theorem for general lifetimes, on Zd with d ≥ 3. This
result is not studied here because more time is required to study it in detail, but it should
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be noted that it is up to now the up to now most general result in this context.

The two results subsequent to that of Cox and Durrett are that of Zhang (in [19])
who worked an epidemic model on Z2 with finite range interactions, and of Chabot (in
[5]) who demonstrated the shape theorem on Zd with d ≥ 3, with respect to the nearest
neighbor, but with a constant lifetime. These last two, in addition to the case of Cox and
Durrett, are the ones studied in this work. Throughout this work, we will refer to the
models in [7], [19] and [5] respectively, although these models have been presented before.

Formalizing what was discussed above, let G1 = (Z2,E), G2 = (Z2,ER) and G3 =

(Zd,Ed) be the graphs corresponding to the models of Cox and Durrett, Zhang, and
Chabot respectively, where R = 2, 3, 4, ..., d ≥ 3 and:

(x, z) ∈ E⇔ x, z ∈ Z2 and ‖x− z‖1 = 1

(x, z) ∈ ER ⇔ x, z ∈ Z2 and 1 ≤ ‖x− z‖∞ ≤ R

(x, z) ∈ Ed ⇔ x, z ∈ Zd and ‖x− z‖1 = 1

In these graphs, each vertex represents an individual, and each oriented edge (x, z) is
where the germ will pass from x to z, in case of x is infected and has chosen z to infect
it. We will specify the graph to which we refer when necessary. Each site z can be in the
one of three states; 1, i or 0. In the epidemic interpretation 1 = healthy, i = infected and
0 = immune. Let ηs denote the process, ηs(x) is the state of site x at time s. An infected
individual emits germs according to a Poisson process with rate α. Specifying the germ
emission process of each model:

- Model of Cox and Durrett: A germed emitted from x goes to one of the four nearest
neighbors x + (1, 0), x + (0, 1), x + (−1, 0), x + (0,−1) chosen at random (with equal
probabilities). Let Tx, x ∈ Z2 be independent identically distributed random variables
with distribution F and for x, z ∈ Z2 with ‖x− z‖1 = 1 let e(x, z) be independent iden-
tically distributed random variables with P (e(x, z) > s) = exp(−αs/4). We assume
that F is concentrated on the nonnegative half line and is not the unit point mass at
zero. To complete the description we declare that the infection periods and Poisson
processes of germs associated with different sites are independent. Tx is the amount of
time x will stay infected (if it ever becomes infected) and e(x, z) is the time lag from
the infection of x until the first germ from x is sent to z. We let

τ(x, z) =

{
e(x, z) if Tx > e(x, z)

∞ if Tx ≤ e(x, z)
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and say the oriented bound (x, z) is open if τ(x, z) < ∞ and closed otherwise. Given
the definition of Tx and e(x, z) it should be clear that bond (x, z) is open if x tries to
infect z during its "lifetime" and τ(x, z) gives the time lag from the infection of x until
it tries to infect z, with τ(x, z) = ∞ if this never happens. We consider the density of
open bonds

p = P ((x, z)is open) = 1−
∫ ∞

0

exp(−sα/4)dF (s).

- Model of Zhang: A germ emitted from x goes to a point z in

Nx =
{
y ∈ Z2 : 1 ≤ ‖z − x‖∞ ≤ R

}
for some finite number R > 1 at rate αg(z − x), where g is a function from Z2 → [0, 1)

such that
g(z) = 0 if z /∈ N0, g(z) > 0 otherwise,

g(z) = g(−z)

and, ∑
z∈N0

g(z) = 1.

In the same way as the previous model, let Tx, x ∈ Z2, be independent random variables
with distribution F . Let e(x, z), for all x, z ∈ Z2 and 1 ≤ ‖z − x‖∞ ≤ R be independent
random variables with

P (e(x, z) > s) = exp(−sαg(z − x)).

We define τ(x, z) exactly like in the model previous model (only this time for 1 ≤
‖z − x‖∞ ≤ R). We say that the oriented edge (x, z) is open if τ(x, z) <∞ and closed
otherwise, thus:

p = P ((x, z) is open) = 1−
∫ ∞

0

exp(−sαg(z − x))dF (s). (1.1)

- Model of Chabot: In this case, each individual is on Zd (with d ≥ 3) and will be denoted
as above, by the variables x, y or z. A germ emitted from x will reach any of these
2d nearest neighbors with uniform distribution. In this model, an infected individual
has a constant lifetime T during which it emits germs. If (x, z) ∈ Ed, let e(x, z) be a
random variable of exponential distribution of parameter α/(2d) which represents the
first moment of passage of a germ from x to z after the infection of x. The (e(x, z)) are
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chosen independent. Let

τ(x, z) =

{
e(x, z) if T > e(x, z)

∞ if T ≤ e(x, z)

The oriented edge (x, z) is open if τ(x, z) <∞ and closed otherwise, that is, if:

p = p(α) = 1− exp(−αT/(2d)) (1.2)

then, for x, z ∈ Zd, with ‖x− z‖1 = 1:

P ((x, z) is open) = p = 1− P ((x, z) is closed) (1.3)

In all three models, we are interested only in the first moment of emission of a germ
from x to z, because only the first time a germ passes, it spreads the epidemic.

With the definitions above in mind, we define a path, in any of the three graphs: (Z,E),
(Z,ER) or (Zd,Ed), as a finite sequence of points (x0, x1, ..., xn) such that (xi−1, xi) is an
edge of the respective graph. Thus, we say that this path starts at x0 and ends at xn,
and as each edge that composes it is oriented, we say that it is oriented.

We say that an oriented path (x0, x1, ..., xn) is open if the bond (xi−1, xi) is open for
each i = 1, 2, ...n. We will write "x→ z" when there is a open path from x to z. We are
also going to define the first passage time from x to z, as follows:

t(x, z) = inf

{
m∑
i=1

τ(xi−1, xi) : (x = x0, x1, ..., xm = z) is a path from x to z

}

Note that if t(x, z) =∞ then there is no open path from x to z. Let z be a given site, we
define:

Cz = {x : z → x} ,

Cz = {x : x→ z} .

In percolation language C0 and C0 are the outgoing and incoming cluster containing
the origin 0 (of Z2 or Zd, when it is the case). Cox and Durrett have shown that C0 is
also the set of sites that can be joined from the origin by a path of open edges. From
Kuulasmaa’s work in [14], Cox and Durrett show the existence of two critical parameters,
α0
c , α

i
c ∈ R∗+, where:

α0
c = inf {α : P (|C0| =∞) > 0} and αic = inf

{
α : P (

∣∣C0

∣∣ =∞) > 0
}
.
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In the next chapters we will see the equality of these parameters. Also, note that the
parameter α0

c in the first two models depends on the distribution function F , respectively,
and in the third model depends only on the constant T . Analogously it happens for αic

Returning to our main objective, the shape theorem in the three models, define ζs as
the set of immune sites at time s e ξs the set of infected sites at time s, that is,

ζs = {x : ηs(x) = 0} and ξs(x) = {x : ηs(x) = i} (1.4)

We assume that initially the origin is infected and all other sites healthy,

η0(x) =

{
i if x = 0

1 if x 6= 0

The shape theorem is:

Teorema 1.1. Assume that
∫∞

0
s2dF (s) <∞ and α > α0

c . Then there is a convex set D
such that for any ε > 0,
i) P (C0 ∩ s(1− ε)D ⊂ ζs ⊂ s(1 + ε)D for all sufficiently large s) = 1

ii)P (ξs ⊂ s(1 + ε)D − s(1− ε)D for all sufficiently large s) = 1

The second moment assumption is necessary for (ii) to hold.

Since we do not have guaranteed the integrability of t(x, z), following [7], we will
approximate this passage time by a new passage time t̂(x, z) which will be such that
E(t̂(x, z))r < ∞, for all r ∈ N. To do this, first we will build a neighborhood of x (set
of individuals, containing x) for each individual x, which guarantee certain conditions
imposed, in a certain way, by Cox and Durrett (see the next three chapters). After the
neighborhoods have been constructed, for each pair of sites x and z, the time t(x, z) will
be approximate by t̂(x, z), where t̂(x, z) is the minimum of the first passage times from
an individual in the neighborhood of x to another individual in the neighborhood of z.
Thus, we demonstrate the existence of radial limits and the asymptotic shape, in all three
cases, for t̂. To conclude in the Chapter 6 with the proof of Shape Theorem. The last two
chapters mentioned will be following the work of Cox and Durrett in [7]. An interesting
thing to illustrate in this work is how we can apply the work of Cox and Durrett to prove
the shape theorem after having built the neighborhoods.

To illustrate the model in [7] we include two images with a simulation in R. On the left
hand side, the lifetimes have uniform distribution in the interval [0,10]. On the right hand
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Figure 1.1: The states are 0 =healthy, 1 =infected and 2 =immune

side, the lifetimes have exponential distribution of rate α = 0.5. The images illustrate the
states of the individuals, 80 units of time from the initial condition η0.
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Chapter 2

Construction of neighborhoods and
approximation of t in the model of Cox
and Durrett

We start this chapter by studying crossings of the rectangles in Z2. Let RJ,K = R(J,K)

be the probability that there is a right-left crossing of the rectangle (0, J) × (0, K) by
open bonds. We will derive inequalities relating the RkL,L for various values of k. These
results will imply that if we define the sponge crossing critical value αs by

αs = inf

{
α : lim sup

L→∞
RL,L = 1

}
,
then α0

c = αs, and the epidemic dies out at the critical value. The following Lemma is
shown in [7], following the ideas of Russo in [18]:

Lemma 2.1. (RSW) R3L/2,L ≥ (1− (1−RL,L)1/2)3

With Lemma 2.1 in hand, the next step is to prove:

Lemma 2.2. 1-RkL,L ≤ 4(1−R(k+1)L/2,L) for k ≥ 1.

Proof: To prove this we draw a picture (see figura 2.1) and observe that if all 4 paths
exist then there is a crossing. The inequality above results from

P (
4⋃
i=1

Aci) ≤
4∑
i=1

P (Aci).

Since, P (A1) = P (A4) = R(k+1)L/2,L and P (A3) = P (A2) = RL,L ≥ R(k+1)L/2,L. �
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A1 

Figure 2.1: The events A1, A2, A3 and A4

0 L

L

2L 3L 4L

Figure 2.2: Seven paths

Using the lemmas 2.1 and 2.2, we obtain

R3L/2,L ≥ (1− (1−RL,L)1/2)3,

R2L,L ≥ 1− 4(1−R3L/2,L),

R3L,L ≥ (1− 4(1−R2L,L),

and so on. The point is that once RL,L is close to 1 all the RkL,L are.

The next two inequalities (due to Aizenman, Chayes, Chayes, Frohlich, and Russo
(1983)) will allow us to conclude that if RL,L is close enough to one for some L, then
RL,L → 1 as L→∞.

