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Resumo

Motivados pela crescente importância que as varifolds têm assumido na análise geométrica,

nesta tese de mestrado estudamos os detalhes da prova agora clássica do teorema de regu-

laridade de Allard. Seguiremos de perto a abordagem deste tópico desenvolvido nas notas

de Camillo De Lellis [Lel12]. Por esta razão uma versão mais fraca do Teorema 8.1 de

[All72], que concerne as varifolds com curvatura media generalizada é demonstrada. Isto

permite de obter demonstraões simplificadas apesar de manter inclúıdas todas as técnicas

e as dificuldades do caso geral.

Palavras chaves: Varifolds, Curvatura média geralizada, Teorema interior de Allard,Teoria

Geométrica da Medida.



Abstract

Motivated by the fast growing importance that varifolds are assuming in geometric anal-

ysis, in this master thesis we study the details of the proof of the by now classical Allard’s

regularity theory for integral varifolds. We follow very closely the approach to this topic

developed in the notes of Camillo De Lellis [Lel12]. For this reason a weaker version of

Theorem 8.1 of [All72], which concerns varifolds with bounded generalized mean curvature

is proved. This allows simplified proofs even if all the principal technics and difficulties

of the general case appears already here.

Key words: Varifolds, First variation of a Varifold, Generalized mean curvature, Allard’s

interior regularity Theorem, Geometric Measure Theory.
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Introduction

In the 1920, Besicovitch studied linearly measurable sets in the plane, that is sets with

locally finite lenght. This marks the beginning of the study of the geometry of measures

and the associated field known as Geometric Measure Theory. When considering geomet-

ric variational problem like the Plateau’s problem or the isoperimetric problem, in general

we minimize some geometric functional like the area functional over an admissible family

of hypersurfaces subjected to various topological and/or analytical family of conditions,

as, fixed volume, fixed boundary, etc. Even if the family of admissible hypersurfaces could

be chosen as nice (smooth) as possible, it could happens that a minimizing sequence could

converge to an object which lives outside the world of smooth objects, allowing for the

raising of singularities. These new objects could be interpreted as the real mathematical

model for the physical problem of Plateau or of interfaces. The advantage of using vari-

folds or other objects of the Geometric Measure Theory, like finite perimeter sets, is related

to compactness an regularity properties which guarantee existence and regularity results

once impossible to obtain. Furthermore those results make abstraction of the complete

list of singularities that we have to include in the definition of an object which models

our physical soap-film like hypersurfaces. Of course it is useful to know all possibles types

of singularities that could appear, but the current state of the art still does not permits

to achieve this goal. However varifolds offer geometrically significant solutions to a wide

number of variational problems without having to know what all the possible singulari-

ties can be. In this thesis we are concerned with the proof of Theorem 8.1 of [All72], but

actually we will give just a proof of a weaker result following the treatment of the proof

of Theorem 3.2 of [Lel12]. One of the big differences between the result treated here and

[All72] is that we restrict the theory to varifolds with bounded generalized mean curva-

ture, whereas a suitable integrability assumption is usually sufficient. A second drawback

is that hypothesis (H2) in Allards interior ε-regularity Theorem 4.1 is redundant. Still,



the statement given here suffices to draw the two major conclusions of Allards theory.

A third disadvantage is that a few estimates coming into the proof of Theorem 4.1 are

stated in a fairly suboptimal form. This work could be intended as a preparatory text to

the reading and understanding of the more complete and sophisticated sources [Sim83]

and [All72].
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Chapter 1

Measures and outer measures

Definition 1.1. Let P(X) be the set of all subsets of an arbitrary set X. An outer

measure µ on X is a set function on X with values in [0,∞], i.e.,

µ : P(X)→ [0,∞],

such that the following properties are satisfied

1. µ(∅) = 0,

2. if E ⊂
⋃
n∈NEn, then µ(E) ≤

∑
n∈N µ(En).

Definition 1.2 (σ-algebra). Given a family F ⊂ P(X) such that

1. ∅ ∈ F ,

2. if E ∈ F then X \ E ∈ F ,

3. if {Ek}k∈N is a sequence of elements of F , then the countable union
⋃
k∈NEk belongs

to F .

The family F is said a σ-algebra.

Definition 1.3 (σ − aditivity). Given a family F of subsets of X, closed with respect to

countable unions, we say that a set function µ on X is σ-additive on F , provided that

µ

(⋃̊
n∈N

En

)
=
∑
n∈N

µ(En),

for every disjoint sequence {En}n∈N ⊂ F .
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Definition 1.4. The pair (X,F), where X is a set and F a σ − algebra on X, is said a

measure space. Let (X,F) be a measure space, we say that a function µ : F → [0,+∞],

is a (abstract) measure, if µ is an outer measure and satisfy the σ-additivity property on

F .

There exist various examples of (concrete) measures, but among them we will consider

two that are of particular interest in the calculus of variations and geometric measure

theory.

Example 1.1 (Lebesgue Measure). Let E ⊂ Rn, the n-dimensional Lebesgue mea-

sure of E is defined as

Ln(E) = inf
F

∑
Q∈F

r(Q)n,

where F is a countable covering of E by cubes with sides parallel to the coordinates axis,

and r(Q) denote the length of a side of Q.

Ln is an outer measure (by construction). Moreover it is translation-invariant, that is

Ln(x+ E) = Ln(E),

and satisfy the scaling law

Ln(λE) = λnLn, ∀λ > 0.

If B = {x ∈ Rn : |x| ≤ 1} is the Euclidean unit ball of Rn, we set ωn = Ln(B).

Example 1.2 (Hausdorff Measure). Given n, k ∈ N, δ > 0, the k-dimensional Haus-

dorff measure of step δ, of E ⊂ Rn is defined as

Hk
δ (E) := inf

F

∑
f∈F

ωk

(
diam(F )

2

)k
, (1.1)

where F is a countable covering of E by sets F ⊂ Rn such that diam(F ) < δ.

The k-dimensional Hausdorff measure of E is

Hk(E) := sup
δ>0
Hk
δ = lim

δ↓0
Hk
δ (E). (1.2)

Hk
δ is an outer measure, hence Hk is an outer measure too. Hk is translation-invariant,

and satisfy a scaling law. The Hausdorff measure is a quite suitable generalization of the

notion of area on a k-dimensional parametrized surface.
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The following are basic results in measure theory and the only purpose is to illustrate

the properties of Hausdorff and Lebesgue’s measures, the proof of those can be found in

any good textbook on measure theory as for example [Fed14] or [Mag12].

Theorem 1.1 (Caratheodory’s theorem). If µ is an outer measure on Rn and define

M(µ) as the family of those E ⊂ Rn such that

µ(F ) = µ(E ∩ F ) + µ(F \ E) ∀F ⊂ Rn,

then M(µ) is a σ − algebra, and µ is a measure on M(µ).

Remark 1.1. When we define a measure µ′ starting from an outer measure µ we always

consider µ′ defined as the restriction of µ on M(µ), so µ′ is always a complete measure.

This is what we do with the Hausdorff measure Hk.

1.1 Measure and Integration

Definition 1.5. A function u : E ⊂ Rn → [−∞,+∞] is said µ-mesurable on Rn if

µ(Rn \ E) = 0, and if for all t ∈ R

{u > t} = {x ∈ E : u(x) > t}

belongs to M(µ). A function u is a µ-simple function on Rn, if is µ-mesurable and

the image of u is countable.

Definition 1.6. Given a non-negative, µ-simple function u, the integral of u with

respect to µ is defined in [0,∞] as the series∫
Rn
udµ =

∑
t∈u(Rn)

tµ({u = t}),

with the convention that 0 · ∞ = 0.

When u is a µ-simple function, and either∫
Rn
u−dµ, or,

∫
Rn
u+dµ,

is finite, we say that u is µ-integrable simple function, and set∫
Rn
udµ =

∫
Rn
u+dµ−

∫
Rn
u−dµ.
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Let u : E ⊂ Rn → [−∞,+∞] be a function such that µ(Rn \E) = 0; we define the upper

and lower integrals with respect to µ as∫ ∗
Rn
udµ = inf

v∈S

{∫
Rn
vdµ : v ≥ u µ− a.e. on Rn

}
,∫

∗Rn
udµ = sup

v∈S

{∫
Rn
vdµ : v ≤ u µ− a.e. on Rn

}
,

where S is the family of µ-integrable simple functions of Rn.

If u is µ-mesurable and ∫ ∗
Rn
udµ =

∫
∗Rn

udµ,

we say that u is a µ-integrable function, and this common value is called the integral

of u with respect to µ, denoted by ∫
Rn
udµ.

Theorem 1.2 (Monotone Convergence Theorem). Let {un}n∈N be a sequence of µ-mesurable

functions un : Rn → [0,∞] such that un ≤ un+1, µ-a.e. on Rn, then

lim
n→∞

∫
Rn
undµ =

∫
Rn

sup
n∈N

undµ.

If, instead, un ≥ un+1 and u1 ∈ L1(Rn;µ), then

lim
n→∞

∫
Rn
undµ =

∫
Rn

inf
n∈N

undµ.

Theorem 1.3 (Fatou’s Lemma). Let {un}n∈N be a sequence of µ-mesurable functions

un : Rn → [0,∞], then ∫
Rn

lim inf
n→∞

undµ ≤ lim inf
n→∞

∫
Rn
undµ.

Theorem 1.4 (Dominated Convergence Theorem). Let {un}n∈N be a sequence of µ-

mesurable functions, such that converges pointwise to some limit function u, µ-a.e. on

Rn and if exist v ∈ L1(Rn;µ) such that

|un| ≤ v µ− a.e. on Rn,

then ∫
Rn
udµ = lim

n→∞

∫
Rn
undµ.
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Theorem 1.5 (Egoroff’s Theorem). Let {un}n∈N be a sequence of µ-mesurable functions,

such that converges pointwise to some limit function u, µ-a.e. on Rn, then for every ε > 0

and for every E ∈M(µ) with µ(E) <∞, there exists F ∈M(µ) such that

µ(E \ F ) ≤ ε and un → u uniformly on F.

Definition 1.7 (Product Measure). Let µ be an outer measure on Rn, and let ν be an

outer measure on Rm, an outer measure

µ× ν : P(Rn × Rm)→ [0,∞],

is defined at G ⊂ Rn × Rm by setting

µ× ν(G) := inf
F

∑
E×F⊂F

µ(E)ν(F ),

where F is a covering of G by sets of the form E × F , where E ∈M(µ) and F ∈M(ν);

µ× ν is called the product measure.

To every x ∈ Rn there corresponds a vertical section Gx ⊂ Rn × Rm

Gx := {y ∈ Rm : (x, y) ∈ G}.

Theorem 1.6 (Fubini’s Theorem). Let µ be an outer measure on Rn, and let ν be an

outer measure on Rm

1. If E ∈M(µ) and F ∈M(ν), then E × F ∈M(µ× ν) and

µ× ν(E × F ) = µ(E)ν(F )

2. For every G ⊂ Rn ×Rm, there exists H ∈M(µ× ν) such that

G ⊂ H, and µ× ν(G) = µ× ν(H).

3. If G ⊂ Rn×Rm is σ-finite with respect to µ×ν, then Gx ∈M(ν) for µ-a.e. x ∈ Rn.

Moreover

x ∈ Rn 7→ ν(Gx) is µ−mesurable on Rn,

µ× ν(G) =

∫
Rn
ν(Gx)dµ(x).

4. If u ∈ L1(Rn × Rm;µ× ν) then

x ∈ Rn 7→
∫
Rm

u(x, y)dν(y) ∈ L1(Rn;µ),∫
Rn×Rm

ud(µ× ν) =

∫
Rn
dµ(x)

∫
Rm

u(x, y)dν(y).
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1.2 Borel and Regular Measures

Definition 1.8. Let µ be a measure on Rn, we say that µ is a Borel measure on Rn, if

M(µ) = B(Rn), where B(Rn) is the σ-algebra generated by the open sets of Rn, i.e., the

smallest σ-algebra containing the topology of Rn.

Theorem 1.7 (Caratheodory’s Criterium). If µ is an outer measure on Rn, then µ is a

Borel measure on Rn if and only if

µ(E1 ∪ E2) = µ(E1) + µ(E2),

for every E1, E2 ⊂ Rn, such that dist(E1, E2) > 0.

Example 1.3. The first example of a Borel measure, is the Lebesgues’s measure restricted

to B(Rn). to prove this is a Borel measure, we will use Theorem 1.7, so it is enough to

prove

Ln(E1 ∪ E2) ≥ Ln(E1) + Ln(E2),

for every E1, E2 ⊂ Rn such that dist(E1, E2) > 0. Let F be a countable family of disjoint

cubes with sides parallel to the axis such that

E1 ∪ E2 ⊂
⋃
Q∈F

Q.

Since Ln is additive on finite disjoint cubes, up to further divisions of each Q ∈ F into

finite sub-cubes, we may assume diam(Q) < d = dist(E1, E2) for every Q ∈ F . Set

Fj = {Q ∈ F : Q ∩ Ej 6= ∅},

then F1 ∩ F2 = ∅ and Ej ⊂
⋂
Q∈Fj Q, j = 1, 2, so that∑

Q∈F

r(Q)n ≥
∑
Q∈F1

r(Q)n +
∑
Q∈F2

r(Q)n

≥ Ln(E1) + Ln(E2).

Finally, by the arbitrariness of F , we conclude

Ln(E1 ∪ E2) ≥ Ln(E1) + Ln(E2).

Thus by Theorem 1.7 Ln is a Borel measure.
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Example 1.4. Let E1, E2 ⊂ Rn be such that dist(E1, E2) = d > 0, choose 0 < δ < d/4,

and let F a family of disjoint subsets of Rn such that diam(F ) < δ for all F ∈ F . Set

Fj = {F ∈ F : F ∩ Ej} 6= ∅ j = 1, 2,

then F1 ∩ F2 = ∅ and Ej ⊂
⋂
Q∈Fj Q, j = 1, 2, so that

∑
F∈F

ωk

(
diam(F )

2

)k
≥
∑
F∈F1

ωk

(
diam(F )

2

)k
+
∑
F∈F2

ωk

(
diam(F )

2

)k
≥ Hk

δ (E1) +Hk
δ (E2).

Taking the supremum over all coverings F , we find

Hk
δ (E1 ∪ E2) ≥ Hk

δ (E1) +Hk
δ (E2),

provided 0 < 4δ < d. Letting δ → 0 we get

Hk
δ (E1 ∪ E2) ≥ Hk(E1) +Hk(E2).

Hence, by Theorem 1.7, Hk is a Borel measure.

Definition 1.9. A Borel measure µ is said regular, if for every F ⊂ Rn there exists a

Borel set E such that F ⊂ E, satistying

µ(E) = µ(F ).

Example 1.5. Let us prove that Hk is regular. Let m ∈ N and let E ⊂ Rn. Since

Hk
1/m(E) = inf

F
ωk
∑
F∈F

(
diam(F )

2

)k
,

where F is a covering of E such that for every F ∈ F , diam(F ) < δ = 1
m

, there exist a

covering Fm of closed sets such that

ωk
∑
F∈Fm

(
diam(F )

2

)k
≤ Hk

1/m(E) +
1

m
.