1−R4L,L ≤ 7(1−R2L,L) R4L,2L ≥ 1− (1−R4L,L)2. (2.1)

Proof: For the inequality on the left, we draw another picture (see figure 2.2), observe
that if all seven paths exist then there is a crossing, and then argue as in the proof of
Lemma 2.2. To prove the inequality on the right, we observe that the existence of open
crossings in (0, 4L) × (0, L) and in (0, 4L) × (L, 2L) are independent. This is reason for
using open rectangles in the definition of RK,L. �
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Combining the inequalities (2.1) gives

R4L,2L ≥ 1− 49(1−R2L,L)2. (2.2)

If we iterate (2.2) assuming that R2L,L = 1− λ/49 for some λ < 1 we get

R4L,2L ≥ 1− λ2/49,

R8L,4L ≥ 1− λ4/49.

and by induction

R2kL,2k−1L ≥ 1− 1

49
exp(2k−1logλ).

Combining this with (2.1) we also obtain

R2k+1L,2k−1L ≥ 1− 1

7
exp(2k−1logλ). (2.3)

By this result it follows that if R2L0,L0 is close enough to one then R2k+1L0,2k−1L0
→ 1 as

k →∞, and R2L,L → 1 as L→∞.

The development above motivates defining

L0(α) = inf {L : R2L,L(α) ≥ 0.99} , (2.4)

which must be defined for α > αs. The next result shows that all three critical values are
the same, and the epidemic dies out at the critical value.

Teorema 2.3. αs = αic = α0
c and

Pαs(|C0| =∞) = Pαs(|C0| =∞) = 0. (2.5)

Proof: To prove this theorem consider first α > αs, n = L0(α), and for j ≥ 1

B2j−1 = (22j−2n, 22j−1n)× (0, 22jn),

B2j = (0, 22j+1n)× (22j−1n, 22jn),

A2j−1 = {there are top-bottom and bottom-top crossings B2j−1} ,

A2j = {there are left-right and right-left crossings B2j} ,
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(see fig. 2.3). By Harris-FKG inequality and (2.3):

P (
∞⋂
k=1

Ak) ≥
∞∏
k=1

R(2k+1n, 2k−1n)2 > 0. (2.6)

Since there is positive probability that all the bonds on the segment from (0, 0) to (2n, 0)

are open it follows that both Pα(|C0| =∞) and Pα(|C0| =∞) are strictly positive.
The construction above shows α ≥ max(αic, α

0
c). To prove the other inequality observe

that if α < αs then R2L,L ≤ 48
49

for all L, or else (2.3) would imply R(2k+1L, 2k−1L) → 1

and hence α > αs. So it follows from 2.1 and (2.2) that there is an ε0 > 0 so that
RL,L(α) ≤ 1 − ε0 for all L and α < αs. By continuity, the last conclusion implies
RL,L(αs) ≤ 1 − ε0. With the probabilities of sponge crossing bounded away from 1, we
can now use the original argument of Harris in [10] to show there is no percolation:
Introduce the dual percolation process with sites in Y2 = (1

2
, 1

2
) + Z2, and call be bond

(u, v) between neighboring points in Y2 open (closed) if the bond on the original lattice
obtained by rotating it 90 counterclockwise around its midpoint is closed (respectively
open).

This duality is the natural generalization to oriented percolation of the duality used
in the ordinary case (see Chapter 2 of [11]) and has many of the same properties. In
particular, we have:
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(*) Either there is right-left crossing of (0, L)× (0, L) or a top-bottom crossing of (1
2
, L−

1
2
)× (1

2
, L− 1

2
) on the dual, but not both.

To prove this result suppose that there is a top-bottom crossing on the dual, then
there is a self-avoiding one (i.e. each site appears at most once in the path). If we call
the path σ, an application of the Jordan curve theorems shows that σ divides the interior
of the square into 2 parts–one well call T1 which lies to the right of σ, and one we call T2

which lies to the left of σ. If we move along σ in the direction of the orientation, then T1

is always on our left and T2 is always on our right. From this, we see that if there is a
path of open bonds from right to left then any time is crosses from T1 to T2, it does so
along a bond which is a 90 clockwise rotation of a bond on σ. But such bonds are closed
so no open path exist.

Now, we will suppose there is no right-left crossing and construct a top-bottom one,
to conclude the other direction of (*). Let C be the set of points which can be reached
from the right edge by a path of open bounds. Let D =

{
(a, b) ∈ R2 : |a|, |b| ≤ 1

2

}
, and

orient the boundary of D in a counterclockwise fashion. Finally, let W =
⋃
z∈C(z+D). If

we combine the boundaries of the z+D with z ∈ C, and let oppositely directed segments
cancel, then the boundaries which remain are closed paths on the dual.

One of them,

Γ = the boundary of the component of (
1

2
, L− 1

2
)× (

1

2
, L− 1

2
)\W,

which contains the left side of the box, is the path that we want (see fig. 2.4). The
reader should note that a similar construction can be used to prove that there is a lowest
right-left crossing.

Having established (*), we can conclude that the probability of a top-bottom crossing
of (1

2
, L − 1

2
) × (1

2
, L − 1

2
) is bounded away from 0 when α = αs. If we let RL,L denote

this probability then applying the Harris-FKG inequality generalized to the model under
consideration we have:

RkL,L ≥ (1− (1−RL,L)1/2)3. (2.7)

To see that this is legitimate, recall the proof of Lemma 2.1 works for a slightly different
models from the original model with positively correlated edges, see the note after (2.2) in
[7]. Although the dual bonds (x, y)→ (x+ 1, y)→ (x+ 1, y+ 1)→ (x, y+ 1)→ (x, y) are
dependent, since they depend on the edges with the same initial point (x+ 1/2, y + 1/2)

in the original model. The bonds which go counterclockwise around different squares are

11



Open edge

Closed edge

The original
lattice

The dual lattice

Figure 2.3: Construction of a top-bottom crossing on the dual lattice.

independent. From the last observations we see that if there is a right-left crossing σ then
all the bonds above σ are independent of it and the previous argument works.

After (2.7), using the construction in the proof of Lemma 2.2 but making a different
estimate shows

RkL,L ≥ (R(k−1)L/2,L)4, (2.8)

so we have

R2L,L ≥ (R3L/2,L)4, (2.9)

and

R3L,L ≥ (R(2L,L)4. (2.10)

By combining crossing of 3L×L rectangles, we get a circuit in an annulus (see figure 2.5).
Since RL,L is bounded away from 0, we have a ridiculously small but, nonetheless, positive
lower bound on the occurrence of a dual circuit in an annulus. By considering an infi-
nite disjoint sequence of annuli we see there is no percolation out or in when α = αs. �

We will need one more estimate for the next section. Let Γ(k) be the event that there
is an open circuit around the square [−k, k]2 that is contained in the square [−2k, 2k]2
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3L

L

and that there are infinite open paths starting and ending on [−k, k]2. If n = L0(α) then
there is a finite positive constant γ′ such that

P (Γ(2kn)) ≥ 1− γ′exp(2klogλ). (2.11)

The circuit in the annulus can be constructed by constructing four paths each at cost
R(2k+2n, 2kn) and paths to and from infinity can be constructed as in the proof of Theo-
rem 2.3. The relevant probability estimates are (2.3) and (2.6).

Now, as we had promised, we will define for each z ∈ Z2 a neighborhood, and we will
approximate the time of passage from a site x to another site y, for the time of passage
from the neighborhood of x to the neighborhood of y. We start with some notation. For
each z ∈ Z2 let κ(z) be the smallest k ≥ 1 such that:

i) there are infinite open paths to and from the square z + [−k, k]2 and,

ii) there is an open circuit around z + [−k, k]2 contained in z + [−2k, 2k]2.

Let ∆(z) be the minimal open circuit around z, where "minimal" means if κ(z) = k then
∆(z) is the first open circuit in our ordering.

Having defined ∆(z), let ∆̃(z) be the union of ∆(z) and all open bonds inside ∆(z)

which are part of the infinite connected set of open bonds. Let t̂(x, y) be the minimum

13



passage time from a site of ∆̃(x) to a site of ∆̃(y). Observe that

If t(x, y) <∞, then t̂(x, y) ≤ t(x, y) ≤ t̂(x, y) + u(x) + u(y). (2.12)

Following the development in section 2 of [6], here are some facts needed to prove
Theorem 1.1.

P (κ(z) ≥ n)→ 0 exponentially fast as n→∞. (2.13)

This is an immediate consequence of (2.11).

E(|∆̃(z)|m) <∞ for m = 1, 2, ... (2.14)

This immediate consequence of (2.13) and the crude estimate

P (|∆̃(z)| > 4× 2k(2k + 1)) ≤ P (κ(z) > k).

E(u(z)m) <∞ for m = 1, 2, ... (2.15)

This fact uses (2.13) and the observation that if τ(x, y) <∞, then τ(x, y) is bounded by
an exponential random variable with mean 4/α (see Section 2 of [6]).

Lemma 2.4. If z0, z1, ..., zk is a path from z0 = x to zk = y, then there is a path from
∆̃(x) to ∆̃(y) contained in

⋃k
i=0 ∆̃(zi).

Proof: Let ∆(z) be the set of all points strictly surrounded by the circuit ∆(z) and
let I =

{
i : ∆(zi)) 6⊂ ∆(zj)) for all j 6= i

}
. It is easy to see that all the zi are contained

in the some ∆(zj) with j ∈ I. We will show that there is an I ′ ⊂ I so that
⋃
i∈I′ ∆̃(zi) is

connected and intersects ∆̃(x) and ∆̃(y).
To construct I ′ start with the smallest i0 ∈ I so that x ∈ ∆(zi0). To pick the next index,
find the smallest j so that zj /∈ ∆(zi0) and then pick the smallest i1 ∈ I so that zj ∈ ∆(zi1)

(observe that this guarantees ∆(zi0) ∩∆(zi1) 6= ∅ and that neither of the sets ∆(zi0) and
∆(zi1) contains the other). We can continue this procedure, each time picking the point
with least index which is not contained in the interior of any previously chosen circuit,
until the point z is contained in the interior of some circuit. At this point we stop and
let I ′ = {i0, ..., im} be the set of indexes generated.
It is easy to see that R̃ =

⋃m
j=0 ∆̃(zij) is connected. To prove this, observe that if

1 ≤ j ≤ m it follows from the construction that ∆(zij)) 6⊂ ∆(zij−1
), ∆(zij−1

)) 6⊃ ∆(zij)

and ∆(zij) ∩ ∆(zij−1
) 6= ∅ with which we will show that ∆̃(zij) ∩ ∆̃(zij−1

) 6= ∅. In-
deed, there are points a and b in ∆(zij)) so that a ∈ ∆(zij−1

) and b /∈ ∆(zij−1
). Since,
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a, b ∈ ∆(zij) there is a polygonal curve entirely contained in ∆(zij) which connects a
and b. Since a ∈ ∆(zij−1

) and b /∈ ∆(zij−1
), the curve must intersect ∆(zij−1

) at some
point c which it implies, c ∈ e for some e ∈ ∆̃(zij−1

). By the choice of c, e ⊂ ∆̃(zij); so
{e} ⊂ ∆̃(zij)∩ ∆̃(zij−1

) for j = 1, ...,m. Since each ∆̃(zij) is connected this shows that R̃
is connected. To complete the proof it suffices to show that R̃ intersects ∆̃(x) and ∆̃(y)

but this is trivial. If ∆̃(zi0) ∩ ∆̃(x) = ∅ then i0 6= 0 and ∆(zi0) ⊂ ∆(x) which contradicts
the definition of I. �

Applying the Lemma above, t̂(x, y) ≤
∑k

i=0 u(zi). Now apply (2.15) to obtain:

E(t̂(x, t)m) <∞ for m = 1, 2, ... (2.16)

We will use (2.15) and (2.16) in Chapter 5, to demonstrate the existence of radial
limits.
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Chapter 3

Construction of neighborhoods and
approximation of t in the model of
Zhang

In this case, the difficulty is that the open circuit method does not work since a path can
pass through without meeting it.

Definition 3.1. Let us consider a cover Z2 by some blocks {[in, (i+ 1)n]× [jn, (j + 1)n]}
for i, j ∈ Z. Each block [in, (i+ 1)n]× [jn, (j + 1)n] is called the renormalized site (i, j).

Denote by Vn all the renormalized sites. Therefore, Vn and the edges between (i, j)

and (i, j + 1) or (i+ 1, j) form a standard planar graph. For each renormalized site (i, j),
let An(i, j) be the event that all three of the following hold:

i) In the block [in, (i+ 1)n]× [jn, (j + 2)n] there are bottom-top and top-bottom open
paths.

ii) For any bottom-top or top-bottom open paths γ1 and left-right or right-left open
paths γ2 of block [in, (i+ 1)n]× [jn, (j+ 2)n], then they are connected by some open
paths from γ1 to γ2 and from γ2 to γ1 with edges in the block.

iii) For any two bottom-top or two top-bottom open paths γ1 and γ2 of [in, (i + 1)n] ×
[jn, (j + 1)n], they are connected by some open paths from γ1 to γ2 and from γ2 to
γ1 with the edges in [in, (i+ 1)n]× [jn, (j + 1)n] (see figure 3.1)

Similarly, let Bn(i, j) be the event that all three of the following hold:

i) In the block [in, (i+2)n]× [jn, (j+1)n] there are left-right and right-left open paths.
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(in,(j+2)n)

(in,jn)

(in,jn)

((i+1)n,jn)

((i+2)n,jn)

((i+1)n,(j+2)n)

(in,(j+1)n) ((i+2)n,(j+1)n)

Figure 3.1: The events An(i, j) and Bn(i, j)

ii) For any left-right or right-left open paths γ1 and bottom-top or top-bottom open
paths γ2 of block [in, (i+ 2)n]× [jn, (j+ 1)n] they are connected by some open paths
from γ1 to γ2 and from γ2 to γ1 with edges on the block.

iii) For any two left-right or two right-left of open paths γ1 and γ2 of [in, (i + 1)n] ×
[jn, (j + 1)n], they are connected by some open paths from γ1 to γ2 and from γ2 to
γ1 with edges in [in, (i+ 1)n]× [jn, (j + 1)n] (see figure 3.1).

Definition 3.2. The renormalized site (i, j) is said to be occupied if An(i, j) ∩ Bn(i, j)

occurs.

With this occupied site in mind, next we construct an occupied circuit. Denote Γ(u, v)

the event that there is an occupied circuit of the renormalized sites which surrounds u,
separating it from v, for u, v ∈ Z2. By the definition of renormalized site we can see if
Γ(u, v) occurs, then:

a) There is an open clockwise circuit C with edges in (Z2,ER) surrounding u, separating
it from v.

b) Each open path in (Z2,ER) from u to v or from v to u has to be connected to C by
some open paths in both directions (see figure 3.2).

Hence our renormalized circuit does not have the problem of connectedness described
before.

Replacing Cox and Durrett’s circuit by this renormalized occupied circuit also requires
a probability estimate corresponding to (2.13). Therefore, we need to show the following
lemmas.
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u
v

Figure 3.2: The event Γ(u, v)

Lemma 3.3. If α > αc, then for some suitably large n there is a positive constant κ =

κ(α, n) > 0 such that for each pair of sites u, v ∈ Z2,

Pα(Γ(u, v)) ≥ 1− exp[−κ |u− v|]. (3.1)

The main step in the proof of Lemma 3.3 is the following proposition, which is based
on the methods of [8] and [13].

Proposition 3.4. Given ε > 0, there exist N such that

Pα((0, 0) is occupied) = Pα(An(0, 0) ∩Bn(0, 0)) ≥ 1− ε, (3.2)

when n ≥ N .

The proof of this proposition is long (see appendix of [19]), at the end of this chapter
we demonstrate a particular case.

Proof of Lemma 3.3 from the Proposition: We can build an open clockwise circuit
surrounding u, separating it from v, with center u, 2 ‖|u1 − v1| /n‖ blocks vertically and
2 ‖|u2 − v2| /n‖ horizontally, all these blocks of size n× n (if you have |u2 − v2| = 0 then
you consider 2 ‖|u1 − v1| /n‖ blocks horizontally, or vice versa). To this circuit we relate
k1 |u− v| occupied sites, with k1 = 2, 4 (see figure 3.3). Then if ε = exp[−c] for some
c > 0, the above proposition and the FKG inequality imply:

Pα(Γ(u, v)) ≥ 1− exp[−ck1 |u− v|]. �
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u

v

Figure 3.3: Open clockwise circuit surrounding u, separating it from v.

Let B(l) = [−l, l]2. We denote by d(l) ↑ or (d(l) ↓) the event that there is an open
path in (Z2,ER) from (or to) ∂B(l) to (or from)∞ in Z2\B(l), where ∂A is the boundary
of the set A of vertices.

Lemma 3.5. If α > αc, then there is a constant c(α) which only depend on α such that

Pα(d(l) ↓) = Pα(d(l) ↑) ≥ 1− exp {−c(α)l} . (3.3)

Proof: By the symmetry of g(z), the first equation is obvious. By the definition of
d(l) ↑,

Pα(d(l) ↑) ≤
∞∑

k=l+1

2k2 max
y∈B(k)\B(max{k−R,l})

Pα(a(k, y)), (3.4)

where,

a(m, y) = {there is an open path in Z2(R) from ∂B(l)

to the point y ∈ B(i) for m−R ≤ i ≤ m and no

open path in (Z2,ER) from ∂B(l) to ∂B(j) for j > i}.

If a(m, y) occurs, there is no occupied circuit with renormalized sites in Vn which encircles
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B(k1)

B(k2)

Figure 3.4: The definition of κ1 and κ2

the point y separating some point in ∂B(l). Then

Pα(d(l) ↑) (3.5)

≤
∞∑
k+1

(2kl)2

(
∃y ∈ Z2, ‖y‖∞ >

max(k −R, l)
n

such that {Γ(y, 0)}c
)

(3.6)

∞∑
k+1

(2kl)2exp
{
−κ(α)

(
max(k −R, l)

n

})
by Lemma 3.3 (3.7)

≤ exp {−c(α)l} , (3.8)

for some constant c(α). �

For any z ∈ Z2(R), we denote by κ1(z) the smallest k > 1 such that there is an open
path in Z2(R) from the boundary of z + [−k, k]2 to ∞ and there is another open path
in Z2(R) from ∞ to the boundary of z + [−k, k]2. We also denote by κ2(z) the smallest
m > κ1(z) such that there exist an occupied circuit with the renormalized sites of Vn in
the annulus {

z + [−m,m]2
}
\
{
z + [−κ1(z), κ1(z)]2

}
(see figure 3.4). Then we have the following probability estimate:
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Lemma 3.6. If α > αc, there is a constant c(α) such that

Pα(κ2(0) > l) ≤ exp(−c1(α)l). (3.9)

Proof: Clearly,

Pα(κ2(0) > l)

= Pα

(
κ2(0) > l, κ1(0) <

l

2

)
+ P

(
κ2(0) > l, κ1(0) ≥ l

2

)
(3.10)

≤ Pα

(
κ2(0) > l, κ1(0) <

l

2

)
+ exp

(
−c(α)

l

2

)
by Lemma 3.5.

Now by using the same proof of Lemma 3.5, we can show

Pα

(
κ2(0) > l, κ1(0) <

l

2

)
≤ Pα(there is no occupied circuit with

the renormalized sites surrounding (3.11)

[− l
2
,
l

2
] in [−l, l]\[− l

2
,
l

2
])

≤ exp(−c2(α)
l

2
).

The proof follows from (3.10) and (3.11). �

Lemma 3.6 prepares us to show the existence of radial limits. Let ∆(z) be the set
z+ [−κ1(z), κ1(z)]2 and t̂(x, y) be the minimum passage time from a site of ∆(z) to a site
of ∆(y). Let u(z) be the sum of all τ {x, y} <∞ for {x, y} ∈ z + [−κ2(z), κ2(z)].
If t(x, y) <∞, then

t̂(x, y) ≤ t(x, y) ≤ t̂(x, y) + u(x) + u(y). (3.12)

By Lemma 3.6, and an argument in Section 3 of [7], it can be seen that Eum(z) <∞ and
Et̂(x, y)m < ∞, for all m ≥ 1. The latter, as for the other two models will be used to
demonstrate the existence of radial limits, as we will see in the chapter 5.

3.1 Proof of Proposition 3.4 (a particular case).

Let N be a positive integer. We define the configuration ω ∈ Γ = {0, 1}ER as For e ∈ ER
ω(e) = 1 if e is open and ω(e) = 0 otherwise. For any configuration ω ∈ Γ = {0, 1}ER , we
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define the sphere with radius N and center at ω by

Sn(ω) =

{
ω′ ∈ Γ :

∑
e∈ER

|ωe − ω′e| ≤ N

}
. (3.13)

Sn(ω) is the collection of configurations which differ from ω on at most N edges. If A ⊂ Γ

is an event, we define the interior and exterior of A by

INA =
{
ω ∈ Γ : SN(ω) ⊂ A

}
and ENA =

{
ω ∈ Γ : SN(ω)

⋂
A 6= ∅

}
. (3.14)

If α′ ≤ α, then by (1.1) and the definition of g(z),

0 ≤ Pα′((x, y) is open) ≤ Pα((x, y) is open). (3.15)

We denote

m(α) = min
0<‖y‖∞≤M

{(Pαω(0, y) = 1)} ,

m(α′, α) = min
0<‖y‖∞≤M

{(Pαω(0, y) = 1)− (Pα′ω(0, y) = 1)} .