Set

G =
⋂
m∈N

⋃
F∈Fm

F.

Notice that G is a Borel set, E ⊂ G and

Hk
1/m(G) ≤ ωk

∑
f∈Fm

(
diam(F )

2

)k
≤ Hk

1/m(E) +
1

m
.
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Then, making m→∞ we get

Hk(G) ≤ Hk(E),

by monotonicity of Hk we get

Hk(E) ≤ Hk(G),

Then Hk is a regular measure on Rn.

1.3 Approximation Theorems for Borel Measures

Theorem 1.8 (Inner approximation by compact sets). If µ is a Borel measure on Rn,

E ∈ B(Rn) with µ(E) < ∞, then for every ε > 0 there exists K ⊂ E compact set such

that µ(E \K) ≤ ε, in particular

µ(E) = sup{µ(K) : K ⊂ E compact}.

Definition 1.10. An outer measure µ on Rn is locally finite if

µ(K) <∞, ∀K ⊂ Rn compact.

Theorem 1.9 (Outer Approximation by Open Sets). If µ is a locally finite measure on

Rn and E ∈ B(Rn), then

µ(E) = inf{µ(A) : E ⊂ A, A open}

= sup{µ(K) : K ⊂ E, K compact}.

1.4 Radon Measures. Restriction, Support and Push-

forward

Definition 1.11. An outer measure µ is a Radon measure in Rn, if it is a locally

finite, Borel regular measure on Rn.

By the previous theorem if µ is a Radon measure then

µ(E) = inf{µ(A) : E ⊂ A, A open set}

= sup{µ(K) : K ⊂ E, K compact set},

12



for every E ∈ B(Rn). Thus by Borel regularity a Radon measure µ is characterized on

M(µ) by its behaviour on compact (or on open) sets.

Example 1.6. Since Ln is trivially locally finite, and by the previous comments it is a

Borel regular measure, then Ln is a Radon measure. On the other hand if 0 ≤ k < n, Hk

is not locally finite because

Hk(A) =∞, ∀A, open set.

To prove this let us introduce the notion of Hausdorff dimension of a set, to do this

it is needed a generalization of our classical Hausdorff measure. Given s ∈ [0,∞), the

s-dimensional Hausdorff measures Hs
δ and Hs are defined by simply replacing k

with s in (1.1) and (1.2) and replacing the normalization constant ωk by,

ωs =
πs/2

Γ(1 + s/2)
, s ≥ 2,

where Γ :]0,∞[→ [1,∞[ is the Euler Gamma function

Γ(s) =

∫ ∞
0

ts−1e−tdt, s > 0.

Then we define the Hausdorff dimension of E as

dimH(E) := inf{s ∈ [0,∞[: Hs(E) = 0}.

Now, it is easy to check that if E ∈ Rn, then dim(E) ∈ [0, n], so let us prove that, if

Hs(E) < ∞, for some s ∈ [0, n[, then Ht(E) = 0 for every t > s. Indeed, if F is a

countable covering of E by sets of diameter less than δ, then

Ht
δ(E) ≤ ωt

∑
F∈F

(
diam(F )

2

)t
≤
(
δ

2

)t−s
ωt
ωs
ωs
∑
F∈F

(
diam(F )

2

)s
.

That is Ht
δ(E) ≤ C(t, s)δt−sHs(E). Letting δ ↓ 0 we have that Ht(E) = 0. By definition

of Hausdorff dimension, we have that, if A ∈ Rn is an open set Hn(A) > 0 and k < n

then Hk(A) = +∞. However, if E ∈ B(Rn) with µ(E) < ∞, then HkxE is a Radon

measure in Rn, as we can see in the next theorem.

Definition 1.12. Given an outer measure µ on Rn, and E ∈ Rn, the restriction of µ

to E is defined as

µxE(F ) = µ(E ∩ F ), F ⊂ Rn.

We have M(µ) ⊂M(µxE).
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Proposition 1.1 (Restriction of Borel Regular Measures). If µ is a Borel regular measure

on Rn, and E ∈ M(µ) is such that µxE is locally finite, then µxE is a Radon measure

on Rn.

Definition 1.13. An outer measure µ on Rn is concentrated on E ⊂ Rn if µ(Rn\E) =

0. The intersection of the closed sets E such that µ is concentrated on E is denoted Spt(µ)

and called the support of µ. In particular

Rn \ Spt(µ) = {x ∈ Rn : µ(B(x, r)) = 0 for some r > 0}.

Definition 1.14. Given a funcion f : Rn → Rm and an outer measure µ on Rn, the

push-forward of µ trough f is the outer measure f]µ on Rm defined by the formula

f]µ(E) = µ(f−1(E)), E ⊂ Rn.

Proposition 1.2 (Push-forward of a Radon Measure). If µ is a Radon measure on Rn,

and f : Rn → Rm is a continuous proper function, then f]µ is a Radon measure on Rn,

Spt(f]µ) = f(Spt(µ)), and for every Borel mesurable function u : Rm → [0,∞] it holds∫
Rn
ud(f]µ) =

∫
Rn

(u ◦ f)dµ.

1.5 Radon Measures and Continuous Functions

Theorem 1.10 (Lusin’s Theorem). If µ is a borel measure on Rn, u : Rn → R is a

continuous function , and E ∈ B(Rn) with µ(E) <∞, then for every ε > 0 there exists a

compact set K ⊂ E, such that u is continuous on K and

µ(E \K) < ε.

Definition 1.15. Let L : C0
c (Rn;Rm) → R be a linear functional, we define the total

variation of L as the set function

|L| : P(Rn)→ [0,∞],

such that, for any A ⊂ Rn open set

|L|(A) := sup{〈L, ϕ〉 : ϕ ∈ C0
c (A;Rm), |ϕ| ≤ 1},

and for any arbitrary E ⊂ Rn

|L|(E) := inf{|L|(A) : E ⊂ A, A open set}.
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Theorem 1.11 (Riez Representation Theorem). If L : C0
c (Rn;Rm) → R is a bounded

linear functional, then its total variation |L| is a positive Radon measure on Rn and there

exists a |L|-mesurable function g : Rn → Rm, with |g| = 1, |L|-a.e. on Rn and

〈L, ϕ〉 =

∫
Rn
〈ϕ, g〉d|L|, ∀ϕ ∈ C0

c (Rn,Rm),

that is, L = g|L|. Moreover, for every open set A ⊂ Rn we have

|L|(A) = sup

{∫
Rn
〈ϕ, g〉d|L| : ϕ ∈ C0

c (A,Rm), |ϕ| ≤ 1

}
,

and for each arbitrary subset E ⊂ Rn the following formula holds

|L|(E) := inf{|L|(A) : E ⊂ A and A is open}.

1.6 Weak* convergence of Radon measures

Remark 1.2. If L is a monotone linear functional on C0
c (Rn), i.e., L(ϕ1) ≤ L(ϕ2)

whenever ϕ1 ≤ ϕ2, then L is bounded on C0
c (Rn), and by Theorem 1.11 it holds

〈L, ϕ〉 =

∫
Rn
ϕgd|L|,

where g : Rn → R is |L|-mesurable, with |g| = 1 |L|-a.e. on Rn, and

〈L, ϕ〉 =

∫
Rn
ϕd|L|, ∀ϕ ∈ C0

c (Rn).

Note also that if two Radon measures µ1, µ2 on Rn coincides as linear functionals, that is∫
Rn
ϕdµ1 =

∫
Rn
ϕdµ2, ∀ϕ ∈ C0

c (Rn),

then we have µ1 = µ2, so Radon measures can be unambiguously identified with monotone

linear functionals on C0
c (Rn).

Remark 1.3. Let Bb(Rn) denote the family of bounded Borel sets of Rn and B(E) the

family of bounded sets contained in E ⊂ Rn. If L is a bounded linear functional on

C0
c (Rn;Rm), then L induces a Rm-valued set function

ν : Bb(Rn)→ Rm

E 7→ ν(E) :=

∫
E

gd|L|,
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that enjoys the σ-additivity property

ν

(⋃
n∈N

En

)
=
∑
n∈N

ν(En),

on every disjoint sequence {En}n∈N ⊂ B(K) for some K compact set in Rn.

Thus bounded linear functionals on C0
c (Rn;Rm) naturally induces a Rm-valued set function

on Rn that are σ-additive on bounded Borel sets.

Definition 1.16. Taking into account Remark 1.2 and the Remark 1.3, we define a

Rm-valued measure Radon measure on Rn as the bounded linear functionals on

C0
c (Rn;Rm), when m = 1 we speak of signed Radon measures on Rm, we shall al-

ways adopt the Greek symbols µ, ν, etc. in place of L to denote the vector valued Radon

measures and also set

〈µ, ϕ〉 :=

∫
Rn
ϕ · dµ,

to denote the value of the Rm-valued Radon measure µ on Rn at ϕ ∈ C0
c (Rn;Rm).

Definition 1.17. Let {µn}n∈N and µ Radon measures with values in Rn. We say that µn

weak* (pronounced weak star) converge to µ, and we write µn
?
⇀ µ, if∫

Rn
ϕdµ = lim

n→∞

∫
Rn
ϕdµn, ∀ϕ ∈ C0

c (Rn;Rm).

The following Theorem, is an important property of weak* convergence of Radon

measures, and will be used along the text repeatedly, the full proof of that can be found

in [Mag12] Proposition 4.26.

Proposition 1.3. If {µn}n∈N and µ are Radon measures on Rn, then the following are

equivalents

1. µn
?
⇀ µ.

2. If K is a compact set and A is an open set, then

µ(K) ≥ lim sup
n→∞

µn(K),

µ(A) ≤ lim inf
n→∞

µn(A).

3. If E is a bounded Borel set with µ(∂E) = 0, then

µ(E) = lim
n→∞

µn(E).
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Moreover if µn
?
⇀ µ the for every x ∈ Sptµ there exists {xn}n∈N ⊂ Rn with

lim
n→∞

xn = x, xn ∈ Sptµn, ∀n ∈ N.

An important result about weak-∗ convergence of Radon measures is the following

compactness criteria, and again the best general reference here is Proposition 4.33 of

[Mag12].

Theorem 1.12 (Compactness Criteria for Radon Measures). If {µn}n∈N is a sequence of

Radon measures on Rn such that, for all compact set K in Rn

sup
n∈N

µn(K) <∞,

then there exists a Radon measure µ on Rn and a sequence n(k) → ∞, as k → ∞ such

that

µn(k)
?
⇀ µ.

1.7 Besicovitch’s Covering Theorem

We discuss here Besicovitch’s covering theorem, one of the most frequently used technical

tool in geometric measure theory. We omit the proof that could be found in [Mag12],

compare Theorem 5.1 therein.

Theorem 1.13 (Besicovitch’s Covering Theorem). If n ≥ 1 then there exists a positive

constant ξ(n) with the following property. If F is a family os closed non-degenerated balls

of Rn, and either the set C of centers of the balls in F is bounded or

sup
B∈F

diam(B) <∞,

then there exists F1, . . . ,Fξ(n) (possibly empty) subfamilies of F such that

1. Each family Fi is disjoint and at most countable,

2. C ⊆
⋃ξ(n)
i=1

⋃
B∈Fi.

Corollary 1.1. If µ is an outer measure on Rn and F and C are as in Theorem 1.13,

then there exists a countably disjoint subfamily F ′ of F with

µ(C) ≤ ξ(n)
∑
B∈F ′

µ(C ∩B).

17



If, moreover, µ is a Borel measure and C is µ-measurable, then

µ(C) ≤ ξ(n)µ

C ∩ ⋃
B∈F ′

B

 .
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Chapter 2

Rectifiable Sets and Geometric

Measure Theory

The main purpose of this chapter is to introduce the notation and main theorems of Geo-

metric Measure Theory, required to understand the proof of Allard’s Regularity Theorem

8.1 [All72].

2.1 Lebesgue-Besicovitch Differentiation Theorem

The first of a series of results is the Lebesgue-Besicovitch Theorem which asserts that

given µ and ν Radon measures on Rn, under suitable assumptions, we can decompose ν

in ”terms” of µ. With this aim in mind, let us begin with some definitions.

Definition 2.1. Let µ, ν Radon measures on Rn, we say that ν is absolutely continu-

ous with respect to µ, and we write ν � µ, if for every E ∈ B(Rn), µ(E) = 0, implies

ν(E) = 0. We say that µ and ν are mutually singular, and we write µ ⊥ ν, if for any

given Borel set E ∈ Rn, it holds

µ(Rn \ E) = ν(E) = 0.

Definition 2.2 (Upper and lower µ densities). Let µ and ν be Radon measures on Rn,

the upper µ density and the lower µ density of ν are functions

D+
µ ν : sptµ→ [0,∞],

D−µ ν : sptµ→ [0,∞],
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defined respectively as

D+
µ ν(x) := lim sup

r↓0

ν(B(x, r))

µ(B(x, r))
, x ∈ sptµ,

D−µ ν(x) := lim inf
r↓0

ν(B(x, r))

µ(B(x, r))
, x ∈ sptµ.

If the two limits exists and are finite, then we denote by Dµν(x) their common value and

call it the µ-density on ν at x. Thus we have defined a function

Dµν : {x ∈ sptµ : D−µ ν = D+
µ ν} → [0,∞].

We have thus defined a special function on sptµ, but as we already noticed, we are

interested in Borel functions, and this make the object of the next proposition.

Proposition 2.1. Let µ be a Radon measure on Rn, let r > 0, let us define u(x) :=

µ(B(x, r)). Then u is an upper semicontinuous function.

Proof. Let {xn}n∈N be a sequence of points in Rn such that xn → x0 for some x0 ∈ Rn,

and define

µxn := (τxn)]µ,

where τxn(y) = y − xn, clearly µxn is a Radon measure, then applying Theorem 1.4 and

Theorem 1.11 we obtain for every ϕ ∈ C0
c (Rn)

lim
n→∞

µxn(ϕ) = lim
n→∞

(τxn)]µ(ϕ)

= lim
n→∞

∫
Rn
ϕ · d(τxn)]µ

=

∫
Rn
ϕ ◦ τxndµ(y)

= lim
n→∞

∫
Rn
ϕ(y − xn)dµ(y)

=

∫
Rn

lim
n→∞

ϕ(y − xn)dµ(y)

=

∫
Rn
ϕ(y − x0)dµ(y)

=

∫
Rn
ϕ ◦ τx0dµ(y)

=

∫
Rn
ϕ · d(τx0)]µ(y),
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hence µxn
?
⇀ µx0 . Now by Proposition 1.3 and the fact that B(0, r) is compact for all

r > 0 we get easily

lim sup
n→∞

µxn(B(0, r)) ≤ µx0(B(0, r))

lim sup
n→∞

µ(τ−1
xn (B(0, r))) ≤ µ(τ−1

x0
(B(0, r)))

lim sup
n→∞

µ(B(xn, r)) ≤ µ(B(x0, r))

lim sup
n→∞

u(xn) ≤ u(x0),

proving that u is upper semicontinuous.