By the definition of F and (2.2), we can see thatm(α) > 0 andm(α′, α) > 0 if α > α′ > αc.
With the definitions above, we establish the following lemma (see Theorem 2.45 in [9]):

Lemma 3.7. For any increasing event A and α′ < α,

Pα(A) ≥ m(α′, α)Pα′(E
NA), (3.16)

Pα(INA) ≥ 1− (1− Pα′(A))/(m(α′, α)N). (3.17)

Next we introduce some sets and events necessary for construction of the renormalized
site lattice. If S, F and T are three sets, we denote by S → T in F the event that there
is an open path from S to T with edges in F and S ↔ T in F the event that S → T in
F and T → S in F . We also denote by S 9 T in F the event that there is no open path
from S to T in F .

Lemma 3.8. Given ε > 0 and integer i, there exists N such that, when α > αc and
n ≥ 2N +M ,

Pα([−n, 2n]× {0} → [−n, 2n]× {in}) ≥ 1− ε.

Proof: Zhang demonstrated this lemma with the use of two other lemmas, which he
also demonstrated in [19]. We will only show a particular case. Suppose, for z, z′ ∈ N0:

‖z‖∞ ≤ ‖z
′‖∞ ⇒ g(z) ≥ g(z′), (3.18)
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which means that it is more likely to infect the neighbor closer. Let αc < α1 < α. Since
θ(α1) = Pα1(|C0| =∞) > 0, by a standard ergodic theorem, we can take N large enough
that

Pα1([0, N ]←−∞ in ER) ≥ 1− ε4. (3.19)

Let A1, A2, A3 and A4 be the events:

[[
n

2
− in, n

2
+ in]× [0, R]→ [

n−N
2

,
n+N

2
]× {in} in B̂],

[[
n

2
− in, n

2
+ in]× [2in−R, 2in]→ [

n−N
2

,
n+N

2
]× {in} in B̂],

[[
n

2
+ in−R, n

2
+ in[×[0, 2in]→ [

n−N
2

,
n+N

2
]× {in} in B̂] and

[[
n

2
− in, n

2
− in+R]× [0, 2in]→ [

n−N
2

,
n+N

2
]× {in} in B̂],

respectively, where B̂ = [n
2
− in, n

2
+ in] × [0, 2in) (see figure 3.5). Then it follows from

the square root trick, 3.19, and the symmetry and the translation invariance of ER that

Pα1(A1) ≥ 1− ε.

We note that, given a path γ from [n
2
− in, n

2
+ in] × [0, R] to [n−N

2
, n+N

2
] × {in} in

B̂, we can reflect γ ∩ [2n, n/2 + in]× [0, 2in] through {2n} × [0, 2in] as follows: if γ′ is a
connected segment of γ in γ ∩ [2n + 1, n/2 + in]× [0, 2in] with starting point z and end
point w, such that, if γ had a point before of γ′ it is in [2n − R, 2n] × [0, 2in] and the
same for a point after γ′, then

- if γ starts in z, let w′ = (w′1, w
′
2) ∈ γ be the point after γ′, then we reflect γ′ ∪ {w′}

through {w′1} × [0, 2in],

- if z is not the starting point of γ, let z′ = (z′1, z
′
2), w′ = (w′1, w

′
2) ∈ γ be the previous

point and the subsequent point to γ′, respectively. Then:

- if z′1 ≤ w′1, we reflect γ′ through {w′1} × [0, 2in], and replace the edge (z′, z) with a
new one with less or equal length and in opposite direction (see figure 3.6), to keep a
path from [n

2
− in, n

2
+ in]× [0, R] to [n−N

2
, n+N

2
]× {in}

- if w′1 ≤ z′1, we reflect γ′ through {z′1} × [0, 2in], and replace the edge (w,w′) with a
new one with less or equal length and in opposite direction.

Thus, we get a new path from [n
2
−in, n

2
+in]×[0, R] to [n−N

2
, n+N

2
]×{in} in [n/2−in, 2n]×

[0, 2in], which intersected with [n/2− in,−n]× [0, 2in] we are going to reflect in the same
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in

N
2in

(n/2,0)

(n/2 -in,0)

in

in
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Figure 3.5:

Figure 3.6:
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way to the previous reflection, but this time through {−n} × [0, 2in] with what we get a
path from [n

2
−in, n

2
+in]× [0, R] to [n−N

2
, n+N

2
]×{in} in [−n, n/2+(i−3)n]× [0, 2in], and

this last one intersected with [2n, n/2 + in] × [0, 2in] we reflect through {2n} × [0, 2in].
We do this, over and over again, until we get a path γ̄ in [−n, 2n]× [0, in]. Note that the
number of reflections depends only on i, and not on n. Also, by the condition (3.18) we
have

Pα1(γ̄ is open ) ≥ Pα1(γ is open ),

then,

Pα1([−n, 2n]× [0, R]→ [−n, 2n]× [in−R, in] in [−n, 2n]× [0, in]) ≥ 1− ε.

Then by Lemma A.2, for some large number k,

1−1− Pα1([−n, 2n]× [0, R]→ [−n, 2n]× [in−R, in] in [−n, 2n]× [0, in])

mk(α, α1)

≤ Pα(Ik {[−n, 2n]× [0, R]→ [−n, 2n]× [in−R, in] in [−n, 2n]× [0, in]})

≤ Pα(∃ k disjoint open paths from[−n, 2n]× [0, R] to [−n, 2n]× [in−R, in]),

which implies:

Pα(∃ k disjoint open paths from [−n, 2n]×[0, R] to [−n, 2n]× [in−R, in])

≥ 1− ε

mk(α, α1)
.

Now, let H be the largest j, 0 ≤ j ≤ R, such that there exist at least k/R open paths
from [−n, 2n]× [0, R] to [−n, 2n]× [in−R, in]. Since each such path can be connected to
[−n, 2n]×{in} by a single edge andH = l only depends on the edges in [−n, 2n]×[0, in−l],
we can pick k large such that at least one of these k/R open paths can be connected to
[−n, 2n]× {in} by a single open edge with a high probability. Note also that H = l and
H = l′ are disjoint events if l 6= l′. Also we have:

Pα(∃ k disjoint open paths from[−n, 2n]×[0, R] to [−n, 2n]× [in−R, in])

≤
∑

0≤l≤R

Pα∗(H = l).

Then, Pα([−n, 2n] × [0, R] → [−n, 2n] × {in}) → 1 by taking k,ε and N , respectively.
Using this argument to connected some vertices, which belong to the open paths from
[−n, 2n]× [0, R] to [−n, 2n]×{in} in [−n, 2n]× [0, R], to [−n, 2n]×{0} by a single open
edge, we can see that Lemma 3.8 hols. �
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Chapter 4

Construction of neighborhoods and
approximation of t in the model of
Chabot

This Chapter is based in the work of Chabot in [5]. The fact that facilitates this case is
the independence between the state of one edge and the state of another. This fact and
the symmetry of the model imply the following theorem.

Teorema 4.1. α0
c = αic.

Proof: Define the reversed model as the model obtained by: an edge (y, x) is open if
and only if, (x, y) is open in the original model, with x, y ∈ Zd and (x, y) ∈ Ed. This is,
reverses the state of an edge with that of the opposite orientation edge. Now, let P ′ be
the probability measure on the reversed model, then (see (1.2) and (1.3)):

P ′((y, x) is open) = P ((x, y) is open) = p

We call φ and φ′ the null functions with respect to the original model and the reversed
model respectively, the functions which, at any subset A of the set of outgoing edges from
the origin, associate:

φ(A) = P {every edge in A is closed}

and
φ′(A) = P ′ {every edge in A is closed} .

Due to the properties of the original model: independence of the states of the edges and
the symmetry, reflection and translation of the model. We have:

φ(A) = φ′(A) = |1− p||A| ,
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where |A| is the number of edges in A. If B is a set of infinite paths in Zd, and B is the
event that some path in B is open, then from the result in [14] (see pages 749-750), we
have:

P (B) ≤ P ′(B) and P (B) ≥ P ′(B)

since φ(A) ≥ φ′(A) and φ(A) ≤ φ′(A). Then, P (B) = P ′(B), with which we conclude
the proof. �

Now, we will see an algorithmic demonstration that the distribution of the sites of the
outgoing cluster, like that of the sites of the returning cluster, at the origin, is identical
to that of an independent percolation cluster of classical Bernoulli on Zd non-oriented.

Teorema 4.2. The distribution of the outgoing cluster sites on Zd is the same as the
distribution of the sites of a Bernoulli conventional percolation cluster on the edges.

Proof: It is assumed given an order on the edges of Ẽd (set of non-oriented edges).
The algorithm below is an algorithm for dynamic construction of the cluster at the origin
on the non-oriented model. We use the following recursive method of construction of the
cluster of the origin: we obtain an increasing sequence (S̃n)n∈N of triplets of Zd× Ẽd× Ẽd.
We start:

S̃0 = ({0}, ∅, ∅).

If ω̃ : Ẽd → {0, 1} is given, and if we assume that:

S̃0 = (Xn, Ãn, B̃n),

we define S̃n+1 as follows:

- We take ẽn, the smallest edge in the sense of the order that comes from Xn. which is
not in Ãn ∪ B̃n and whose second extreme, xn+1, is not in Xn.

- if ω̃(ẽn) = 1 then

[Xn+1 = Xn ∪ {xn+1}, Ãn+1 = Ãn ∪ {ẽn}, B̃n+1 = B̃n].

- if ω̃(ẽn) = 0 then

[Xn+1 = Xn, Ãn+1 = Ãn, B̃n+1 = B̃n ∪ {ẽn}].

- if such a edge does not exist, then

[Xn+1 = Xn, Ãn+1 = Ãn, B̃n+1 = B̃n].

We will name A0 this algorithm, which, at a configuration ω̃ of Ω̃ associates the se-
quence (S̃n)n∈N.
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Suppose given an order on the edges of Ed that respects the previous order on the
edges of Ẽd, i.e. such that the index of an edge oriented in one direction differs only from
1 of the index of the same edge orintended in the other direction, and that this induces
on Zd the previous order on the non-oriented edges: if ẽ and f̃ are two distinct unoriented
edges, then "ẽ ≤ f̃" if and only if "

→
e≤
→
f ", this whatever the choice of orientation of

→
e

and
→
f .

If e is an oriented edge, we will note ẽ the non-oriented edge corresponding to it. The
following recursive method of construction of the outgoing cluster is then used on the
oriented model and it will be observed that it is dynamically constructed like the cluster
on the non-oriented model: an increasing sequence (Sn)n∈N of triplets of Zd × Ed × Ed.
We start:

S0 = ({0}, ∅, ∅).

If ω : Ed → {0, 1} is given, and if we assume that:

S0 = (Xn, An, Bn),

we define Sn+1 as follows:

- We take en, the smallest edge in the sense of the order that comes from Xn. which is
not in An ∪Bn and whose second extreme, xn+1, is not in Xn.

- if ω(en) = 1 then

[Xn+1 = Xn ∪ {xn+1}, An+1 = An ∪ {en}, Bn+1 = Bn].

- if ω(en) = 0 then

[Xn+1 = Xn, An+1 = An, Bn+1 = Bn ∪ {en}].

- if such a edge does not exist, then

[Xn+1 = Xn, An+1 = An, Bn+1 = Bn].

This algorithm yields an increasing sequence (Sn)n∈N. Thus, the limit as n→∞ and
we denote it by:

S∞ = (X∞, A∞, B∞).

We will name A1 this algorithm, which, at a configuration ω of Ω, associates the sequence
(Sn)n∈Z. We have built a cluster C0 = X∞ on (Zd,Ed), such that:
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- B∞ contains all closed oriented edges from a point of X∞ to a point outside X∞ and in
particular contains only one orientation of the edge between any two points of Zd,

- A∞ is a subgraph of (Zd,Ed) which contains only a orientation of the edge between any
two points of Zd, and whose structure, without worrying about orientation, is that of a
connected graph with no cycle,

- finally, if we erase the orientation of the edges of A∞ and B∞, we obtain the same sets
as those obtained by the similar algorithm of dynamic construction of the cluster at the
origin of the non-oriented model, which in other words is written:

Ã∞ = Ã∞,

B̃∞ = B̃∞.

We must give a more precise meaning to the last statement. Suppose that, for k from
0 to n, for every Γk = (Xk, Ak, Bk) that can be obtained with non-zero probability by A1

at step k:
P (Sk = Γk) = P̃ (S̃k = Γ̃k),

where, the application ˜ is simply the application that erases the orientation of a
directed graph. Note that Γk is obtained by A1 in step k if and only if Γ̃k is obtained
by A0 in step k, according to the preceding remarks, since there is a bijection between
the (Γk) and (Γ̃k). Because of the particular order chosen, in step n, en, if it exists, is
the edge chosen by A1, if and only if ẽn is chosen by A0. The probability that en is open
is e, as for ẽn.Si Γn+1 = (Xn+1, An+1, Bn+1) is an element of Zd × Ed × Ed which can be
obtained by A1 with non-zero probability at step n+ 1, then:

P (Sn+1 = Γn+1) = ΣΓnP (Sn+1 = Γn+1|Sn = Γn)P (Sn = Γn)

= ΣΓ̃n
P (S̃n+1 = Γ̃n+1|S̃n = Γ̃n)P (S̃n = Γ̃n)

= P̃ (S̃n+1 = Γ̃n+1). �

Thus, the distribution of the outgoing cluster sites on Zd is the same as the distribu-
tion of the sites of a Bernoulli conventional percolation cluster on the edges. Of course, a
similar construction can be done to show that the distribution of the sites of the cluster
returning to Zd is also identical to the distribution of the sites of a Bernoulli percolation
cluster on the edges.

Then, for the epidemic model, for α > αc, C0 is infinite with a non-zero probability,
of even C0 is infinite with the same non-zero probability, hence, if C̃ = {x ∈ Zd : x →
∞, x←−∞} by FKG inequality for events increasing for the parameter α, we have that
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0 ∈ C̃ with a non-zero probability, therefore, by ergodicity, C̃ is a.s. not empty.

In all the following, it will be assumed that α > αc. In fact, for α < αc, the epidemic
dies out a.s., and the result of asymptotic form is then of no interest.

Antal and Pisztora in [3] prove large deviation estimates at the correct order for the
graph distance of two sites lying in the same cluster of an independent percolation process,
see Section A.4. We will now establish for α > αc, that the result in [3] is also valid in
this oriented case, which will make it possible to control the lengths of the opens paths.
For the non-oriented model, for p > pc, there is ρ = ρ(p, d) ∈ [1,∞) such that:

lim sup
|y|→∞

1

‖y‖1

log P̃ (0↔ y,D(0, y) > ρ ‖y‖1) < 0,

where D(0, y) is the minimum number of edges of an open path from 0 to y. Since these
probabilities are all strictly smaller than 1, there is β > 0 such that:

P̃ (0↔ y,D(0, y) > ρ ‖y‖1) ≤ exp(−β ‖y‖1), ∀y ∈ Zd.

To justify that this result is valid for the oriented framework, we impose a special order,
adapted to the problem, for the generator algorithm of the outgoing cluster of 0, to
guarantee the existence of β > 0.

Teorema 4.3. There is β > 0 such that:

P (0→ y,D(0, y) > ρ ‖y‖1) ≤ exp(−β ‖y‖1), ∀y ∈ Zd.

Proof: It is always assumed given an order on the edges of Ed respecting the order
at the edges of Ẽd. We use the following recursive method of constructing the outgoing
cluster on the oriented model, which is built dynamically like the cluster on the non-
oriented model: we obtain a increasing sequence (Sn)n∈N of triplets of Zd×Ed×Ed which
corresponds to the set of points that can be touched in less than n edges. We start:

S0 = ({0}, ∅, ∅).

For ω ∈ Ω = {0, 1}Ed given, and if Sn = (Xn, An, Bn), we define Sn+1 as follows:

- We take the set En
0 of outgoing edges of Xn that are not in An∪Bn. We pose: Y n

0 = Xn,
Cn

0 = An, Dn
0 = Bn. Then, The following method is iterated, for k varying from 0 to

kn − 1, where kn = card(En
0 ):

- let enk be, smaller edge of En
k , in the sense of the order.
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- if the second end of enk , xnk+1, is in Y n
k then Y n

k+1 = Y n
k , En

k+1 = En
k \{enk}, Cn

k+1 = Cn
k ,

Dn
k+1.

- if the second end of enk , xnk+1, is not in Y n
k then En

k+1 = En
k {enk} and:

- if ω(enk) = 1 then

[Y n
k+1 = Y n

k ∪ {xnk+1}, Cn
k+1 = Cn

k ∪ {enk}, Dn
k+1 = Dn

k ].

- if ω(enk) = 0 then

[Y n
k+1 = Y n

k , C
n
k+1 = Cn

k , D
n
k+1 = Dn

k ∪ {enk}].

- Finally, Sn+1 = (Y n
kn
, Cn

k , D
n
kn

) This is an algorithm that builds the cluster C0 = X∞ on
(Zd,Ed), in a way that Xn is the set of sites that we have reached since the origin in
less than n not. A similar algorithm on the non-oriented model would give the same
probability of having Xn, in step n. Then the result in [3] works in the oriented case, that
is to say that there is β > 0 such that:

P (0→ y,D(0, y) > ρ ‖y‖1) ≤ exp(−β ‖y‖1), ∀y ∈ Zd.

�

Now, we will build a neighborhood for each site of Zd consisting of points of C̃. To
justify this choice, it is necessary to establish the properties of connections on C̃.

The main idea is that C̃ is connected, in the sense that any two points of C̃ are con-
nected by open paths, and that if an open path connects z to y, for z and y distant,
then this path meets V(x) and V(y). This last property is linked to the "re-entrant" and
"outgoing" roots of a site and will be mentioned later.

Thus, in the case where the epidemic survives, it will spend most of its time on the
open paths between the neighborhoods, or more exactly on the paths between points of
C̃, and will spend only negligible time in the neighborhoods, which will justify that t̂,
the time of passage between two neighborhoods is a good approximation of the time of
passage of the epidemic.

Teorema 4.4. For x and y two different sites of Zd, we then have:

P (x→ y : |C(x)| =
∣∣C(y)

∣∣ =∞) = 1.

Indeed, if C(x) and C(y) are infinite, Chabot in [5] demonstrated with an algorithm
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that the probability that x9 y is less than to have two infinite cluster disjoint in Bernoulli
non-oriented percolation on Zd. Thus, as the probability to observe two cluster infinite
disjoint in Bernoulli non-oriented percolation is zero, the result is established.
Thus we have a single connected component a.s., in the sense that if x and y are in C̃,
then x→ y and y → x.

Now, we are interested in all sites that are connected to x without meeting C̃. For
x ∈ Zd let:

R(x) = {y ∈ Zd : x→ y out of C̃} and

R(x) = {y ∈ Zd : x← y out of C̃},

where, "x → y out of C̃" means that there is a path of open edges Γ = (t0 =

y, t1, ..., tn−1, tn = z) from y to z such that none of the (ti)
n
i=0 is not in C̃. We will

agree that x belongs to R(x) and R(x) if and only if x /∈ C̃.

Lemma 4.5. There is σ1 = σ1(α, d) such that:

P
(
R(0) ∪R(0)

)
∩ ∂B(0, n) 6= ∅ ≤ exp(−σ1n),∀n ∈ N.

Proof: For n ∈ N∗, R(0) ∩ ∂B(0, 2n) 6= ∅ means that there is a path from 0 to
∂B(0, 2n) which avoids the points of C̃. R(0)∩∂B(0, 2n) 6= ∅ implies that there is a point
x of ∂B(0, n) who checks 0→ x→ ∂B(0, 2n) out of C̃. Then, this point is in particular a
point from which the incoming cluster or the outgoing cluster is finite. This finite cluster
is of radius greater than n. However, the distribution of this cluster is identical to the
distribution of a cluster of finite percolation on the non-oriented model. So there is σ0 > 0

such that (see theorem (9,1) in [9]):

P (C(x) ∩ ∂B(x, n) 6= ∅, C(x) is finite) ≤ exp(−σ0n),

P (C(x) ∩ ∂B(x, n) 6= ∅, C(x) is finite) ≤ exp(−σ0n).

So we have:

P
((
R(0) ∪R(0)

)
∩ ∂B(0, 2n) 6= ∅

)
≤ 2P (R(0) ∩ ∂B(0, 2n) 6= ∅)

≤ 2
∑

x∈∂B(0,n)

P (|C(x)| <∞, x→ ∂B(x, n))

+ 2
∑

x∈∂B(0,n)

P
(∣∣C(x)

∣∣ <∞, x← ∂B(x, n)
)

≤ 4 |∂B(0, n)| exp(−σ0n),
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then,
P
((
R(0) ∪R(0)

)
∩ ∂B(0, 2n) 6= ∅

)
≤ 4(2n+ 1)dexp(−σ0n).

So we have a distribution of the radius of R(0)∪R(0) which is exponentially decreasing
from a certain rank, but as

{
(
R(0) ∪R(0)

)
∩ ∂B(0, n) 6= ∅}

is of probability strictly smaller than 1 for all n, we conclude the proof. �

Now, we can define the neighborhood on C̃ of a site x. For this, we will examine the
smallest set that contains strictly R(x) and R(x), which contains points of C̃, and such
that two points of C̃ in this box are connected by an open path that does not come out
of a box a little larger. For this last condition, which allows to increase the crossing time
of V(x), the neighborhood of x, we will use ρ, the parameter defined in [3].

Definition 4.6. Let k(x) the infimum of the l ∈ N∗ such that:

i) ∂B(x, l) ∩
(
R(x) ∪R(x)

)
= ∅

ii) B(x, l) ∩ C̃ 6= ∅

iii) ∀(y, z) ∈
(
B(x, l) ∩ C̃

)2

y → z in B(x, 2l(ρd+ 1))

Indeed, not only k(x) is finite a.s., but it’s even sub-exponential:

Lemma 4.7. There is σ = σ(α, d) such that, for all n ∈ N:

P (k(x) ≥ n) ≤ 3 exp(−σn).