Remark 2.1. If we define v(x) := µ(B(x, r)) we can prove that v is a lower semicontin-

uous function, and the proof goes along the same lines.

Remark 2.2. By Proposition 2.1, D+
µ ν and D−µ ν are Borel functions, which can be ex-

tended to the whole Rn and so to Dµν. Now, since there exist many countably r > 0 such

that either µ(∂B(x, r)) = 0 or ν(∂B(x, r)) = 0 (the full proof of this fact can be found in

[Mag12] prop 2.16), if Dµν is defined at x, then

Dµν(x) = lim
r↓0

ν(B(x, r))

µ(B(x, r))
, ∀x ∈ sptµ.

Theorem 2.1 (Lebesgue-Besicovitch differentiation Theorem). If µ and ν are Radon

measures on Rn, then Dµν is defined µ-a.e. on Rn, Dµν ∈ L1
loc(Rn, µ), and, in fact Dµν

is a Borel measure on Rn. Furthermore

ν = (Dµν)µ+ νsµ, onM(µ), (2.1)

where the Radon measure νsµ is concentrated on the Borel set

Y = Rn \ {x ∈ sptµ : D+
µ ν(x) <∞}

= (Rn \ sptµ) ∪ {x ∈ sptµ : D+
µ ν(x) =∞},

in particular; νsµ ⊥ µ.

Proof. The proof will be divided into four steps

Step one: First we show that we can reduce (2.1) on Bb(Rn). Clearly (Dµν)µ is a measure

onM(µ), so that, by intersecting balls with increasing radii, we see that it suffice to prove

(2.1) on bounded µ-mesurable sets.
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Now, if E ∈M(µ) is bounded, then by Borel regularity of µ, there exists F ∈ Bb(Rn) with

E ⊂ F and µ(E) = µ(F ); moreover, (ν − νsµ) is a Radon measure on Rn, again by Borel

regularity there exists a bounded Borel set G with E ⊂ G and (ν−νsµ)(E) = (ν−νsµ)(G);

combining those facts with the validity of (2.1) on F and G, we thus conclude that

(ν − νsµ)(E) = (ν − νsµ)(G)

=

∫
G

Dµνdµ

≥
∫
E

Dµνdµ

=

∫
F

Dµνdµ

= (ν − νsµ)(F )

≥ (ν − νsµ)(E),

i.e., (ν − νsµ)(E) =
∫
E
Dµνdµ.

Step two:

We show that, if t ∈]0,+∞] and E ∈ Bb(Rn) then

if E ⊂ {D−µ ν ≤ t}, then ν(E) ≤ tµ(E), (2.2)

if E ⊂ {D+
µ ν ≥ t}, then ν(E) ≥ tµ(E).

It suffices to prove (2.2). Fix ε > 0 and let A be an open bounded set such that E ⊂ A

and µ(A) ≤ ε+ µ(E), as E ⊂ {D−µ ν ≤ t} the family

F = {B(x, r) : x ∈ E, B(x, r) ⊂ A, ν(B(x, r)) ≤ (t+ ε)µ(B(x, r))},

satisfies the assumption of Corollary 1.1. Hence there exists a countably disjoint subfamily

{B(xn, rn)}n∈N ⊂ F such that

ν

(
E \

⋃
n∈N

B(xn, rn)

)
= 0,
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and

ν(E) =
∑
n∈N

ν(B(xn, rn))

≤ (t+ ε)
∑
n∈N

µ(B(xn, rn))

≤ (t+ ε)µ(A)

≤ (t+ ε)(µ(E) + ε).

Step three:

We prove that Dµν exists and is finite for µ-a.e. x ∈ Rn. It is enough to prove that the

two sets

Z = {D+
µ ν =∞}, Zp,q = {D−µ ν < q < p < D+

µ ν} p, q ∈ Q,

have µ-measure zero. Indeed, Z ⊂ {D+
µ ν ≥ t} for every t ∈ (0,∞), and thus, by step two

µ(Z ∩BR) ≤ ν(Z ∩BR)

t
≤ ν(BR)

t
.

Since ν(BR) is finite, by letting t→∞ and R→∞, we find µ(Z) = 0.

Now again by the step two , we have that for all R > 0

ν(Zp,q ∩BR) ≤ qµ(Zp,q ∩BR) ≤ q

p
ν(Zp,q ∩BR).

Since q/p < 1, we have µ(Zp,q ∩BR) = 0, and thus µ(Zp,q) = 0.

Step four:

Let us set ν = ν1 + ν2, where

ν1 = νx(Rn \ Y ), ν2 = νxY, Y = (Rn \ Sptµ) ∪ {D+
µ ν =∞}.

By step three µ(Y ) = 0, thus ν2 ⊥ µ. We are left to prove that

ν
(
E ∩ {D+

µ ν <∞}
)

=

∫
E

Dµνdµ,

for all E ∈ Bb(Rn). By step two

ν
(
{D−µ = 0} ∩BR

)
≤ ν

(
{D−µ ≤ ε} ∩BR

)
≤ εµ(BR),

therefore ν
(
{D−µ = 0}

)
= 0. As Dµν exists and is finite µ-a.e. on sptµ, we are thus

reduced to prove

ν(W ∩ E) =

∫
E

Dµνdµ, (2.3)
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for all Borel set E, where

W = {x ∈ sptµ : Dµν exists, 0 < Dµν <∞}.

To prove (2.3), fix t ∈ (1,∞) and let

Ek := E ∩ {w ∈ W : tk < Dµν(w) < tk+1}, ∀k ∈ Z.

As {Ek}k∈N is a sequence of disjoint Borel sets, with E ∩W =
⋃
k∈NEk, we find∫

E

Dµνdµ =

∫
E∩W

Dµνdµ =
∑
k∈Z

∫
Ek

Dµνdµ,

ν(E ∩W ) =
∑
k∈Z

ν(Ek).

By step two, we have ν(Ek) ≤ tk+1µ(Ek), and thus

ν(E ∩W ) ≤
∑
k∈Z

ν(Ek)

≤
∑
k∈Z

tk+1µ(Ek)

= t
∑
k∈Z

tkν(Ek)

≤ t
∑
k∈Z

∫
Ek

Dµνdµ

≤ t

∫
E∩W

Dµνdµ.

Again by step two, we have ν(Ek) ≥ tkµ(Ek), and so

ν(E ∩W ) ≥
∑
k∈Z

ν(Ek)

≥
∑
k∈Z

tkµ(Ek)

=
1

t

∑
k∈Z

tk+1ν(Ek)

≥ 1

t

∑
k∈Z

∫
Ek

Dµνdµ

≥ 1

t

∫
E∩W

Dµνdµ.

Letting t→ 1+, in the preceding inequality we have

ν(E ∩W ) =

∫
E∩W

Dµνdµ.
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The following Corollary is the natural extension of Theorem 2.1 to vector-valued Radon

measures, and the proof is an easy exercise of decomposition of measures.

Corollary 2.1. If ν is an Rm-valued Radon measure on Rn, and µ is a Radon measure

on Rn, then for µ-a.e. x ∈ Rn there exists the limit

Dµν(x) = lim
r↓0

ν(B(x, r))

µ(B(x, r))
∈ Rm,

which defines a Borel vector field Dµν(x) ∈ L1
loc(Rn, µ,Rm), with the property that

ν = (Dµν)µ+ νsµ, onM(µ)

where νsµ ⊥ µ.

To end this section we show an important and direct consequence of Theorem 2.1,

known as Lebesgue’s points Theorem.

Theorem 2.2 (Lebesgue points). If µ is a Radon measure on Rn, p ∈ [1,∞[ and u ∈

L1
loc(Rn, µ), then for µ-a.e. x ∈ Rn

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

|u(x)− u(y)|pdµ(y) = 0.

In this case, we say that x is a Lebesgue point of u with respect to µ.

Proof. First we claim that for µ-a.e x ∈ Rn

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

udµ = u(x). (2.4)

First we observe that the signed measure ν = uµ is clearly absolutely continuous with

respect to µ, and thus, by Theorem 2.1, for µ-a.e. x ∈ Rn the limit

Dµν(x) = lim
r↓0

ν(B(x, r))

µ(B(x, r))
= lim

r↓0

1

µ(B(x, r))

∫
B(x,r)

udµ,

exists, and for every Borel set E∫
E

udµ = ν(E) =

∫
E

Dµνdµ,

in particular, u = Dµν, µ-a.e. on Rn, so (2.4) is proved.

Now let Q = {qk}k∈N. For every k ∈ N there exists a µ-null set Ek such that

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

|u− qk|pdµ = |u(x)− qk|p, ∀x ∈ Rn \ Ek.
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If E =
⋃
k∈NEk, then µ(E) = 0 and for al x ∈ Rn \ E and k ∈ N∫
B(x,r)

|u(x)− u|pdµ =

(∫
B(x,r)

|u(x)− qk + qk − u|pdµ
)

≤ 2p−1

(
|u(x)− qk|pµ(B(x, r)) +

∫
B(x,r)

|qk − u|pdµ
)
,

then, dividing by µ(B(x, r)) and taking limits we have

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

|u(x)− u|pdµ ≤ 2p−1|u(x)− qk|p,

for all k ∈ N. So taking a subsequence of {qk}k∈N, such that qkm → u(x), we conclude the

proof.

2.2 Area Formula

The purpose of this section is to prove an important result about Lipschitz injective

functions, which roughly speaking, relates the Hausdorff measure of the image of a mea-

surable set with the Jacobian of a function f , which by Rademacher’s Theorem exists

Ln-a.e. x ∈ Rn (The full proof of the Rademacher’s Theorem can be found in [Mag12]

Theorem 7.8, or [EG15] Theorem 3.1.2).

Before continuing, let us establish a few important facts about linear transformations and

define the Jacobian of a function f .

Definition 2.3. Let f : Rn → Rm, 1 < n < m. We define the Jacobian of f as the

Borel bounded function Jf : Rn → [0,∞], by

Jf(x) =


√

det ((∇f(x))?∇f), if f is differentiable at x;

∞, if f is not differentiable at x.

Notice that {x ∈ Rn : Jf(x) < ∞} coincides with the set of points x ∈ Rn at which

f is differentiable, then by the Rademacher’s Theorem, {Jf(x) < ∞} has full Lebesgue

measure on Rn.

As already noticed, we will use a lot of terminology from linear algebra, then before

to continue let us establish a few facts about linear functions, T : Rn → Rm, with n ≤ m.

In first, it is useful to identify the vector space of all R-linear maps from Rn to Rm,

HomR(Rn,Rm), with Rm ⊗Rn. This identification is done via the isomorphism of vector
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spaces that depends on the choice of a fixed orthonormal basis W := (vi)1≤i≤n of Rn,

completed to an orthonormal basis of V := (vi)1≤i≤m of Rm, that associates to the matrix

Aij = [δij], the element vi ⊗ vj. In this way every element T = aijAij ∈ HomR(Rn,Rm)

is identified with an element T = aijvi ⊗ vj. In general, given v ∈ Rn and w ∈ Rm,

w ⊗ v : x 7→ 〈v, x〉w.

Definition 2.4. Let T ∈ Rm ⊗Rn, T is said orthonormal, and we write T ∈ O(n,m),

if 〈Tu, Tv〉 = 〈u, v〉 for all u, v ∈ Rn, it is easy to check that, if T ∈ O(n,m), then

kerT = {0} and

||T || := sup{|Tu| : |u| = 1} = Lip(T ) = 1, ∀T ∈ O(n,m).

If T ∈ O(n,m), where Lip(T ) denotes the Lipschitz constant of T , then T ?T = idRn, where

T ? denotes the adjoint of T . If T ? ∈ O?(n,m) := {T ? : T ∈ O(n,m)} we say that T ? is

an orthogonal projection. If T ? is an orthogonal projection we have kerT ? = T (Rn)⊥

and

||T ?|| = Lip(T ?) = 1, ∀T ? ∈ O?(n,m),

moreover

|T ?u− T ?v| = |u− v|, ∀u, v ∈ T (Rn).

Let Sym(n) := {T ∈ Rn ⊗ Rn : T ? = T}, if T ∈ Sym(n) we say that T is symmetric,

and by the spectral theorem, if T ∈ Sym(n) then there exists an orthonormal basis {v}ni=1

of Rn of eigenvalues of T , such that

T =
n∑
i=1

λivi ⊗ vi,

where λi = 〈vi, T vi〉.

The next proposition asserts that given T ∈ Rm ⊗ Rn we can decompose it in the

following way.

Proposition 2.2 (Polar decomposition). Given T ∈ Rm ⊗ Rn, then there exist P ∈

O(n,m) and S ∈ Sym(n) such that

T = PS.

Proof. Since T ?T ∈ Sym(n), we have

〈T ?Tv, v〉 = 〈Tv, Tv〉 = ||Tv||2 ≥ 0, ∀v ∈ Rn. (2.5)
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By spectral theorem, there exist {λi}ni=1 non zero real numbers and {vi}ni=1 an orthogonal

basis of Rn such that

T ?T =
n∑
i=1

λivi ⊗ vi,

and λi ≥ 0, for i = 1, . . . n, then if we set

√
T ?T =

n∑
i=1

√
λivi ⊗ vi,

I := {i : λi > 0}, and define

wi :=
Tvi√
λi
∈ Rm, i ∈ I,

then, by construction, {wi}i∈I is an orthonormal set of vector of Rm, then completing to

a basis {wi}mi=1 of Rm, and defining P ∈ O(n,m) by

Pvi = wi,

we get the desired polar decomposition

T = P
√
T ?T , (2.6)

as it is easy to check evaluating (2.6) on the basis {vi}ni=1, and remembering that by (2.5)

λi = 0, implies Tvi = 0.

Before continuing with the discussion of the Area formula, let us prove an important

lemma, which guarantees under suitable assumption the measurability of the image of a

Lebesgue measurable set by a Lipschitz function.

Lemma 2.1. If E is Ln-measurable set in Rn and f : Rn → Rm (1 ≤ n ≤ m) is a

Lipschitz function, then f(E) is Hn-measurable in Rm

Proof. We can assume that E is bounded, so Ln(E) <∞. As E is Ln-measurable, there

exists a sequence {Kh}h∈N of compact sets, such that Kh ⊆ E and Ln(E \ Kh) → 0 as

h→ 0, since f(Kh) is compact, the set
⋃
h∈N f(Kh) is a Borel set. The Hn-measurability

of f(E) follows, since

Hn

(
f(E) \

⋃
h∈N

f(Kh)

)
≤ Hn

(
f(E \

⋃
h∈N

Kh)

)

≤ Lip(f)nLn
(
E \

⋃
h∈N

Kh

)
= 0.

which allow us to write f(E) like the union of a Borel set and a set of measure 0.
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Now we introduce the area formula which plays a central role in all the entire theory.

Theorem 2.3 (Area formula for linear maps). If T ∈ Rm⊗Rn (1 ≤ n ≤ m), then for all

E ∈ Rn, it is true that

Hn(T (E)) = JT (Ln(E)).

Proof. We shall prove the theorem by showing that

Hn(T (E)) =
Hn(T (B))

Ln(B)
Ln(E), ∀E ⊂ Rn, (2.7)

JT =
Hn(T (B))

Ln(B)
, (2.8)

where B is the unit ball. For brevity’s sake, set

κ :=
Hn(T (B))

Ln(B)
.

We start proving (2.7). First consider the case κ = 0, then by definition of κ and linearity

Hn(T (Br)) = 0, ∀r > 0,

hence

Hn(T (Rn)) = 0,

thus Hn(T (E)) = 0 for all E ∈ Rn, and

Hn(T (E)) = κLn(E) ∀E ∈ Rn.

Now, let κ > 0, so that T is injective and define an outer measure ν on Rn as

ν(E) = Hn(T (E)), E ⊂ Rn.

By the previous Lemma and Proposition 1.1, Hnx(T (Rn)) is a Radon measure on Rn.

Since T maps compact sets into compact sets, and

ν = (T−1)](Hnx(T (Rn))),

then ν is a Radon measure on Rn, and by linearity of T and the definition of κ

ν(B(x, r)) = Hn(T (B(x, r)))

= Hn(Tx+ rT (B))

= Hn(rT (B))

= rnHn(T (B))

= rnLn(B)κ ∀x ∈ Rn, r > 0,
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hence ν � Ln, with DLnν = κ, on Rn, then by (2.1) we have

ν = κLn, onM(Ln).

We deduce finally that ν = κLn on P(Rn).

Now, we prove (2.8). Let T = PS, the polar decomposition of T , then

Ln(E) ≤ Hn(P (E)) ≤ Ln(E),

that is Ln(E) = Hn(E), in particular, if Q ⊂ Rn and we set E = S(Q) then

κ =
Hn(T (Q))

Ln(Q)

=
Hn(PS(Q))

Ln(E)

Ln(E)

Ln(Q)

=
Ln(S(Q))

Ln(Q)
.

If S =
∑n

i=1 λivi ⊗ vi, then the cube

Q = {x ∈ Rn : |〈x, vi〉| ≤ 1/2},

with unit side lengths and faces perpendicular to vi, is mapped by S into

S(Q) := {x ∈ Rn : |〈x, vi〉| ≤ |λi|/2},

a parallel cube, possibly degenerated, with sides length given by |λi|, hence

Ln(S(Q)) =
n∏
i=1

|λi| = | detS| = | detS|Ln(Q),

and κ = | detS|. Finally we note that T ? = S?P ?, P ?P = idRn , and

S?S =
n∑
i=1

λ2vi ⊗ vi,

then

JT =
√

det(T ?T )

=
√

det(S?S)

=

(
n∏
i=1

λ2
i

)1/2

=
n∏
i=1

|λi|

= | detS|

= κ.
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The following result is a suitable formulation of Sard’s Lemma for Lipschitz functions

instead that for the classical C1 functions.

Theorem 2.4. If f : Rn → Rm, with 1 ≤ n ≤ m, is a Lipschitz function, then

Hn(f(E)) = 0,

where E = {x ∈ Rn : Jf(x) = 0}.

Before continuing, and for notational convenience, let us denote Bk
r = {z ∈ Rk : |z| <

r}, the ball of radius r centred at the origin of Rk. If F ⊂ Rm, set Iε(F ) = {x ∈ Rm :

dist(x, F ) < ε}, for the ε-neighbourhood of F in Rm. Let Ds = {(z, y) ∈ Rk × Rm−k :

|z| < s, y = 0} be the k-dimensional disk in Rm of radius s > 0.

Proof. The prof of this Theorem 2.4 will be divided into three steps.

Step one:

We claim that, if 1 ≤ n ≤ m, then

Hn
∞(Iδ(Ds)) ≤ C(n, s)δ, ∀δ ∈]0, 1[.

Indeed, if we set

K := {(z, y) : |z| < δs, |y| < δ} = Bk
δs ×Bm−k

δ ,

then there exists a finite covering F of Iδ(Ds) such that each F ∈ F is a translation of

K, and the cardinality of F is bounded from above by Cδ−1, for some C > 0. Moreover,

if F ∈ F then

diam(F )2 = diam(K)2

= diam(Bk
δs)

2 + diam(Bm−k
δ )2

= 4δ2s2 + δ2

= 4δ2(1 + s2),

since δ ∈]0, 1[ and n− k ≥ 1, we conclude that

Hn
∞(Iδ(Ds)) ≤ ωn

∑
F∈F

(
diamF

2

)n
≤ C(n)(1 + s2)n/2δn−k

Hn
∞(Iδ(Ds)) ≤ C(n, s)δ. (2.9)

31



Step two:

If x ∈ E, so that Jf(x) = 0, then Lx = ∇f(x)(Rn) is a linear subspace of Rm, with

k = dim(Lx) ≤ n− 1 < m.

If k ≥ 1 then ∇f(x)(Bn
r ) is contained into a k-dimensional disk of radius Lip(f) in Rm

for all r > 0, i.e.

∇f(x)(Bn
r ) ⊂ Bm

Li(f)r ∩ Lx, ∀r > 0.

Hence by (2.9), for all ε ∈]0, 1[ and r > 0 we find

Hn
∞(Iεr(∇f(x)(Bn

r )) ≤ Hn
∞(Iεr(B

m
Li(f)r ∩ Lx))

≤ rnHn
∞(Iε(B

m
Lip(f) ∩ Lx))

≤ C(n, Lip(f))rnε.

If k = 0, then ∇f(x)(Rn) = {0}, and for all ε ∈]0, 1[ and r > 0

Hn
∞(Iεr(∇f(x)(Bn

r )) = Hn(Bn
rε)

≤ ωnr
nεn

≤ ωnr
nε.

Steep three:

If x ∈ E, and ε ∈]0, 1[, then as f is differentiable on E, there exists r(ε, x) ∈]0, 1[ such

that

|f(x+ v)− f(x)−∇f(x)v| ≤ ε|v|,

whenever |v| < r(ε, x). In particular, for all r < r(ε, x) we have that

f(Bn(x, r)) ⊂ f(x) + Iε(∇f(x)(Bn
r )).

Since Jf(x) = 0, by the step two we find that r < r(ε, x) implies

Hn(f(Bn
rε)) ≤ C(n, Lip(f))εrn. (2.10)

Given the family of open balls

F = {Bn(x, r) : x ∈ E ∩Bn
R, 0 < r < r(ε, x)},
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has the bounded set E ∩ Bn
R as the set of its centers; let {Fi}ξ(n)

i=1 the subfamily of F

given by Theorem 1.13. Since E ∩BR ⊂
⋃ξ(n)
i=1 Fi, with Fi countably and disjoint, by the

inequality (2.10), easily follows

Hn(f(Bn(x, r) ∩ E) ≤
ξ(n)∑
i=1

∑
Bn(x,r)∈Fi

Hn(f(Bn(x, r)))

≤ Cε

ξ(n)∑
i=1

∑
Bn(x,r)∈Fi

rn

=
Cε

ωn

ξ(n)∑
i=1

∑
Bn(x,r)∈Fi

rnωn

=
Cε

ωn

ξ(n)∑
i=1

∑
Bn(x,r)∈Fi

Ln(Bn(x, r))

=
Cε

ωn

ξ(n)∑
i=1

Ln(I1(E ∩Br)),

where in the last inequality we have use the fact that r(ε, x) ∈]0, 1[, and C = C(n, Lip(f)),

for ε ↓ 0 we find

Hn
∞(f(E ∩BR)) = 0.

Hence

Hn(f(E ∩BR)) = 0,

and letting R→∞, we finally get

Hn(f(E)) = 0.

The following theorem is an important result concerning Lipschitz immersions, which

we apply in the proof of the area formula, and will also play an important role in the

theory of rectifiable sets, which is the keystone of this dissertation.

The main idea, due to Federer, is to reformulate the classical approximation by linear

functions of C1 functions, to Lipschitz functions.

Notice that by Proposition 2.2, if Jf(x) > 0 then there exists Sx ∈ Sym(n) and

Px ∈ O(n,m) such that ∇f(x) = PxSx.
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Theorem 2.5 (Lipschitz linearization). Let f : Rn → Rm (1 ≤ n ≤ m) be a Lipschitz

function, and

F := {x ∈ Rn : 0 < Jf(x) <∞},

then there exists a partition of F into Borel sets {Fn}n∈N such that f is injective on each

Fn. Moreover for all t > 1, such a partition can be formed with the property that, for all

n ∈ N there exists an invertible linear function Sn ∈ GL(n) such that f |Fn ◦Sn is almost

an isometry of Rn into Rm. Precisely, for all x, y ∈ Fn and v ∈ Rn we have

t−1|Snx− Sny| ≤ |f(x)− f(y)| ≤ t|Snx− Sny|, (2.11)

t−1|Snv| ≤ |∇f(x)| ≤ t|Snv|, (2.12)

t−nJSn ≤ Jf(x) ≤ tnJSn. (2.13)

Proof. It is suffices to show that F can be covered by sets Fn having the desired properties;

indeed, once this has been done, we can replace each Fn with F n = Fn \
⋃n−1
k=1 Fk, in order

to define the desired partition of F .

Recall that if T, S ∈ GL(n) and ||T − S|| ≤ δ, then

||T − S||||S−1|| ≤ ||S−1||δ

||TS−1 − idRn|| ≤ δ||S−1||

||TS−1|| ≤ 1 + δ||S−1||. (2.14)

Similarly we prove that

||ST−1|| ≤ 1 + δ||T−1||.

Now choose ε > 0 so that t−1 + ε < 1 < t− ε, and a dense set (in the operator norm) G

in GL(n). Correspondingly to every n ∈ N and S ∈ G, define

F (n, S),

as the set of those x ∈ F such that

(t−1 + ε)|Sv| ≤ |∇f(x)| ≤ (t− ε)|Sv|, ∀v ∈ Rn, (2.15)

|f(x+ v)− f(x)−∇f(x)v| ≤ ε|Sv|, ∀v ∈ Rn, |v| ≤ 1

n
. (2.16)

Note that inequalities as in (2.15) imply

(t−1 + ε)nJS ≤ Jf(x) ≤ (t− ε)nJS, ∀x ∈
⋃
n∈N

F (n, S). (2.17)
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Indeed , as S ∈ GL(n), for every such x we have that

Bt−1+ε ⊂ ∇f(x)(S−1(B)) ⊂ Bt−ε,

and thus, as required, (t−1 + ε)nJS ≤ Jf(x) ≤ (t− ε)nJS. Another relevant property of

the sets F (n, S) is that, if x, y ∈ F (n, s) and |x− y| < 1/n, then

|f(x)− f(y)| ≤ |∇f(x− y)|+ ε|Sx− Sy| ≤ t|Sx− Sy|, (2.18)

|f(x)− f(y)| ≥ |∇f(x− y)|+ ε|Sx− Sy| ≥ t|Sx− Sy|. (2.19)

If now {xj}j∈N, is a dense subset of F , and we relabel the sequence of sets

F (n, S) ∩B
(
xj,

1

2n

)
, S ∈ G, n, j ∈ N,

as {Fk}k∈N, then by (2.17), (2.18) and (2.19) we see that (2.11) and (2.13) hold true on

each Fk.

We also observe that (2.12) holds trivially on each Fk by (2.15).

So,we are left to prove that F =
⋃
S∈G F (n, S). Let x ∈ F and consider the polar

decomposition

∇f(x) = PxSx.

As Jf(x) > 0, we have Sx ∈ GL(n), in particular by (2.14) we can find S ∈ G with

||SxS−1|| ≤ t− ε, ||S(Sx)
−1|| ≤ (t−1 + ε)−1.

In that way we ensures that

|Sxv| ≤ (t− ε)|Sv|, (t−1 + ε)|Sv| ≤ |Sxv|, ∀v ∈ Rn,

that is (2.15), since |∇f(x)v| = |PxSxv| = |Sxv|.

Concerning (2.16), the differentiability of f at x, implies the existence of a modulus of

continuity ωx such that whenever |v| ≤ n−1

|f(x+ v)− f(x)−∇f(x)v| ≤ ωx
n
|v| ≤ ωx

n
||S−1|||Sv|.

Choosing n = n(x, S) so that ωx(n
−1)||S−1|| ≤ ε, proves (2.16).

Finally we are ready to state and prove the area formula for injective Lipschitz maps.

We restrict to prove this version, but there is a version of the area formula for general

Lipschitz maps that are not necessarily injective; the reader can find it in Theorem 8.9 of

[Mag12].
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Theorem 2.6 (Area formula for injective Lipschitz functions). If f : Rn → Rm, 1 ≤ n ≤

m, is an injective Lipschitz function and E ⊂ Rn is Lebesgue measurable, then

Hnx(f(E)) =

∫
E

Jf(x)dx, (2.20)

and Hnx(f(Rn)) is a Radon measure on Rm.

Proof. Because Hn(f(E)) ≤ Lip(f)nLn(E) for all E ⊂ Rn, then both sides of 2.20 are

zero if Hn(E) = 0.

Therefore by Rademarcher’s theorem we can reduce to prove 2.20 on a set E over which

f is differentiable. Moreover by Theorem 2.4 we directly can assume

E ⊂ F = {x ∈ Rn : 0 < Jf(x) <∞}.

We now fix t > 1 and consider the partition {Fk}k∈N given by 2.5. we see E as the union

of disjoint sets Fk ∩ E, k ∈ N, so that by the global injectivity of f , we have that

f(E) =
⋃
k∈N

f(Fk ∩ E), k ∈ N,

where f(Fk∩E) is Hn-measurable by Lemma 2.1. Therefore by Theorem 2.5 we find that

Hn(f(E)) =
∑
k∈N

Hn(f(Fk ∩ E))

=
∑
k∈N

Hn(f |Fk ◦S−1
k )(S(Fk ∩ E))

≤
∑
k∈N

Lip(f |Fk ◦S−1
k )nLn(S(Fk ∩ E))

≤ tn
∑
k∈N

JSkLn(S(Fk ∩ E))

≤ t2n
∑
k∈N

∫
Fk∩E

Jf(x)dx

= t2n
∫
E

Jf(x)dx, (2.21)

where we have also applied the fact that thanks to the upper bound in (2.11) the Lipschitz

norm of f |Fk ◦S−1
k over Sk(Fk) is controlled by t. In a similar way, the lower bound in

(2.11) implies that the Lipschitz norm of Sk ◦ (f |Fk)
−1 over f(Fk) is controlled by t, so
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that by an analogous argument,∫
E

Jf(x)dx =
∑
k∈N

∫
Fk∩E

Jf(x)dx

≤ tn
∑
k∈N

JSkLn(E ∩ Fk)

= tn
∑
k∈N

Ln
(
(Sk ◦ (f |Fk)

−1)(f(Fk ∩ E)
)

≤ t2n
∑
k∈N

Hn(f(E ∩ Fk))

= t2nHn(f(E ∩ Fk)). (2.22)

Letting t ↓ 1 on (2.21) and (2.23) we prove (2.20).

By (2.1) f(Rn) is Hn-measurable, while (2.20) implies Hnx(f(Rn)) to be locally finite,

then Hnx(f(Rn))is a Radon measure on Rm.