Proof: We show that the probability that any one of these conditions is not realized
for n is exponentially decreasing:

i) P
(
∂B(x, n) ∩

(
R(x) ∪R(x)

)
6= ∅
)
≤ exp(−σ1n)

ii) there is m integer such that

P
(
B(x, n) ∩ C̃ = ∅

)
≤ exp(−σ2[n/(m+ 1)]).

Indeed, Grimmett and Maarstrand [8] have shown that there is m = m(α) such that
p(α) > pc(Sm), where Sm = [0,m]×Zd−1. Then, for e1 = (0, 0+(1, 0, ..., 0)), we have:

P
(
B(x, n) ∩ C̃ = ∅

)
≤ P

(
∀z ∈ {je1 : 0 ≤ j ≤ n}, z /∈ C̃

)
,
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where,

{∀z ∈ {je1 : 0 ≤ j ≤ n}, z /∈ C̃} = {∀z ∈ {je1 : 0 ≤ j ≤ n}, C(z) or C(z) is finite}.

If Cm(z) and C(z) are respectively the clusters incoming and outgoing z in the slice
of space

Sm(l) = [l(m+ 1), (l + 1)(m+ 1)− 1]× Zd−1,

to which z belongs. If C(z) (or C(z)) is finite then Cm(z) = C(z) ∩ Sm(l) (or C(z))
is finite. Events from two different slices are independent, so:

P (∀z ∈ {je1 : 0 ≤ j ≤ n}, z /∈ C̃ ≤ P
(
∀z ∈ {je1 : 0 ≤ j ≤ n}, Cm(z) or Cm(z) is finite

)
≤ P

(
∀z ∈ {je1 : 0 ≤ j ≤ m}, Cm(z) or Cm(z) is finite

)[n/m+1]

≤ exp(−σ2[n/(m+ 1)]),

with σ2 = σ(α, d) > 0, independent of n. Indeed, if z0 = [m/2]e1 we have:

P (∃z ∈ {je1 : 0 ≤ j ≤ m}, Cm(z) and Cm(z) are infinite

≥ P
(
Cm(z0) and Cm(z0) are infinite

)
≥ P (Cm(z0) is infinite)P

(
Cm(z0) is infinite

)
> 0,

because of the FKG inequality and that p is strictly greater than the probability of
percolation on the slice Sm.

iii) P
(
∃(y, z) ∈

(
B(x, n) ∩ C̃

)2

y 9 z in B(x, 2n(ρd+ 1))

)
≤
∑

y,z∈∂B(x,n) P
(
y, z ∈ C̃, y 9 z in B(x, 2n(ρd+ 1))

)
Thus, if y → z and y 9 x in B(x, 2n(ρd+ 1)), there is y′ ∈ ∂B(x, 2n) such that

y → z and y 9 x in B(x, 2n(ρd+ 1)).

But if z ∈ ∂B(x, n), y′ ∈ ∂B(x, 2n) and y′ 9 z in B(x, 2n(ρd + 1)) then D(y′, z) ≥
4nρd+ n and ‖z − y′‖1 ≤ 3dn imply:

D(y′, z) > ρ ‖z − y′‖1 .
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From where, for z ∈ ∂B(x, n) and y′ ∈ ∂B(x, 2n):

P (y′ → z, y 9 z in B(x, 2n(ρd+ 1))) ≤ P (y′ → z, D(y′, z) > ρ ‖z − y′‖1)

≤ exp(−β ‖z − y′‖1)

≤ exp(−βn).

Consequently:

P

(
∃(y, z) ∈

(
B(x, n) ∩ C̃

)2

y 9 z in B(x, 2n(ρd+ 1))

)
≤ (2n+ 1)2d(4n+ 1)dexp(−βn).

Finally:

P

(
∀(y, z) ∈

(
B(x, n) ∩ C̃

)2

y → z in B(x, 2n(ρd+ 1))

)
≥ P (all the edges of B(x, n) are open ) > 0.

Thus we have just proved the existence of σ3 = σ3(α, d) > 0 such that, for n ∈ N:

P

(
∃(y, z) ∈

(
B(x, n) ∩ C̃

)2

y 9 z in B(x, 2n(ρd+ 1))

)
≤ exp(−σ3n).

which completes showing that the probability that any one of these three properties is
not satisfied is sub-exponential: we have the existence of σ = σ(α, d) > 0 such that, for
all n ∈ N:

P (k(x) ≥ n) ≤ 3exp(−σn).

�

We define the neighborhood of x on C̃ as:

V(x) = B(x, k(x)) ∩ C̃.

For all y and z of V(x), there is a more path, in number of edges, then in lexicographic
order on the edges used according to the order previously fixed, connecting y to z that
we will note Γ(y, z). This path is particularly included in B(x, 2k(x)(ρd+ 1)), according
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to the condition iii). Thus, we can define a neighborhood "in edges" of x:

→
Γ= {e ⊂ B(x, k(x)), e open } ∪ {e ∈ Γ(y, z), y, z ∈ V(x)},

also note,
→
Γ⊂ B(x, 2k(x)(ρd+ 1)).

We approach t(x, y) by:

t̂(x, y) = inf
x′∈V(x), y′∈V(y)t(x′,y′),

u(x) =
∑
e∈
→
Γ

τ(e).

t̂(x, y) is an approximation of t(x, y) bacause, if y ∈ Cx\R(x) there is a path from x to
y, and any path of this type necessarily passes through C̃. It is not difficult to conclude
that:

t̂(x, y) ≤ t(x, y) ≤ u(x) + t̂(x, y) + u(y).

The main interest of this appoximation is that t̂ is a.s. finite. In fact, t̂ and u checking
the following regularity condition:

Lemma 4.8. For x and y of Zd and r ∈ N we have:

E(u(x))r <∞ and E(t̂(x, y))r <∞

Proof: For x ∈ Zd, we note that:

u(x) ≤ |B(x, k(x))(ρd+ 1)|2 T,

this is suffices to prove that for every r ∈ N, u(x) is r-integrable.

Let us show that for x and y of Zd, t̂(x, y) is r-integrable for every r ∈ N. We call
medium of (x, y) in Zd

m(x, y) = x+

⌊
x+ y

2

⌋
.

For the definition of k(x), we build a box centered in m(x, y) of radius k(x, y), which has
the following three properties: contains B(x, k(x)), B(y, k(y)) and the shortest open path
(in number of edges) from V(x) to V(y). With these three conditions, we garantee that the
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shortest path, in number of edges, from V(x) to V(y), is in B(m(x, y), 2k(x, y)(ρd+ 1)):

k(x, y) = inf{l ∈ N :B(x, k(x)) ⊂ B(m(x, y), l),

B(y, k(y)) ⊂ B(m(x, y), l),

V(x)→ V(y) in B(m(x, y), 2l(ρd+ 1))}.

Thus, for n ∈ N :

P (k(x, y) ≥ n) ≤ P (k(x) ≥ n− ‖x−m(x, y)‖∞) + P (k(y) ≥ n− ‖y −m(x, y)‖∞)

+ P (∃z, z′ ∈ B(m(x, y), 2n(ρd+ 1)) ∩ C̃, z 9 z′ in B(m(x, y), 2n(ρd+ 1)))

≤ 3exp(−σ(n− ‖x−m(x, y)‖∞)) + 3exp(−σ(n− ‖y −m(x, y)‖∞)) + exp(−σ3n)

≤ 7exp(−σ(n− ‖x− y‖∞)).

Then, we have:
t̂(x, y) ≤ |B(m(x, y), 2k(x, y)(ρd+ 1)|2 T,

which justifies that t̂(x, y) is r-integrable, for all r ∈ N. �

It should be noted that the distribution of u(x) as that of t(x, y) are in fact of exponen-
tial tail at t

1
4d at least, which largely justifies the regularity necessary for the establishment

of the desired asymptotic result.
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Chapter 5

Radial limits and behavior of t̂

In this Chapter we write Zj with j = 2 or j = d for . Now we will prove the existence of
radial limits with the following theorem

Teorema 5.1. If θ ∈ Zj, with j = 2, d, then there is a constant µ(θ) so that, as n→∞,

[
1
n
t(0, nθ)− µ(θ)

]
1{nθ∈C0} → 0 a.s.

Before proving this theorem, let ξ(x, y) = t̂(x, y) + u(y), then

ξ(x, z) ≤ ξ(x, y) + ξ(y, z). (5.1)

Proof of Theorem 5.1: For fixed θ ∈ Zj let ξm,n = ξ(mθ, nθ), 0 < n < ∞. Then, by
(5.1) and that for any of the three cases (see chapters 2, 3 and 4 respectively), we have:

E(u(z))m <∞ for m = 1, 2, 3, ... and z ∈ Zj,

E(t̂(x, y))m <∞ for m = 1, 2, 3, ... and x, y ∈ Zj,

ξm,n is subbaditive in the sense of Kingman, and and by the subadditive ergodic theorem
(see appendix), the limit µ(θ) := limn→∞

ξ0,n
n

exists a.s. in L1 and is constant. To finish
the proof, observe that:∣∣∣∣ t̂(0, nθ)− t(0, nθ)n

∣∣∣∣1{nθ∈C0} ≤
u(0) + u(nθ)

n
.

Then, ∣∣∣∣ t̂(0, nθ)− ξ0,n

n

∣∣∣∣1{nθ∈C0} ≤
u(0)

n
,
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which implies, ∣∣∣∣ t̂(0, nθ)− ξ0,n

n

∣∣∣∣1{nθ∈C0} → 0 a.s.. �

Now, established in each direction of Zj with j = 2, d the existence of a linear velocity
of propagation; however, in order to establish an asymptotic shape result, especially for
the passage times (t̂(x, y)), it is necessary to control this propagation velocity uniformly
in all directions. We will now study u(θ) for θ ∈ Zj, or more precisely, following the
construction of Cox and Durrett [7], an extension of µ to Rj denoted ϕ. The asymptotic
form of the epidemic will be the border of the convex:

D = {x ∈ Rj : ϕ(x) ≤ 1}.

We will see that this extension of µ to Rj is Lipchtzian, convex and homogeneous,
that is, for all x ∈ Rj and λ > 0:

ϕ(λx) = λϕ(x).

In particular, if x ∈ Qj, for N = min{m ≥ 1 : mx ∈ Zj}:

ϕ(x) = ϕ(Nx)/N = µ(Nx)/N,

which is an expected property for the asymptotic linear velocity of propagation in the
direction of x. This is done according to the standard construction of [7]. First, if for
every z ∈ Zj (j = 2, d):

g(z) = E(ξ(0, z)),

then, by the subadditive theorem, we have:

lim
n→∞

ξ(0, nz)/n = inf
n
E(ξ(0, nz)/n) = inf

n
g(nz)/n = µ(z).

- If j = 2, extend the domain of g to all R2 by making it linear on triangles of the form
(x, y), (x, y + 1), (x+ 1, y) and (x, y + 1), (x+ 1, y), (x+ 1, y + 1).

- If j = d, extend the domain of g to all Rd in barycentric manner to a continuous function
(see [5]).