2.3 Rectifiable sets

We shall now introduce the notion of rectifiable set, which provides a generalization of

the notion of surface and it is, of course, of primary importance in the study of geomet-

ric variational problems; in particular rectifiable sets are the sets on which rectifiable

varifolds lives, so they are in some way the main subject of our study.

Definition 2.5. Let M ⊂ Rn, M is said a countably k-rectifiable set if there exists

many countably fj : Rk → Rn Lipschitz functions and M0 ⊂ Rk with Hk(M0) = 0 such

that

M ⊂M0 ∪

(⋃
j∈N

fj(Rk)

)
. (2.23)

Remark 2.3. By Kirszbraun’s Theorem ([Mag12] Theorem 7.2) (2.23) is equivalent to

say

M = M0 ∪

(⋃
j∈N

fj(Aj)

)
,

where Hk(M0) = 0 and fj : Aj → Rn are countably many Lipschitz functions, and

Aj ⊂ Rk are countably many Borel sets.

Remark 2.4. The decomposition given in (2.23) is clearly not unique, and several prop-

erties can be imposed on the fj’s, by decreasing the sets Aj while increasing the Hk-null
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set M0. Indeed if fj satisfies a global property on a set Ej ⊂ Aj, and Lk(Aj \ Ej) = 0,

then we can replace Aj with Ej in (2.23) and set M ′
0 = M0 ∪ fj(Aj \ Ej), then we have

another representation for M ; this is why we choose a ”special” decomposition of M .

Definition 2.6. Given f : Rk → Rn a Lipschitz function, and a bounded Borel set

E ⊂ Rk, we say that the pair (f, E) defines a regular Lipschitz image f(E) in Rn if

1. f is injective and differentiable on E, with Jf(x) > 0 for all x ∈ E.

2. Every x ∈ E is a point of density 1 for E.

3. Every x ∈ E is a Lebesgue point of ∇f .

The following Theorem guarantees that always exist a ”good decomposition” for a

countably k-rectifiable set.

Theorem 2.7 (Decomposition of k-rectifiable sets). If M is a countably k-rectifiable set

in Rn, and t > 1, then there exists Borel sets M0 ⊂ Rk, and Aj ⊂ Rk, and many countably

Lipschitz maps fj : Aj ⊂ Rk → Rn such that

M = M0 ∪

(⋃
j∈N

fj(Aj)

)
, Hk(M0) = 0.

And each pair (fj, Aj) defines a regular Lipschitz image, with Lip(fj) ≤ t, j ∈ N, and

t−1|x− y| ≤ |fj(x)− fj(y)| ≤ t|x− y|,

t−1|v| ≤ |∇fj(x)v| ≤ t|v|,

t−k ≤ Jfj(x) ≤ tk,

for all x, y ∈ Aj and for all v ∈ Rk.

Proof. Since M is a countably k-rectifiable set, there exists Borel sets N0 ⊂ Rk, and

Ej ⊂ Rk, and many countably Lipschitz maps gj : Ej ⊂ Rk → Rn such that

M = N0 ∪

(⋃
j∈N

gj(Ej)

)
, Hk(M0) = 0.

Now, by Rademarcher’s theorem and Theorem 2.4

Ej = Gj ∪Bj
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where

Bj = {x ∈ Rk : Jgj = 0} ∪ {x ∈ Rk : f is not differentiable},

and Hk(Bj) = 0, and Gj = {x ∈ Rk : 0 < Jgj <∞}, then arguing like 2.4, we have

M = M0 ∪

(⋃
j∈N

gj(Gj)

)
,

where M0 = N0 ∪
(⋃

j∈N gj(Bj)
)

, moreover by Theorem 2.5 each of gj’s is injective, and

Gj is a Borel set, therefore, every x ∈ Gj is a point of density 1 in Gj.

Now by Theorem 2.2,

1

rk

∫
B(x,r)

|Jf(z)− Jf(x)|dz → 0, as r ↓ 0.

Then for all j ∈ N (gj, Gj) defines a regular Lipschitz image gJ(Gj). Moreover (again by

Theorem 2.5), there exists {Sj}j∈N ⊂ GL(k) such that for every x, y ∈ Gj and v ∈ Rk

t−1|Sjx− Sjy| ≤ |gj(x)− gj(y)| ≤ t|Sjx− Sjy|,

t−1|Sjv| ≤ |∇gj(x)v| ≤ t|Sjv|.

Let us now define Ej ⊂ Rk and fj : Ej → Rn setting

Ej = Sj(Gj), fj = gj ◦ S−1
j .

Then the fj’s are Lipschitz on Ej, with

t−1|x− y| ≤ |fj(x)− fj(y)| ≤ t|x− y|,

for all x, y ∈ Ej. By Kirszbraun’s Theorem, we can extend fj : Rk → Rn with Lip(fj) ≤ t.

Since the gj’s was differentiable on Gj, we have fj is differentiable on Ej with ∇fj(x) =

∇gj(Sjx) ◦ S−1
j , so that

t−1|v| ≤ |∇fj(x)v| ≤ t|v|,

for all x ∈ Ej and v ∈ Rk, in particular t−k ≤ Jfj(x) ≤ tk on Ej.

Since the pair (fj, Ej) defines a regular Lipschitz image fj(Ej) = gj(Gj) we have estab-

lished the Theorem.
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Chapter 3

First Variation of a Varifold, Radial

Deformations and Monotonicity

Formula

Introduced by J. F. Almgren in [Alm65], the theory of varifolds culminated in the works

of Allard and in the big regularity paper of Almgren. In this text we are interested

in Allard’s Regularity Theorem which roughly speaking asserts that under suitable

assumptions a varifold is a C1,α submanifold. The mean references for the material covered

in this thesis are [All72], [Sim83], and [Lel12]. Our exposition follows closely that of

[Lel12].

3.1 Varifolds

In this section we will define the concept of k-dimensional varifold which is a substitute

for ordinary k-dimensional submanifolds in a n-dimensional space (0 ≤ k ≤ n) suitable

to tackle geometric variational problems.

Definition 3.1 (Abstract Varifold). Let Σ be a m-dimensional submanifold of Rn, V is

said a k-dimensional Varifold, if V is a Radon measure over

Gk(Σ) = (Σ×G(n, k)) ∩ {(x, S) : S ⊂ Tan(Σ, x)}.

To see the formal definition of Gk(Σ), and G(n, k) see the Appendix A.
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Let

Vk(Σ),

be the weakly topologized space of k-dimensional varifolds in Σ, i.e., Vk(Σ) is endowed

with the weak* topology introduced in Definition 1.17. Whenever V ∈ Vk(Σ), we define

the weight of V , and write ||V ||, as the Radon measure

||V ||(A) := V (Gk(Σ) ∩ {(x, S) : x ∈ A}) , ∀A ⊂ Σ,

i.e., ||V || = π]V , where π is the canonical projection onto Σ.

As the reader has noticed, an abstract varifold can be a quite strange object, because

it is hard to work with Borel sets on Gk(Σ) in an operative way (here operative way has to

be understate in a sense to be specified later in this section); but we also define the weight

of V which is a Radon measure on Σ obtained from V by ignoring the fiber variable. The

next theorem illustrates how to ”simplify” a varifold in an operative way. This result

is a direct application of a well known disintegration Theorem, which can be found

in [AFP00] Theorem 2.28. However our proof is an adaptation of it to the context of

varifolds.

Theorem 3.1 (Disintegration Theorem for Varifolds). Let V ∈ Vk(Σ), π : Gk(Σ) → Σ

the canonical projection onto Σ. Then there exists a family of Radon measures {πx}x∈Σ

such that, the map x 7→ πx is ||V ||-measurable and the following relations are satisfied

πx(B) := lim
r↓0

V (B(x, 0)×B)

||V ||(B(x, r))
, ∀B ∈ B(Gx(n, k)), (3.1)

πx (Gx(n, k) \ {S : S ⊂ Tan(Σ, x)}) = 0, and πx(Gx(n, k)) = 1, (3.2)

f(x, ·) ∈ L1(G(n, k), πx), for ||V || − a.e. x ∈ Σ, (3.3)

x 7→
∫
Gx(n,k)

f(x, S)dπx(S) ∈ L1(Σ, ||V ||), is ||V || −measurable, (3.4)∫
Gk(Σ)

f(x, S)dV (x, S) =

∫
Σ

(∫
Gx(n,k)

f(x, S)dπx(S)

)
d||V ||(x), (3.5)

for any f ∈ L1(Gk(Σ), V ). Moreover, if π′x is any other ||V ||-measurable map satisfying

(3.4) and (3.5) for every bounded Borel function with compact support and such that

x 7→ π′x(G(n, k)) ∈ L1(Σ, ||V ||), then πx = π′x for ||V ||-a.e. x ∈ Σ.

Proof. The idea of the proof is to construct the measures πx by application of the Theorem

1.11 to a family of linear functionals defined on C0
c (G(n, k)), and show the validity of the
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disintegration formula (3.5), then we will prove (3.2) and finally uniqueness.

Step 1:

First see that given any g ∈ C0
c (G(n, k)) it is possible to construct a Radon measure ||V ||g

such that ||V ||g � ||V ||. Indeed, let ||V ||g = π](gV ), i.e.

||V ||g(B) =

∫
B×G(n,k)

g(S)dV (x, S), ∀B ∈ B(Σ),

then, for all B ∈ B(Σ), and g ∈ C0
c (G(n, k))

||V ||g(B) =

∫
B×G(n,k)

g(S)dV (x, S)

≤ ||g||∞V (B ×G(n, k))

= ||g||∞V (π−1(B))

= ||g||∞π](V )(B)

= ||g||∞||V ||(B).

So ||V ||g satisfy

||V ||g ≤ ||g||∞||V ||,

then ||V ||g � ||V ||, and by Theorem 2.1, there exists hg = D||V ||||V ||g ∈ L1
loc(Σ, ||V ||) for

||V ||-a.e. x ∈ Σ, such that ||hg||∞ ≤ ||g||∞ and

||V ||g = hg||V ||.

Furthermore, by the construction of hg

||V ||g+g′ = ||V ||g + ||V ||g′

= hg||V ||+ hg′||V ||

= (hg + h′g)||V ||.

Now since C0
c (G(n, k)) is separable, there exists D ⊂ C0

c (G(n, k)) a dense countable set,

moreover for each g ∈ D there exists a ||V ||-measurable set Ng with ||V ||(Ng) = 0, such
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that hg(x) exists for all x ∈ Σ \Ng. Let N =
⋃
g∈DNg, then by Theorem 2.1

hg+g′(x) = lim
r↓0

1

||V ||(B(x, r))

∫
B(x,r)×G(n,k)

(g + g′)(S)dV (x, S)

= lim
r↓0

1

||V ||(B(x, r))

(∫
B(x,r)×G(n,k)

g(S)dV (x, S)+

+

∫
B(x,r)×G(n,k)

g′(S)dV (x, S)

)
= lim

r↓0

1

||V ||(B(x, r))

∫
B(x,r)×G(n,k)

g(S)dV (x, S) +

+ lim
r↓0

1

||V ||(B(x, r))

∫
B(x,r)×G(n,k)

g′(S)dV (x, S)

= hg(x) + hg′(x), ∀x ∈ Σ \N, g, g′ ∈ D.

Now, define the map

Tx : D → R

g 7→ Tx(g) = hg(x),

for x ∈ Σ \N , which is additive, and since

|Tx(g)| = |hg(x)| ≤ ||hg||∞ ≤ ||g||∞,

Tx is continuous, therefore we can extend it to an additive, bounded R-valued operator

defined on the whole C0
c (G(n, k)). Then by Theorem 1.11 there exists πx a Radon measure

such that

Tx(g) =

∫
Gx(n,k)

gdπx, ∀g ∈ C0
c (G(n, k)),

and

πx(G(n, k)) =

∫
Gx(n,k)

dπx = Tx(χGx(n,k)) ≤ ||χGx(n,k)||∞ = 1.

Then for all B ∈ B(Σ) and g ∈ D∫
Gk(Σ)

χB(x)g(S)dV (x, S) = ||V ||g(B)

=

∫
B

hg(x)d||V ||(x)

=

∫
B

(∫
Gx(n,k)

g(S)dπx(S)

)
d||V ||(x)

=

∫
Σ

(∫
Gx(n,k)

χB(x)g(S)dπx(S)

)
d||V ||(x).
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By an approximation argument the same identity is true for g ∈ C0
c (G(n, k)) and g =

χA, with A open, so (3.5) holds for f(x, S) = χB(x)χA(S), moreover it still holds for

characteristic functions of any Borel set B ⊂ Gk(Σ). In particular if B ∈ B(Σ) is such

that V (B) = 0 then χB(x, ·) ∈ L1(G(k, n), πx) and∫
Gx(k,n)

χB(x, S)dπx(S) = 0, for ||V || − a.e. x ∈ Σ.

Thus (3.1), (3.3), (3.4) and (3.5) holds for f = χB where B is any set in B(Gk(Σ)), and

the general case follows from an argument of approximation by simple functions.

Step 2:

In order to prove (3.2), we recall that

V (Gk(Σ)) = V (π−1(Σ)) = (π]V )(Σ) = ||V ||(Σ) =

∫
Σ

1d||V ||(x),

and by (3.5)

V (Gk(Σ)) =

∫
Σ

(∫
Gx(n,k)

1dπx(S)

)
d||V ||(x) =

∫
Σ

πx(Gx(n, k))d||V ||(x).

Since ||V || is finite, comparing with the preceding equality, yields

πx(Gx(n, k)) = 1.

Step 3: Finally, let πx be as in the statement of the theorem. For any g ∈ D and any

B ∈ B(Σ) relatively compact we have∫
B

(∫
Gx(n,k)

g(S)dπx(S)

)
d||V ||(x) =

∫
B×Gx(n,k)

g(S)dV (x, S)

=

∫
B

(∫
Gx(n,k)

g(S)dπ′x(S)

)
d||V ||(x),

and therefore there is a ||V ||-negligible set N ′ such that πx(g) = π′x(g) for any g ∈ D and

any x ∈ E \ N ′. Since D is dense in C0
c (G(n, k)), πx = π′x for any x ∈ E \ N ′ and the

proof is complete.

Corollary 3.1. Let V ∈ Vk(Σ), with the same notation of the Theorem 3.1, the equality

V = ||V || ⊗ πx,

holds.

Now we are ready to introduce some important sub-families of Vk(Σ), which are

relevant for our work and motivates it.

44



Definition 3.2. Whenever E is an Hk-measurable subset of Σ which meets every compact

subset of Σ in a k-rectifiable subset of Σ, we let

v(E)(A) := Hk
(
{(x, Tank(HkxE, x)) ∈ A}

)
, A ⊂ Gk(Σ), (3.6)

where Tank(HkxE, x) :=
⋂{

Tan(S, x) : Θk(Hkx(E \ S), x) = 0
}

is the k-dimensional

approximate tangent space of the measure HkxE and

Tan(S, x) := [0,+∞[
⋂
ε>0

Closure

{
y − x
|y − x|

: y ∈ S ∩B(x, ε)

}
.

Remark 3.1. It is clear that v(E) ∈ Vk(Σ).

Definition 3.3 (Integer-Rectifiable Varifold). V ∈ Vk(Σ) is said a rectifiable varifold

if there exists ki ∈ R and Hk-measurable sets E1, E2, . . . of Σ which meets every compact

subset of U in a k-rectifiable subset of U such that

V =
∞∑
i=0

kiv(Ei). (3.7)

If the ki ∈ N we say that V is an integral varifold.

We define

RVk(Σ) and IVk(M),

as the space of k-dimensional rectifiable varifolds in Σ and k-dimensional inte-

gral varifolds in Σ, respectively.

Remark 3.2. Notice that if E ⊂ Σ is a k-rectifiable set, by Theorem 3.1 and (3.6) we

have that ||v(E)|| = HkxE.

3.2 First Variation of a Varifold

Now we begin the study of the first variation of a varifold, which is a key notion in the

theory of varifolds. Roughly speaking, for every varifold in a smooth Rimannian manifold

Σ corresponds a vector valued distribution on Σ. This first variation relates the initial

rate of change of the weight of a varifold under a deformation of Σ into itself with the

initial velocity vector field of the deformation, which in turn gives a measure theoretic

notion of boundary of a varifold. To define our variation, it is needed to have a way to

map varifolds measure theoretically and compatible with the intuition of what a k-varifold

has to be, i.e., a generalized k-submanifold of Σ.
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Definition 3.4. Let Σn
1 and Σm

2 be smooth manifolds of dimension n and m respectively,

V ∈ Vk(Σ
n
1 ), and F : Σn

1 → Σm
2 a smooth map, we define the push-forward of V by

F , as the Borel regular measure

F]V,

on Gk(Σ2), characterized by

F]V (B) =

∫
{(x,S):(F (x),DxF (S))∈B}

|JF (x) ◦ S|dV (x, S),

Before introducing our so expected first variation, let us first fix some notations.

Let G ⊂ Σ be an open set, ε > 0 and X ∈ X (Σ) be a vector field, the one parameter

family of diffeomorphisms generated by X is

Φ : (−ε, ε)× Σ→ Σ

(t, x) 7→ Φ(t, x) = Φt(x),

where Φ is the unique solution of 
∂Φ
∂t

= X(Φ),

Φ0(x) = x,

and {x : Φt(x) 6= x, t ∈ (−ε, ε)} has compact closure on G.

Definition 3.5 (Variational Formula). Whenever V ∈ Vk(Σ) and ||V ||(G) < ∞, we

define the first variation of a varifold V in G, as

δV (X) =
d

dt
(||Φt](V )||(G)) |t=0 .

Remark 3.3. By the definition of push-forward of varifolds, and a derivation under the

integral sign, we have

δV (X) =
d

dt
(||Φt](V )||(G)) |t=0

=

∫
∂

∂t
|JΦt(x) ◦ S| |t=0 dV (x, S)

=

∫ (
J

(
∂Φ0

∂t
(x)

)
◦ S
)
· SdV (x, S).

Then we notice that the initial rate of change of ||Φt]||(G) depends linearly on ∂Φ
∂t

.
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Motivated by the preceding computations, we introduce in the functional theoretic

language the first variation of a varifold. Later on we are going to prove the equality with

the variational formulation.

Definition 3.6 (First Variation of a Varifold). Suppose V ∈ Vk(Σ), define the linear

functional over the R vector space X (Σ)

δV : X (Σ)→ R

X 7→ δV (X) =

∫
(∇X ◦ S) · SdV (x, S),

and we define the first variation of V on X as δV (X).

Given V ∈ Vk(Σ), ||δV || is the total variation of δV , if ||δV || is the largest Borel

regular measure on Σ satisfying

||δV ||(G) := sup{δV (g) : g ∈ X (Σ), spt(g) ⊆ G, |g| ≤ 1},

for every open set G. If δV = 0 we say that V is stationary, if G ⊂ Σ is open, and

||δV ||(G) = 0 we say that V is stationary on G.

Remark 3.4. For each S ∈ G(n, k), let {e1, . . . ek} be an orthonormal base of S, then

δV (X) =

∫
(∇X ◦ S) · SdV (x, S)

=

∫
tr(S∗(∇X ◦ S))dV (x, S)

=

∫
〈S∗(∇X ◦ S)(ei), ei〉dV (x, S)

=

∫
〈(∇X ◦ S)(ei), S(ei)〉dV (x, S)

=

∫
〈∇eiX, ei〉dV (x, S)

=

∫
divSXdV (x, S),

where we have used in the preceding equalities the Einstein’s summation convention, and

the bracket 〈·, ·〉 corresponds to the inner product due to a Riemannian metric.

Proposition 3.1. Let V ∈ Vk(Σ), such that ||δV || is a Radon measure, X ∈ X (Σ), then

there exist ||V ||-measurable functions H ∈ Rn and η ∈ Sn−1, ||δV ||-measurable functions,

and a measure ||δV ||sing ⊥ ||V || such that

δV (X) = −
∫
X ·Hd||V ||+

∫
X · ηd||δV ||sing.
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Proof. Since ||δV || is the total variation of the linear functional δV , by Theorem 1.11 for

all X ∈ X (Σ), there exists a vector valued, ||δV ||-measurable function η, with |η| = 1,

||δV ||-a.e. and

δV (X) =

∫
X · ηd||δV ||. (3.8)

Since ||δV || is by hypothesis a Radon measure and ||V || ∈ Vk(Σ), by Theorem 2.1 there

exists the ||V ||-measurable function h = D||V ||||δV ||, and

h(x) = lim
r↓0

||δV ||(B(x, r))

||V ||(B(x, r))
,

and there also exists a measure ||δV ||sing ⊥ ||V || such that

||δV || = h||V ||+ ||δV ||sing.

Replacing in (3.8), we have

δV (X) =

∫
X · ηd(h||V ||) +

∫
X · ηd||δV ||sing

=

∫
X · hηd||V ||+

∫
X · ηd||δV ||sing.

Letting

−H := hη,

we have

δV (X) = −
∫
X ·Hd||V ||+

∫
X · ηd||δV ||sing.

Definition 3.7 (Generalized Mean Curvature Vector). The vector field H as in Proposi-

tion 3.1 is called the generalized mean curvature vector of the varifold V .

Definition 3.8. Let V ∈ Vk(Σ). If there exists H ∈ L∞(||V ||) ∩ X 1(Σ) such that

δV (X) = −
∫
H ·Xd||V ||, ∀X ∈ X 1

c (Σ), (3.9)

we say that V has bounded generalized mean curvature H. In particular by the

decomposition given by Theorem 3.1 we have that ||δV ||sing = 0.

Now we have almost all the tools to start with our regularity theorem, before that let

us analyze the special case of integer-rectifiable varifolds.
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3.3 First Variation of Integer Rectifiable Varifolds

As mentioned before, we are interested in a succinct formula for the first variation of a

varifold, the Proposition 3.3 proves that in the integer-rectifiable case, the first variation

is well defined and has a useful representation.

Proposition 3.2. Let Φt : Σ → Σ the family of diffeomorphisms as defined before, Let

E ⊂ Σ an Hk-rectifiable set, then

(Φt])v(E) = v(Φt(E)).

Moreover, if V ∈ IV(Σ)

(Φt])V =
∞∑
i=1

kiv(Φt(E)) =
∞∑
i=1

kiHkx(Φy(E)),

and then

δV (X) =
d

dt

(
∞∑
i=1

kiHkx(Φt(E))

)
|t=0

Proof. Let B ∈ B(Gk(Σ)), then by definition

(Φt])v(E)(B) = v(E)(Φ−1(B))

= Hk
(
{x ∈ E : (x, Tank(HkxE, x)) ∈ Φ−1

t (B)}
)
,

then, if (x, Tank(HkxE, x)) ∈ Φ−1
t (B), (Φt(x), Tank(HkxΦt(E),Φt(x))) ∈ B, so

Hk
(
{x ∈ E : (x, Tank(HkxE, x)) ∈ Φ−1

t (B)}
)

=

= Hk
(
{x ∈ Φt(E) : (Φt(x), Tank(HkxΦt(E),Φt(x))) ∈ B}

)
= v(Φt(E))(B),

thus

v(Φt(E)) = (Φt])v(E). (3.10)

The part that remains to prove is a direct consequence of the definitions and (3.10).

Proposition 3.3. Let Σ ⊂ Rn and V ∈ IVk(Σ). Then δV (X) is well defined, it holds

δV (X) =
∞∑
i=0

ki

∫
Ei

divTxΓXdV, ∀X ∈ C1
c (U,Rn), (3.11)

where

divπX =
k∑
i=1

〈∇eiX, ei〉,

with {e1, . . . , ek} being an orthonormal basis over π, and Γ := spt||V ||.
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Proof. Let {Ei}i∈N a sequence of sets such that for every i ∈ N, Ei meets every compact

subset of Σ in a k-rectifiable set and Σ ⊂
⋃
Ei. Then given X ∈ C1

c (U,Rn)

δV (X) =
∑
i

kiHkx(Φt(Ei)).

Hence, by the area formula

Hkx(Φt(Ei)) =

∫
Φt(Ei)

dHk =

∫
Ei

JΦt(x)dHk(x). (3.12)

Without loss of generality we can assume Ei being k-rectifiable, then there exists many

countable C1 embeddings Fj : Rk → Rn and compact sets Kj such that

1. Fj(Kj) ∩ Fl(Kl) = ∅

2. Fj(Kj) ⊂ Ei for all j

3. {Fj(Kj)}i∈N covers Hk a.e. Ei

So, by 3.12, and appliying the area formula, again, we conclude

Hkx(Φt(Ei)) =

∫
Ei

JΦt(x)dHk(x)

=
∑
j

∫
Fj(Kj)

JΦt(x)dHk(x)

=
∑
j

∫
Kj

J(Φt ◦ F )(y)dHk(y)

=
∑
j

∫
Kj

| d(Φ ◦ Fi) |y e1 ∧ . . . d(Φ ◦ Fi) |y ek | dy,

where {e1, . . . , ek} is an orthonormal basis of Rk.

Fix y ∈ Kj, set x = Fj(y), and recalling that {dFj |y e1, . . . , dFj |y ek} is a basis for TxΓ,

Hk-a.e., we have that x ∈ Fj(Kj), so if {v1, . . . , vk} is an orthonormal basis for TxΓ we

can deduce

| d(Φ ◦Fj) |y e1 ∧ · · · ∧ d(Φ ◦Fj) |y ek |=| dΦt |y v1 ∧ · · · ∧ dΦt |y vk || dFj |y e1 ∧ · · · ∧ dFj |y ek | .

Setting hx(t) =| dΦt |y v1 ∧ · · · ∧ dΦt |y vk |, we have∫
Φt(Ei)

dHk =

∫
Ei

hx(t)dV (x).

Recalling that Φ0 = id we have that

1

t

(
Hkx(Φt(Ei))−Hkx(Φ0(Ei))

)
=

1

t

∫
Ei

(hx(t)− hx(0))dV (x).
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Since hx(t) = det
√
Mx(t) where (Mx(t))ij = 〈dΦt |x vi, dΦt |x vj〉; differentiating (Mx(t))ij

with respect to t yields to

(M ′
x(t))ij =

〈
∂

∂vi
(X ◦ Φt) |x vi, dΦt |x vj

〉
+

〈
, dΦt |x vi,

∂

∂vj
(X ◦ Φt) |x vj

〉
.

Since X(Φt(x)) is a tangent vector, there exists C a constant, independent of x, such that

|M ′
x(t) |≤ C. (3.13)

Hence, hx is differentiable and there exist δ > 0 and C such that

| hx(t)− hx(0)| ≤ Ct, (3.14)

for all t ∈ [−δ, δ], and x ∈ U . Therefore

lim
t↓0

1

t

(
Hkx(Φt(Ei))−Hkx(Φ0(Ei))

)
=

∫
Ei

h′x(t)dV (x). (3.15)

Finally

(M ′
x(0))ij = δijh

′
x(0)

=
1

2
TrM ′

x(0)

=
∑
i

〈∇viX(x), vi〉

= divTxΣX(x).

The final result follows summing over every Ei.

The following proposition is a straightforward consequence of Riez’s Representation

Theorem and Radon-Nikodym’s theorem.

Proposition 3.4. If there exists a constant C ≥ 0 such that

| δV (X) |≤ C

∫
| X | d||V ||, (3.16)

then there exists a bounded Borel map H : U → Rn such that

δV (X) = −
∫
H ·Xd||V ||.
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3.4 The Monotonicity Formula

The following result is a monotonicity formula, which ensures the monotone behaviour of

the density ratio of the weight of a varifold, modulo a correction factor depending on the

generalized mean curvature. This kind of results can be considered as a step zero for any

regularity theory, the proof of which is achieved via a calculation of the first variation of

a varifold by a radial deformation.

Theorem 3.2 (Monotonicity Formula). Let V ∈ IVk(Σ) with bounded mean curvature

H and fix ξ ∈ U . Then for 0 < σ < ρ < dist(ξ, ∂U) we have

||V ||(Bρ(ξ))
ρk

− ||V ||(Bσ(ξ))

σk
=

∫
Bρ(ξ)

H

k
· (x− ξ)

(
1

m(r)k
− 1

ρk

)
d||V ||+

+

∫
Bρ(ξ)\Bσ(ξ)

| ∇⊥r |2

rk
d||V ||, (3.17)

where r(x) =| x− ξ |, ∇⊥r = PTxΓ⊥

(
x−ξ
|x−ξ|

)
, and m(r) = max{|x|, σ}.

Proof. By a translation we can assume that ξ = 0. Let γ ∈ C1
c (]− 1, 1[), such that γ ≡ 1

in a neighbourhood of 0, and define the vector field Xs(x) = γ
(
|x|
s

)
x.

By Proposition 3.3 it is easily seen that

−
∫
Xs(x) ·HdV =

∫
divTxΓXs(x)d||V ||(x). (3.18)

Putting π = TxV , fixing {e1, . . . , ek} an orthonormal basis of π, and the natural comple-

tion {e1, . . . , ek, ek+1, . . . , en} to an orthonormal basis of Rn leads to

divTxVXs(x) =
∑
i

ei · ∇ejX(s)

= kγ
(r
s

)
+

k∑
j=1

ej · xγ′
(r
s

) x · ej
|x|s

= kγ
(r
s

)
+
r

s
γ′
(r
s

) k∑
j=1

(
x · ej
|x|

)2

= kγ
(r
s

)
+
r

s
γ′
(r
s

)(
1−

n∑
j=k+1

(
x · ej
|x|

)2
)

= kγ
(r
s

)
+
r

s
γ′
(r
s

) (
1− | ∇⊥r |2

)
.
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Now, inserting in (3.18) and dividing by sk+1 it follows

−
∫
Rn
γ

(
|x|
s

)
H · x
sk+1

dV (x) =

∫
Rn

k

sk+1
γ

(
|x|
s

)
dV (x)+

+

∫
Rn

r

sk+2
γ′
(
|x|
s

)(
1− | ∇⊥r |

)2
dV (x).