If we define the sequence of functions (gn)n∈N∗ by:

gn(x) = g(nx)/n, ∀x ∈ Rj.

Then, there is a function ϕ on Rj, Lipschitz, such that ϕ = µ on Zj, which is limit uniform
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throughout compact in Rj, of (gn)n∈N∗ . This is a direct consequence of theorem of Ascoli
and Lemma following:

Lemma 5.2. If (gn)n∈N∗ is a sequence of λ-Lipschitz functions, then this sequence of
functions is equicontinuous.

Indeed, it is sufficient, of course, to check that g is Lipschitz, which is obtained from
the following three inequalities, for x, y ∈ Zj:

g(x) + g(y) ≥ g(x+ y),

g(x+ y) + g(−y) ≥ g(x) and

g(−y) = g(y) ≤ ‖y‖1 g(e1).

These three inequalities are result of subaditivity and symmetry of ξ. The demonstration
of Lemma 5.2 is based on the development of these inequalities and the convex combina-
tion, depending on the case, if the extension is triangular or barycentric, see [7] and [5].

Now, we will establish the properties of homogeneity and convexity of ϕ. For x ∈ Qj,
we have:

lim
n→∞

gn(x) = ϕ(x).

Indeed, if N = min{m ≥ 1 : mx ∈ Zj}, remember j = 2 or j = d, then (gn(Nx))n∈N∗

is a subadditive sequence. Thus,

lim
n→∞

g(nNx)

nN
=
ϕ(Nx)

N
.

For i ∈ {0, ..., N−1}, and all n ∈ N, since g is Lipschitzian, we have that |g(nNx+ jx)− g(nNx)| ≤
λ∗ ‖ix‖1, which is sufficient to justify the convergence on Qj. We then have the conver-
gence on Rd, since every subsequence of (gn)n∈N∗ , admits a subsequence which converges
uniformly, on any compact, to a continuous function which is equal to ϕ on Qj.

Then the homogeneity on Qj is obvious, and the convexity of ϕ deduces: for all
x, y ∈ Qj , λ ∈ Q+ and λ′ ∈ Q+ ∩ [0, 1], there is N ∈ N∗ such that Nx, Ny, Nλ and Nλ′

are integers. Then:
g(nλNx) ≤ Nλg(Nx).

g(Nλ′Nx+N(1− λ′)Ny) ≤ g(Nλ′Nx) + g(N(1− λ′)Ny)

≤ Nλ′g(Nx) +N(1− λ′)g(Ny),

by subadditivity of ξ on Zj. The properties are therefore true on Qj, and by continuity
of ϕ, on Rj.
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Finally, {x : ϕ(x) ≤ β} is bounded, for all β > 0. Indeed, the passage times following
the edges are reduced by passage times of exponential law, so the epidemic can not go
faster than this first-pass percolation process, whose passage times are exponential law of
parameter α/2d, and which, according to the theorem (1.15) of [12], moves linearly like
the boundary of a convex.

Now, we extend t̂(0, z), u(z) and ξ(0, z) to the points on Rj just like the extension of
the function g, and we check that t̂(0, kx)/k tends a.s. to ϕ(x) when k tends to infinity,
this for all x ∈ Qj. The existence of a maximum speed of propagation of the epidemic
will be deduced from the regularity properties established above, for ϕ.

If x ∈ Qj, then there is N = min{m ≥ 1 : mx ∈ Zj}. Let am,n = ξ(mNx, nNx),
which is a subadditive process that satisfies the assumptions of the subadditive theorem,
and therefore a.s.:

lim
n→∞

a0,n

nN

ϕ(Nx)

N
= ϕ(x).

Also, since Eu2(nθ) = Eu2(0) < ∞ for all θ ∈ Zj, the distribution of u being invariant
by translation, then by Chebychev’s inequality:

∞∑
n=0

P (u(nθ) > nε) <∞,

for all ε > 0, consequently by the Lemma of Borel-Cantelli, we have:

1

n
u(nθ)→n→∞ 0 a.s.

then,
u(nNx)

nN
→n→∞ 0 a.s.

thus,
t̂(0, nNx)

nN
→n→∞ ϕ(x) a.s..

It remains to verify that this result is still correct for (t̂(0, kx)/k, k ∈ Z∗). By
invariance, symmetry and integer translations of the distributions of (ξ(x, y)) and (u(z)),
for ε > 0 and for 0 ≤ i < N , we obtain:

∞∑
n=1

P (
∣∣t̂(0, (i+ nN)x)− t̂(0, nNx)

∣∣ > ε) ≤
∞∑
n=1

P (u(0) + u(ix) + ξ(0, ix) > εn) <∞.
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This according to Chebychev’s inequality. The Lemma of Borel-Cantelli thus makes
it possible to conclude:

t̂(0, kx)

k
→ ϕ(x) a.s., ∀x ∈ Qj.

Thus, we have the almost sure convergence of t̂(0, kx)/k to ϕ(x) on Qj, as k →∞.

Now, we will highlight the fact that the growth of t̂(o, z) can not be more than linear in
‖z‖∞, from a certain rank for z ∈ Zj. This is the main argument that allows to establish,
together the existence of radial limits, the theorem of asymptotic shape for t̂.

Teorema 5.3. There is K = K(α, d) such that:∑
z∈Zj

P (t̂(0, z) > K ‖z‖∞) <∞.

Cox and Durrett [7] used the minimal circuit method to show Theorem 5.3 for the
nearest neighbor case on Z2. However, this does not work for the finite range since we
can not even define the minimal circuit in ER. Fortunately, we can define the minimal
circuit with the renormalized sites since Vn is a planar graph (see [19]), then use the same
arguments used in [7]. In the case of Chabot, to prove the Theorem 5.3, the definition of
k(z) and V(x) are used (see [5]).

Now, since we have established that the general velocity of propagation for the passage
times (t̂(x, y)) is a.s. at most linear, in the next chapter we will see an asymptotic result
for:

Âs = {z ∈ Zj : t̂(0, z) ≤ s} with j = 2, d. (5.2)

42



Chapter 6

Proof of the shape theorem

6.1 Asymptotic shape for t̂

We will prove for ε > 0, a.s. for all sufficiently large s ∈ R+,

(1− ε)sD ∩ Zj ⊂ Âs ⊂ (1 + ε)sD ∩ Zj for j = 2, d.

This is, a.s. for all sufficiently large s ∈ R+ and z ∈ Zj:

- z ∈ Âs ⇒ s−1z ∈ (1 + ε)D, and

- s−1z ∈ (1− ε)D ⇒ t̂(0, z) ≤ s

with D = {x ∈ Rj : ϕ(x) ≤ 1}. For this, we will follow the construction of Cox and
Durrett exhibited in [7].
We will show, by compactness arguments, that for every x for which ϕ(x) < 1, there is
δ(x) > 0 such that:

P (Âs ⊃ sB(x, δ(x)) ∩ Zj for all sufficiently large s) = 1,

and for every x for which ϕ(x) > 1 there is δ(x) > 0 such that:

P (s−1Âs ∩B(x, δ(x)) = ∅ for all sufficiently large s) = 1.

Indeed, we will cover Zj by a finite number of cones (
⋃
s≥0B(xs, δs, x ∈ Rj) in which the

propagation is linear as the boundary of D from a certain rank. In fact, we will prove
this property for x ∈ Qj and δ rational, which suffices. If the existence of δ for the origin
is demonstrated obviously, for x 6= 0 and δ < ‖x‖∞, we will approach all z of cone

D(x, δ) = Zj ∩
⋃
s≥0

B(xs, δs),
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by the center of a ball of type B(xs, δs), s ≥ 0, which contains z. Then, we will show that
the time taken to reach z is close to the time to reach the center of this ball and which is
in the order of ‖z‖ϕ(x). To do this, let:

σz = inf{s : z ∈ B(xs, δs)}.

Now, we show that for a δ satisfactory, t̂(σzx, z) is growing a.s. at most linearly with z
on D(x, δ), which will allow to establish a result of asymptotic shape for t̂. Let x ∈ Qj

be different from the origin. We take 0 < δ < ‖x‖∞ then, for z ∈ D(x, δ), we have that
σzx is the center of the first ball of the form B(sx, sδ) that contains z, and thus:

‖z − σzx‖∞ = δσz.

It should be noted in particular that there is then i ∈ {1, ..., j} (remember j = 2 or j = d)
such that:

|zi − σzxi| = σzδ,

thus,

σz =
|zi|
|xi|+ δ

.

For i ∈ {1, ..., j}, let:
λi =

1

|xi|+ δ
.

The centers (σzx, z ∈ D(x, δ)) are therefore all of the form nyi, for i ∈ {1, ..., j}, where
yi = λx. In particular, this justifies the subsequent use of the result of radial limits for
t̂(0, σzx). It establishes the following result:

Lemma 6.1. Let x ∈ Qj be different from the origin, for a > 0, there is δ > 0 such that
a.s. there is only a finite number of z ∈ D(x, δ) such that:

t̂(σzx, z) > aσz.

Proof: Let δ ∈ Q∗+ such that a/δ > K where K was determined in Theorem 5.3. If z ∈
D(x, δ), there is i ∈ {1, ..., j} and n ∈ N such that σz = nλi and thus z ∈ ∂B(nλix, nλiδ).
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We then have:∑
z∈D(x,δ)

P (t̂(σzx, z) > aσz) ≤
∑

i∈{1,...,j}

∑
n≥0

∑
z∈D(x,δ):σz=nλi

P (t̂(σzx, z) > aσz)

≤
∑

i∈{1,...,j}

∑
n≥0

∑
z∈D(x,δ):σz=nλi

P (t̂(σzx, z) > Kδσz)

≤
∑

i∈{1,...,j}

∑
n≥0

∑
z∈D(x,δ):σz=nλi

P (t̂(0, z − σzx) > Kδσz)

≤
∑

i∈{1,...,j}

∑
n≥0

(2nλiδ + 1)jexp(−nσδλi) <∞.

�

Existence of δ(x) for ϕ(x) < 1. First, for x = 0, there is δ(0) ∈ Q such that:

0 < δ(0) < 1/K.

We know that there exists a.s. a finite number of y ∈ Zj such that:

t̂(0, y) > K ‖y‖∞ .

Let Y be all these sites. If s0 = max(t̂(0, y), y ∈ Y ) then, for s > s0, we know that
t̂(0, y) < s for all y ∈ Y , and for z ∈ Zj\Y such that s−1z ∈ B(0, δ(0), then:

t̂(0, z) ≤ K ‖z‖∞ = sK
∥∥s−1z

∥∥
∞ ≤ s.

Thus, δ(0) is a radius that satisfies:

P (s−1Âs ⊃ B(0, δ(0)) for all sufficiently large s) = 1.

Now, we assume that x ∈ Qj, x 6= 0, such that ϕ(z) < 1. Let ε be such that 0 < ε <

(1− ϕ(x))/2 . Then, we take δ ∈ Q, δ > 0 such that δ < ‖x‖∞, which verifies:

(1− ϕ(x)− 2ε)/δ > K.