Integrating in s, between σ and ρ

−
∫ ρ

σ

∫
Rn
γ

(
|x|
s

)
H · x
sk+1

d||V ||(x) =

∫ ρ

σ

∫
Rn

k

sk+1
γ

(
|x|
s

)
d||V ||(x)+

+

∫ ρ

σ

∫
Rn

|x|
sk+2

γ′
(r
s

)(
1− | ∇⊥r |

)2
d||V ||(x).

Applying the Fubini’s Thorem at all the terms of the preceding equality we get

−
∫
Rn

∫ ρ

σ
γ

(
|x|
s

)
H · x
sk+1

d||V ||(x) =

∫
Rn

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
d||V ||(x)+

+

∫
Rn

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)(
1− | ∇⊥r |

)2
d||V ||(x).

Notice that ∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

)
ds = −

∫ ρ

σ

d

ds

(
1

sk
γ

(
|x|
s

))
ds.

Applying the Fundamental Theorem of Calculus we get

−
(

1

ρk

∫
Rn
γ

(
|x|
ρ

)
d||V ||(x)− 1

σk

∫
Rn
γ

(
|x|
σ

)
d||V ||(x)

)
=∫

Rn
|∇⊥r|2

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
dsd||V ||(x) +∫

Rn
H · x

∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
dsd||V ||(x). (3.19)

Integrating by parts∫
Rn
|∇⊥r|2

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
dsd||V ||(x) =

∫
Rn
|∇⊥r|2

∫ ρ

σ

− 1

sk

[
−|x|
s2
γ′
(
|x|
s

))
dsd||V ||(x)

=

∫
Rn
|∇⊥r|2

∫ ρ

σ

− 1

sk
d

ds

(
γ

(
|x|
s

))
dsd||V ||(x)

=

∫
Rn
|∇⊥r|2

[
− 1

sk
γ

(
|x|
s

)∣∣∣∣ρ
σ

−

−
∫ ρ

σ

k

sk−1
γ

(
|x|
s

)
ds

]
d||V ||(x)

=

∫
Rn
|∇⊥r|2

[
1

σk
γ

(
|x|
σ

)
− 1

ρk
γ

(
|x|
ρ

)
−

−
∫ ρ

σ

k

sk−1
γ

(
|x|
s

)
ds

]
d||V ||(x).
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Replacing in (3.19) (
1

ρk

∫
Rn
γ

(
|x|
ρ

)
d||V ||(x)− 1

σk

∫
Rn
γ

(
|x|
σ

)
dV (x)

)
=∫

Rn
|∇⊥r|2

[
1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)∫ ρ

σ

k

sk−1
γ

(
|x|
s

)
ds

]
d||V ||(x) +∫

Rn
H · x

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
dsd||V ||(x). (3.20)

Now testing (3.20) with a sequence of cut-off functions {γn}n∈N such that γn → χ]−1,1[

from below, by the dominated convergence theorem

1

ρk
||V ||(Bρ(0))− 1

σk
||V ||(Bσ(0)) =∫

Rn
|∇⊥r|2

[
1

ρk
χ]0,1[

(
|x|
ρ

)
− 1

σk
χ]0,1[

(
|x|
σ

)
+

∫ ρ

σ

k

sk−1
χ]0,1[

(
|x|
s

)
ds

]
d||V ||(x)

+

∫
Rn
H · x

∫ ρ

σ

k

sk+1
χ]0,1[

(
|x|
s

)
dsd||V ||(x).

Since ∫ ρ

σ

k

sk+1
χ]0,1[

(
|x|
s

)
ds =

∫ ρ

m(r)

k

sk+1
ds =

[
1

m(r)k
− 1

ρk

]
χ]0,ρ[(|x|),

the monotonicity formula (3.17) readily follows.

The following results are simple but very important consequences of the monotonicity

formula.

Corollary 3.2. The function

ρ 7→ e||H||∞ρρ−k||V ||(Bρ(ξ)), (3.21)

is monotone increasing.

Proof. Without loss of generality we can assume ξ = 0. Let f(ρ) = ρ−k||V ||(Bρ(0)), then

f(ρ)− f(σ)

ρ− σ
=
ρ−k||V ||(Bρ(0))− σ−k||V ||(Bσ(0))

ρ− σ
.

By the monotonicity formula (3.17) of Theorem 3.2 it is easily checked that

f(ρ)− f(σ)

ρ− σ
=

1

ρ− σ

[∫
Bρ(0)

H · x
k

(
1

m(r)k
− 1

σk

)
dV +

∫
Bρ(0)\Bσ(0)

|∇⊥r|2

|x|k
dV

]
.

Hence

f(ρ)− f(σ)

ρ− σ
≥ 1

ρ− σ

∫
Bρ(0)

H · x
k

(
1

m(r)k
− 1

ρk

)
dV

≥ −||H||∞
k

∫
Bρ(0)

|x|m(r)−k − ρ−k

ρ− σ
dV

≥ −||H||∞
k

V (Bρ(0)ρ
σ−k − ρ−k

ρ− σ
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Since g : ρ 7→ ρ−k is convex, setting ρ = σ + ε we get

f(ρ)− f(σ)

ρ− σ
≥ −||H||∞

k
V (Bρ(0))(σ + ε)

σ−k − (σ + ε)−k

ε

=
||H||∞
k

V (Bρ(0))(σ + ε)g′(η)

≥ −||H||∞V (Bρ(0))(σ + ε)σ−(k+1),

where η ∈]σ, ρ[. Therefore

f(σ + ε)− f(σ)

ε
≥ −||H||∞f(σ + ε)

(σ + ε)k+1

σk+1
. (3.22)

If ψδ is a standard non-negative mollifier, we can first take the convolution with ψδ

integrating with respect to the variable σ, in both sides of (3.22) yields

f(σ + ε)− f(σ)

ε
∗ ψδ ≥ −||H||∞

(
f(σ + ε)

(σ + ε)k+1

σk+1
∗ ψδ

)
,

and only after letting ε ↓ 0. We obtain in this way

(f ∗ ψδ)′ ≥ −||H||∞ (f ∗ ψδ) .

Hence, multiplying by e||H||∞ρ

e||H||∞ρ (f ∗ ψδ)′ + ||H||∞e||H||∞ρ (f ∗ ψδ) ≥ 0,

or equivalently
d

dρ

(
e||H||∞ρ (f ∗ ψδ)

)
≥ 0.

Finally taking the limit when δ → 0 in the preceding inequality the result follows easily.

The following proposition is an interesting application of Theorem 3.2.

Proposition 3.5. Let V ∈ IVk(U), where U ⊂ Rn is open and with bounded mean

curvature. Then

(i) the limit

Θ(||V ||, x) = lim
ρ↓0

||V ||(Bρ(x))

ωkρk
, (3.23)

exists at every x ∈ U ,

(ii) Θ(||V ||, x) is upper semicontinuous,
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(iii) Θ(||V ||, x) ≥ 1, for all x ∈ Spt||V || ∩ U ,

(iv)

||V ||(Bρ(x)) ≥ ωke
−||H||∞ρρk, (3.24)

for all x ∈ spt(||V ||) and for all ρ < dist(x, ∂U),

(v) Hk (Spt||V || \
⋃∞
i=0Ei) = 0.

Proof. (i) The existence of the limit is guaranteed by the monotonicity of

ρ→ e||H||∞ρρ−k||V ||(Bρ(x)).

(ii) Fix x ∈ U and ε > 0, Let 0 < 2ρ < dist(x, ∂U) such that

e||H||∞r
||V ||(Bρ(x))

r−kωk
≤ Θ(||V ||, x) +

ε

2
, ∀r < 2ρ. (3.25)

If δ < ρ and |x− y| < δ, then

Θ(||V ||, y) := lim
ρ↓0

||V ||(Bρ(y))

ωkρk
≤ lim

ρ↓0
e||H||∞ρ

||V ||(Bρ(y))

ωkρk

≤ lim
ρ↓0

e||H||∞(ρ+δ) ||V ||(B(ρ+δ)(x))

ωkρk

= lim
ρ↓0

e||H||∞(ρ+δ) ||V ||(B(ρ+δ)(x))

ωk(ρ+ δ)k

(
ρ+ δ

ρ

)k
≤

(
1 +

δ

ρ

)k [
Θ(||V ||, x) +

ε

2

]
,

where the last inequality is true because of (3.25). If δ is small enough

Θ(||V ||, y) ≤ Θ(||V ||, x) + ε,

which proves the upper semicontinuity.

(iii) Since Θ(||V ||, ·) ≡ ki ||V ||-a.e. the set {Θ(||V ||, ·) ≥ 1} has full measure. Thus

{Θ(||V ||, ·) ≥ 1} must be dense in Spt(||V ||) and so, for every x ∈ Spt(||V ||) ∩ V

the inequality Θ(||V ||, x) ≥ 1 follows from the upper semi continuity.

(iv) The remaining follows trivially from Theorem 3.2 and the corollary.

(v) Finally by the classical Density theorems Θ(||V ||, ·) = 0 Hk-a.e. On U \Ei for each

i ∈ N. Hence the result follows from (iii).
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Chapter 4

Allard’s Interior Regularity theorem

In this chapter we introduce, and prove the Allard’s Interior Regularity Theorem

(Theorem 4.1), which roughly speaking asserts that under suitable conditions a Integer-

Rectifiable varifold V is a C1,α submanifold of a certain ball. The proof of Theorem 4.1

is achieved by an Excess-Decay argument, joint with a suitable Lipschitz approximation

of the varifold V ∈ IVk(Σ).

To do this is necessary to introduce the tilt excess and height excess of a varifold.

4.1 Excess and Allard’s Theorem

Definition 4.1 (Excess). Let V ∈ IVk(U) with U ⊂ Rn, Br(x) ⊂ U an open ball and

π a k-dimensional plane. The tilt excess of V in Br(x) with respect to π is the

nonnegative real number E(V, π, x, r) ∈ [0,+∞[ defined as follows

E(V, π, x, r) := r−k
∫
Br(x)

||TyΓ− π||2d||V ||(y). (4.1)

The tilt excess of a rectifiable varifold measures the square local deviation of the

tangent planes of the support of the varifold to a fixed plane π.

Definition 4.2. Let V ∈ IVk(U) with U ⊂ Rn, Br(x) ⊂ U an open ball and π a k-

dimensional plane. The L2-height-excess of V in Br(x) with respect to π is the

nonnegative real number Hexc(V, π, x, r) ∈ [0,+∞[ defined as follows

Hexc(V, π, x, r) := r−k−2

∫
Br(x)

d(y − x0, π)2d||V ||(y). (4.2)

The height excess of a rectifiable varifold gives a measure of the distance of the support

of the varifold to the fixed plane π.
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Proposition 4.1 (Rescaling properties of the tilt excess). For every V ∈ IVk(Σ) holds

(i): E(µr]V, x0, π, r) = E(V, x0, π, 1).

Proposition 4.2 (Rescaling properties of the height excess). For every V ∈ IVk(Σ) holds

(i): Hexc(µr]V, x0, π, r) = Hexc(V, x0, π, 1).

Theorem 4.1 (Allard’s ε-regularity Theorem). For every k < n, k ∈ N there exist

positive constants α, ε, γ such that, if V ∈ IVk(Σ) and V is with bounded mean curvature

H in Br(x0) ⊂ Rn satisfying:

(H1) ||V ||(Br(x0)) < (ωk + ε)rk, and ||H||∞ ≤ ε
r
.

(H2) There exists π ∈ G(n, k) such that E(V, π, x, r) < ε.

Then spt||V || ∩Bγr(x0) is a C1,α submanifold (without boundary) in Br(x0).

The remaining of the text is devoted to prove the Theorem 4.1, and to do this we

follow the scheme below:

• In Section 4.2 we prove an inequality for the excess which is a direct analogue of

the Caccioppoli’s inequality for solutions of elliptic partial differential equations.

• In Section 4.3 we show that, under the assumptions of Theorem 4.1, the varifold

can be well approximated by a Lipschitz graph.

• In Section 4.4 we use the previous sections to prove an excess-decay theorem.

• In Section 4.5 we use Theorem 4.4 and the Lipschitz approximation and a excess-

decay argument (which is the an instance of the well known De Giorgi-Nash-Moser

iteration scheme) to conclude the proof of Theorem 4.1

4.2 Tilt Excess Inequality

The first step to prove Theorem 4.4 is an analogue of the Caccioppoli’s inequality for

elliptic PDE’s.
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Theorem 4.2 (Tilt-Excess Inequality). Let k < n be a positive integer. Then there is a

constant C > 0, such that the following inequality holds for every varifold V ∈ IVk(Σ)

with bounded mean curvature H in Br(x0) ⊂ Rn, satisfying (H1), (H2) of Theorem 4.1,

and every k-plane π ∈ G(n, k)

E(V, π, x0, r/2) ≤ C

rk+2

∫
Br(x0)

dist(y − x0, π)2dV (y) +
2k+1

rk−2

∫
Br(x0)

|H|2dV. (4.3)

To get an intuition of what happens in Theorem 4.2, suppose that V =
∑

v(Ei) and

each Ei is the graph of a function f with small Lipschitz constant the boundedness of H

translates in a suitable elliptic system of partial differential equations, then E(V, π, x0, r/2)

approximates the Dirichlet Energy, in fact when π is the hyperplane Rk × {0} ⊂ Rk+1,

E(V,Rk × {0}, 0, r/2) = 2k

rk

∫
B(0,r/2)

|∇f |2 and the height excess in the right hand of

inequality (4.3) is compared with the L2 norm of f . Then the inequality can be translated

into
1

rk

∫
Br/2(x0)

|∇f |2 ≤ C

rk+2

∫
Br(x0)

|f |2 +
2k+1

rk−2

∫
Br(x0)

|div(
∇f√

1 + |∇f |2
)|2,

which is the Caccioppoli’s inequality for elliptic partial differential equations, in the case

in which the elliptic operator considered is the mean curvature operator of a graph. About

this point the reader can compare Theorem 4.4 of [GM12].

Before to start the proof of Theorem 4.2 we need a technical computation, which will be

useful all along the text. First of all we introduce some notation. Given a k-dimensional

plane π we denote Pπ and P⊥π respectively the orthonormal projection onto π and π⊥,

similarly, for f ∈ C1(Rn), ∇πf and ∇⊥π f will denote, respectively Pπ ◦ ∇f and P⊥π ◦ ∇f .

Finally, if Φ ∈ C1(Rn,Rk), JπΦ will denote the absolute value of the Jacobian determinant

of Φ |π.