From the existence of radial limits, we have, for all i ∈ {1, ...j} and δ ∈ Q+:

P (t̂(0, nλix) > (ϕ(x) + ε)nλi i.o.) = 0.
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Indeed, from the previous chapter, λi ∈ Q+ and:

ϕ(x) = λ−1
i ϕ(λix).

We know, from the previous lemma, that there exists a.s. a finite number of z ∈ (x, δ),
such that:

t̂(σzx, z) > (1− ϕ(x)− 2ε)σz.

It has already been established, that there exists only a finite number of n ∈ N such that,
for all i ∈ {1, ...j}:

u(nλix)

nλi
> ε.

Finally, we have:
t̂(0, z) ≤ t̂(0, σzx) + u(σzx) + t̂(σzx, z).

Thus, a.s., with the possible exception of a finite number of z, we have:

t̂(0, z) ≤ σz,

which means t̂(0, z) ≤ s, if z ∈ B(xs, δs).
We can thus prove the first of the two inclusions justifying the asymptotic shape for

the passage times t̂: for ε > 0, since {x : ϕ(x) ≤ 1−ε} = (1−ε)D is compact, it is enough
to take a finite recovery of this compact by the (B(x, δ(x))) for x ∈ Qj and ϕ(x) ≤ 1− ε.
Then:

P (Âs ⊃ s{x : ϕ(x) ≤ 1− ε} ∩ Zj for all sufficiently large s) = 1.

Existence of δ(x) for ϕ(x) > 1. Now, we want to show that:

P (s−1Âs ∩ {x : ϕ(x) ≥ 1 + ε} = ∅ for all sufficiently large s) = 1.

If ε < 1 and s−1Âs ∩ {x : ϕ(x) ≥ 1 + ε} 6= ∅, observe that:

s−1Âs ∩ {x : 2 ≥ ϕ(x) ≥ 1 + ε} 6= ∅,

thus, by compactness, just check that for any x such that

2 ≥ ϕ(x) > 1,

there is δ(x) > 0 such that:

P (s−1Âs ∩B(x, δ(x)) = ∅ for all sufficiently large s) = 1.
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From the existence a.s. of radial limits, we have, for all ε > 0, i ∈ {1, ...j} and for all
δ ∈ Q+:

P (t̂(0, nλix) < (ϕ(x)− ε/2)nλi i.o. ) = 0.

Similarly, we have:
P (u(z) > σzε/2 i.o.) = 0.

According to the previous lemma, we have seen that:

P (t̂(σzx, z) > (ϕ(x)− 1− 2ε)σz i.o.).

From the subadditivity, we have the following inequality:

t̂(0, z) ≥ t̂(0, σzx)− t̂(z, σzx)− u(z).

Then, for all sufficiently large z a.s.:

t̂ > (1 + ε)σz.

Let σ′z = sup{s ≥ 0 : z ∈ B(sx, sδ}. For all s such that z ∈ B(sx, sδ}:

‖x‖∞
‖x‖∞ + δ

≤ s ‖x‖∞
‖z‖∞

≤ ‖x‖∞
‖x‖∞ − δ

,

then,

σ′z ≤
‖x‖∞ + δ

‖x‖∞ − δ
σz.

Thus, if δ is sufficiently small, we have σ′z ≤ (1 + ε)σz. We have proved the existence of
δ > 0, such that a.s.:

z ∈ B(sx, sδ) =⇒ z /∈ Âs.

Then, for all ε > 0, from the compactness of {x : 1 + ε ≤ ϕ(x) ≤ 2}, the second of the
two inclusions justifying the asymptotic shape for the passage times t̂, this is:

P (s−1Âs ∩ {x : ϕ(x) ≥ 1 + ε} = ∅ for all sufficiently large s) = 1.

Thus, we have established an asymptotic result for t̂:

Teorema 6.2. Let ε > 0. For Âs = {z ∈ Zj : t̂(0, z) ≤ t} (j=2,d), and D = {x ∈ Rj :

ϕ(x) ≤ 1}, we have the following asymptotic result:

P ((1− ε)sD ∩ Zj ⊂ Âs ⊂ (1 + ε)sD ∩ Zj for all sufficiently large s) = 1.
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6.2 Asymptotic shape of the epidemic

Now, it can be established that the epidemic will propagate linearly as the boundary of a
convex set. First, remember (1.4):

ζs = {x : ηs(x) = 0} and ξs(x) = {x : ηs(x) = i} .

Also, we need:

If ε > 0 then P (u(z) > ε ‖z‖ i.o. ) = P (Tz > ε ‖z‖ i.o. ) = 0. (6.1)

This is a consequence of Eu(z)2 <∞ and ET 2
z <∞.

To establish the desired result of the asymptotic shape, it must be shown that the
infected region does not get stuck inside D. More precisely, it must be shown that, if
ε > 0:

P (ζs ∩ (1− ε)sD = ∅ for all sufficiently large s) = 1. (6.2)

Indeed, we already know that, for ε > 0, a.s. for s sufficiently large, if z ∈ (1− ε)sD,
then:

t̂ ≤ (1− ε/2)s.

We add u(0) + u(z) + Tz (in the case of Chabot, Tz = T for all z ∈ Zd) to both members
of this inequality and using that:

If t(x, y) <∞, then t̂(x, y) ≤ t(x, y) ≤ t̂(x, y)+u(x)+u(y), ∀x, y ∈ Zj (in all three cases),

to obtain:
t(0, z) + Tz ≤ (1− ε/2)s+ u(0) + Tz + u(z).

With d = supx∈D ‖x‖, we have from 6.1 that a.s., for all s:

u(0) + u(z) + Tz ≤
ε

3d
‖z‖ ≤ ε

3
(1− ε)s

(since z ∈ (1− ε)sD). Combining this with the previous inequality gives us:

t(0, z) + Tz ≤ (1− ε/6)t,

and so z belongs to ζs, not ξs. This proves 6.2 and

P (t(1− ε)D ∩ C0 ⊂ ζs for all sufficiently large s) = 1.
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On the other hand, if z ∈ ξs or z ∈ ζs, then t(0, z) ≤ s so certainly t̂(0, z) ≤ s, and by
Theorem 6.2, z ∈ (1 + ε)sD. That is:

P (ξs ⊂ (1 + ε)sD for all sufficiently large s) = 1,

and
P (ζs ⊂ (1 + ε)sD for all sufficiently large s) = 1.
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Appendix A

Useful theorems

A.1 Harris-FKG inequality

On the spae Ω = {0, 1}E
d

we consider the partial orden given by ω ≤ ω′ if ω(e) ≤ ω′(e)

for all edges e, i.e. whenever and edge is open in ω it is also open in ω′.

A random variable X on Ω is said to be increasing if X(ω) ≤ X(ω′) whenever ω ≤ ω′.
If −X is increasing we say that X is decreasing. We say that an event A ∈ A is increasing
(decreasing) if its indicatir function 1A is increasing (decreasing, resp), where 1A(ω) = 1

if ω ∈ A and ,{x↔ y} , {|C(0)| =∞} , {∃ an infinite open path} .

Let Pp(ω(e) = 1) = p be for each e ∈ Ed. A very useful property held by the measures
Pp is the Harris-FKG inequality

Teorema A.1. (a) If X and Y are bounded increasing random variables in (Ω,A), then

Ep(XY ) ≥ EP (X)EP (Y ), (A.1)

(b) If A and B are increasing events in (Ω,A), then

Pp(AB) ≥ Pp(A)Pp(B). (A.2)

The above theorem says that increrasing events (variables) are positively correlated
under the measures Pp. In particular in (A.2) can be stated in terms of the conditional
probability:

Pp(A|B) ≥ Pp(A). (A.3)

i.e. Knowing that B occurs increases the chance to A occur. For product measures this
was first proven by Harri’s 1960. The propertie was later investigated for amore general
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classof measures of special importance in statistical mechanical models for ferromagnetic
interactions. The extension is due to Fortuin, Kasteleyn and Ginibre 1971, and it is
usually named simply FKG inequality (or FKG property).

A.2 Ergodic Theorem

Now, we will discuss a little about ergodic theory. For x ∈ Zn, define the shift transfor-
mation τx on X by

(τxη)(y) = η(y − x)

where η ∈ {0, 1}Zd . These induce in a natural way shift transformation on the space of
all functions on X via

τxf(η) = f(τxη),

and if µ is a probability measure on X, then∫
fd(τxµ) =

∫
(τxf)dµ.

Let L be the set of all the probability measures µ, such that τxµ = µ, for all x ∈ Zn.

We will need to use the following version of the multiparameter ergodic theorem. Its
proof can be found in Chapter VIII of Dunford and Schwartz (1958). The inequalities in
the statement are to be interpreted componentwise, and x −→∞ is interpreted as saying
that each component of x tends to ∞.

Teorema A.2. If µ ∈ L and f is a bounded measurable function on X, then

lim
x−→∞

∑
0≤y≤x τyf

|{y ∈ Zn : 0 ≤ y ≤ x}|

exists a.s. and in L1 relative to µ. If n = 1, it suffices that f be in L1(µ)

Definition A.3. A µ ∈ L is said to be ergodic if whenever τxf = f for all x ∈ Zn and f
is measurable on X, it follows that f is constant a.s. relative to µ.

A.3 Subadditive Ergodic Theorem

In the demonstration of the existence of radial limits we use the following general result,
which is know as the Subadditive Ergodic Theorem (see Theorem 2.6 in [15].

Teorema A.4. Suppose {Xm,n, m ≤ n} are random variables which satisfy the following
properties:
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a) X0,0 = 0, X0,n ≤ X0,m +Xm,n, for 0 ≤ m ≤ n.

b) {X(n−1)k,nk, n ≥ 1} is a stationary process for each k ≥ 1.

c) {Xm,m+k, k ≥ 0} = {Xm+1,m+k+1, k ≥ 0} in distribution for each m.

d) EX+
0,1 <∞.

Let αn = EX0,n, which is well defined by a), b), and d). Then

α = lim
n→∞

αn
n

= inf
n≥1

αn
n
∈ [−∞,∞), and (A.4)

X∞ = lim
n→∞

X0,n

n
exists a.s., with −∞ ≤ X∞ <∞ (A.5)

Furthermore, EX∞ = α. If α > −∞, then

lim
n−→∞

E

∣∣∣∣X0,n

n
−X∞

∣∣∣∣ = 0

If the stationary processes in b) are ergodic, then X∞ = α a.s.

A.4 Connection Length

Finally we present a result of non-oriented percolation (is used in the third model), es-
tablished in [3], for controlling the length of an open path between two connected sites:

Teorema A.5. If p > pc, there is a constant ρ = ρ(p, d) ∈ [1,∞) such that

lim sup
|y|→∞

1

‖y‖1

log P̃p(0↔ y,D(0, y) > ρ ‖y‖1) < 0

where "0←→ y" means that there is a path of open unoriented edges from 0 to y, and
D(0, y) is the minimum number of open unoriented edges of a open path from 0 to y.
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