Lemma 4.1. Consider two k-dimensional planes π, T in Rn. Let X : Rn → Rn be the

vector field X(x) := P⊥π (x) and fix an orthonormal base {νk+1, . . . , νn} of π⊥, consider

the function fj(x) := 〈x, νj〉Rn. Then

1

2
||T − π||2 = divTX =

n∑
i=k+1

|∇Tfi|2. (4.4)

Moreover there is a positive constant C0, depending only on N and k such that

|JTPπ − 1| ≤ C0||T − π||2. (4.5)
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Proof. Let {ξ1, . . . , ξk} an orthonormal base of T and {ek+1, . . . , en} an orthonormal base

of T⊥. Notice that

Pπ = idRn −
n∑

j=k+1

νj ⊗ νj, PT = idRn −
n∑

j=k+1

ei ⊗ ei,

with idRn denoting the identity map of Rn. Thus

1

2
||π − T ||2 =

1

2
〈Pπ − PT , Pπ − PT 〉Rn⊗Rn

=
1

2

〈
−

n∑
j=k+1

νj ⊗ νj +
n∑

i=k+1

ei ⊗ ei,−
n∑

j=k+1

νj ⊗ νj +
n∑

i=k+1

ei ⊗ ei

〉
Rn⊗Rn

=
1

2

〈
n∑

j=k+1

νj ⊗ νj −
n∑

i=k+1

ei ⊗ ei,
n∑

j=k+1

νj ⊗ νj −
n∑

i=k+1

ei ⊗ ei

〉
Rn⊗Rn

=
1

2

〈
n∑

j=k+1

νj ⊗ νj,
n∑

j=k+1

νj ⊗ νj

〉
Rn⊗Rn

−

〈
n∑

j=k+1

νj ⊗ νj,
n∑

i=k+1

ei ⊗ ei

〉
Rn⊗Rn

+
1

2

〈
n∑

i=k+1

ei ⊗ ei,
n∑

i=k+1

ei ⊗ ei

〉
Rn⊗Rn

=
1

2
(n− k) +

1

2
(n− k)−

n∑
j=k+1

n∑
i=k+1

〈νj ⊗ νj, ei ⊗ ei〉Rn⊗Rn

= (n− k)−
n∑

j=k+1

n∑
i=k+1

(νj · ei)2

=
n∑

j=k+1

(
1−

n∑
i=k+1

(νj · ei)2

)

=
n∑

j=k+1

k∑
i=1

(νj, ξi)
2 =

N∑
j=k+1

|∇Tfj|2.

The last equality is due to the fact that in general ∇ξifj = 〈∇fj, ξi〉 and a simple calcu-

lation using the very definition of fj, gives also Dξifj = 〈ξi, νj〉. So

∇Tfj = PT ◦ ∇fj =
k∑
i=1

(ξi · νj)ξi,

and we conclude from this that the following equality holds

1

2
||π − T ||2 =

N∑
j=k+1

|∇Tfj|2. (4.6)
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On the other hand

N∑
i=k+1

|∇Tfj|2 =
N∑

i=k+1

k∑
j=1

(ξj · νi)2

=
N∑

i=k+1

k∑
j=1

(ξj · νi)(ξj · νi)

=
N∑

i=k+1

k∑
j=1

(ξj · (νi(ξj · νi))

=
k∑
j=1

(
ξj ·

N∑
i=k+1

(νi(ξj · νi))

)

=
k∑
j=1

N∑
i=k+1

(
ξj ·

∂fi
∂ξj

νi

)

=
k∑
j=1

(
ξj ·

∂

∂ξj

N∑
i=k+1

fiνi

)

=
k∑
j=1

(
ξj ·

∂

∂ξi
X

)
= divTX.

Next, recall that JTPπ =
√
detM , where

Mij = Pπ(ξj) · Pπ(ξi)

= δij − (P⊥π (ξj) · ξi)− (ξj · P⊥π (ξi)) + (P⊥π (ξj) · P⊥π (ξi))

:= δij + Aij + Aji +Bij.

Observe that there exists a positive constant C = C(n, k), such that

|P⊥π (ξj)| = |P⊥π (ξj)− P⊥T (ξj)| ≤ ||T⊥ − π⊥||op|ξj| (4.7)

≤ ||T⊥ − π⊥|| = ||T − π||,

where by || · ||op we denote the operator norm that as it is very well known it is equivalent

to the Hilbert-Schmidt norm || · ||, since we are dealing with finite dimensional normed

vector spaces. Thus taking the supremum over the set of unit vectors of T , in (4.7) and

again considering the equivalence of the norms we obtain

||A|| ≤ ||T − π|| and ||B|| ≤ ||T − π||2. (4.8)
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Moreover

Aij := ξi · P⊥π (ξj)

=
k∑
i=1

(
ξi ·

N∑
l=k+1

(ξj · νl)νl

)

= ξi ·
∂

∂ξj
X.

Hence, the usual Taylor expansion of the determinant gives

detM = 1− 2TrA+O(||T − π||2)

= 1− 2divTX +O(||T − π||2).

Since JTPπ ≥ 0, it is straightforward to check that |JTPπ − 1| ≤ |JTPπ − 1||JTPπ + 1| =

|detM − 1|. As a consequence of this we get the following estimates

|JTPπ − 1| ≤ |2divTX −O(||T − π||2)|

≤ 2|divTX|+ C||T − π||2.

Using (4.4) combined with the preceding estimates we finally are lead to show the existence

of a positive constant C0 = C0(N, k), such that

|JTPπ − 1| ≤ C0||T − π||2,

and (4.5) is proved.

Now we are ready to prove Theorem 4.2.

Proof of the Tilt-Excess Inequality (4.3). Consider a smooth cut-off function φ(x
r
) =: ζr ∈

C∞c (Br(x0)) (that for simplicity of notation, we will denote just with ζ forgetting the

dependence on r) such that ζ ≡ 1 on Br/2(x0), ζ ≡ 0 outside Br(x0), and |∇ζ| ≤ ||∇φ||∞
r

=

C
r

, where C can be chosen as a numerical constant not less than 2, for example C = 3.

Let X(x) = P⊥π (x), Γ := spt||V ||, we test the first variation of V ∈ IVk(Σ) with the

vector field ζ2X, this gives

δV (ζ2X) =

∫
divTyΓ(ζ2X)d||V ||(y) = −

∫
H · (ζ2X)d||V ||. (4.9)

Hence ∫
ζ2divTyΓXd||V ||(y) = −

∫
ζ2H ·Xd||V || −

∫
2ζX · ∇TyΓζd||V ||. (4.10)
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By the previous lemma it is straightforward to verify that

2k+1

rk

∫
Br(x0)

ζ2divTyΓXd||V ||(y) ≥ 2k

rk

∫
Br/2(x0)

||TyΓ− π||2d||V ||(y) (4.11)

= E(V, π, x0, r/2).

On the other hand applying the Young’s inequality to the first term of the right hand side

of (4.10) we have∫
ζ2divTyΓXd||V || ≤

1

2

∫
ζ4|X|2d||V ||+ 1

2

∫
Br(x0)

|H|2d||V || (4.12)

+ 2

∫
ζ|X · ∇TyV ζ|d||V ||.

Now to obtain L2 estimates we need to estimate ζ|X · ∇TyΓζ|, set T = TyΓ, recall that

X(x) =
∑n

i=k+1〈x, νi〉νi, and use the notation of the previous lemma, to check the follow-

ing

2ζ|X · ∇T ζ| = ζ

∣∣∣∣∣
k∑
j=1

(∇ζ · ξj)(ξj ·X)

∣∣∣∣∣
≤ ζ

k∑
j=1

|(∇ζ · ξj)|
n∑

i=k+1

|fj||(νj · ξi)|

≤ Cζ|∇ζ||X|
n∑

i=k+1

|∇Tfi|.

Applying the Young’s inequality again we have

Cζ|∇ζ||X|
n∑

i=k+1

|∇Tfi| ≤
(n− k)C

2
ζ2|∇ζ|2|X|2 +

1

2
ζ2

n∑
k+1

|∇Tfi|2.

Applying again Lemma 4.1 we deduce

2ζ|X · ∇T ζ| ≤ C(N, k)ζ2|∇ζ|2|X|2 +
1

2
ζ2divTX. (4.13)

Inserting (4.13) in (4.12) we obtain

1

2

∫
ζ2divTyVXd||V ||(y) ≤ 1

2

∫
ζ4|X|2d||V ||+ 1

2

∫
Br(x0)

|H|2d||V || (4.14)

+ C

∫
ζ2|∇ζ|2|X|2d||V ||.

Since |∇ζ| ≤ C
r

, |ζ| ≤ C and |X(x)| = dist(x, π) we conclude

1

2

∫
Br/2(x0)

ζ2divTy ||V || ≤
C

r2

∫
Br(x0)

dist(x, π)2d||V ||+ 1

2

∫
Br(x0)

r2|H|2d||V ||. (4.15)

Combining all this with (4.11) leads to prove (4.3) and establish the proof of Theorem

4.2.
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4.3 The Lipschitz approximation

Theorem 4.3 (Lipschitz Approximation). For any positive integer k < N , there is a

constant C with the following property. For any l, β ∈]0, 1[ there are λl > 0 (depending on

l, but not on β) and εL = εL(l, β) (depending on l and β) such that the following holds.

If V ∈ IVk(Σ) and π ∈ G(n, k) satisfy the assumptions of the Theorem 4.1 with ε = εL,

then there exists a Lipschitz map

f : (π + x0) ∩Br/8(x0)→ x0 + π⊥,

such that:

(i): the Lipschitz constant of f is less than l and the graph of f (denoted in the sequel

by Gr(f)) is contained in the Uβr(π + x0).

(ii): Θ ≡ 1 Hk-a.e. on spt(||V ||) ∩Br/8(x0), and spt(||V ||) ∩Br/8(x0) ⊂ Uβr(π + x0).

(iii): Gr(f) ⊃ G :=
{
x ∈ Γ ∩Br/8(x0)|E(V, π, x, ρ) ≤ λl, ∀ρ ∈]0, r/2[

}
.

(iv): The following estimate holds

Hk [(Γ \G) ∪ (Gr(f) \G)] ≤ Cλ−1
l E(V, x0, π, r)r

k + C||H||∞rk+1.

The proof of this theorem is based on the two next lemmas.

Lemma 4.2. Let Vi be a sequence in IVk(B1(0)), B1(0) ⊂ RN such that each Vi satisfies

the assumptions of Theorem 4.1 with εi = ε(Vi) ↓ 0 for the same fixed plane π, then

||Vi||
∗
⇀ Hkxπ in B1(0).

Proof. Let ρ ∈]0, 1[ be fixed, and Hi be the generalized mean curvature of Vi, according

with the monotonicity formula we have∫
B1\Bρ

|∇⊥r|2

rk
d||Vi|| = ||Vi||(B1)− ||Vi||(Bρ)

ρk
−
∫
B1

Hi

k
· |x|

(
1

m(r)k
− 1

)
d||Vi||

≤ ||Vi||(B1)− ||Vi||(Bρ)

ρk
+

∫
B1

∣∣∣∣Hi

k
· |x|

(
1

ρk
− 1

)∣∣∣∣ d||Vi||
≤ ||Vi||(B1)− ||Vi||(Bρ)

ρk
+ Cρ(ωk + 1)||Hi||∞ (4.16)

≤ ||Vi||(B1)− e−||Hi||∞ρωk + Cρ,k||Hi||∞

≤ (ωk + ε(Vi))− e−||Hi||∞ρωk + Cρ,kε(Vi).
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The first inequality is trivial, the second is a consequence of (H1), the third is a straight-

forward application of (ii) of Proposition 3.5, the forth is again an application of (H1).

Hence, if i→ 0, then the right hand side of the last inequality goes to zero provided (H1)

and (H2) are satisfied. As it is easy to check for every fixed ρ ∈]0, 1[ we have∫
B1

|P⊥π (y)|2d||Vi|| ≤
∫
B1

|P⊥π (y)− P⊥TyΓi
(y)|2 +

∫
B1

|P⊥TyΓi
(y)|2d||Vi||

≤ C

∫
B1

||π − TyΓi||2d||Vi||

+ Cρ2||Vi||(Bρ) + C

∫
B1\Bδ

|r∇⊥r|2d||Vi||

≤ C

∫
B1

||π − TyΓi||2d||Vi||

+ C

∫
B1\Bρ

|∇⊥r|
rk

d||Vi||+ Cρ2||Vi||(Bδ)

≤ C

∫
B1

||π − TyΓi||2d||Vi||

+ C

∫
B1\Bρ

|∇⊥r|
rk

d||Vi||+ Cρ2(ωk + ε(Vi)). (4.17)

Letting i→ +∞ in (4.17) we conclude that

lim
i→+∞

∫
B1

|P⊥π (y)|2d||Vi|| ≤ Cρ2ωk, (4.18)

letting now ρ→ 0, it follows

lim
i→+∞

∫
B1

|P⊥π (y)|2d||Vi|| = 0. (4.19)

Now suppose that exists a Radon measure µ such that a subsequence of {||Vi||}i∈N converge

to µ, and fix ϕ ∈ C0(B1), by the definition of weak* convergence and (4.19) we argue∣∣∣∣∫
B1

|P⊥π (y)|2ϕ(y)dµ(y)

∣∣∣∣ =

∣∣∣∣ limi→∞

∫
B1

|P⊥π (y)|2ϕ(y)d||Vi||(y)

∣∣∣∣
≤ ||ϕ||∞ lim

i→∞

∫
B1

|P⊥π (y)|2d||Vi||(y) = 0. (4.20)

This last assertion readily permits to see that sptµ ⊆ π. On the other hand, for any

x ∈ B1 and ρ < 1− |x|, we have trivially

µ(Bρ(x))

ρk
≤ lim inf

i→0

||Vi||(Bρ(x))

ρk
≤ lim inf

i→0

e||Hi||∞ρ||Vi||(Bρ(x))

ρk
. (4.21)

Then, applying the monotonicity formula (3.21) we get

lim inf
i→0

e||Hi||∞ρ||Vi||(Bρ(x))

ρk
≤ lim inf

i→0

e||Hi||∞(1−|x|)||Vi||(B1−|x|(x))

(1− |x|)k
. (4.22)
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Now by the hypothesis (H1) of Theorem 4.1

||Vi||(B1−|x|(x)) ≤ ||Vi||(B1(0)) ≤ (ωk + ε(Vi)), (4.23)

which have as a consequence that

µ(Bρ(x))

ρk
≤ ωk

(1− |x|)k
. (4.24)

From the preceding equation, we argue immediately that

Θ∗k(µ, x) = lim sup
ρ↓0

µ(Bρ(x))

ωkρk
≤ ωk

(1− |x|)k
,

for all x ∈ Bρ, and this joint with (3.23) guarantees the existence of a nonnegative Borel

map θ such that

µ = θHkxπ.

Given X ∈ C1
c (B1(0)) be a fixed vector field, π, T ∈ G(n, k), the following estimates

follows

|divπX − divTX| ≤
k∑
i=1

|〈∇eiX, ei〉 − 〈∇ẽiX, ẽi〉| (4.25)

≤
k∑
i=1

2||∇(·)X||∞|ei − ẽi| (4.26)

≤ 2k||∇X||∞||π − T ||, (4.27)

since a simple direct, but cumbersome, computation shows that in general |ei − ẽi| ≤

||π − T || for all 1 ≤ i ≤ k, if (ei), (ẽi) are orthonormal basis of π and T respectively.

Therefore ∣∣∣∣∫
π

divπXθdHk

∣∣∣∣ = lim
i→∞

∣∣∣∣∫ divπXd||Vi||
∣∣∣∣ (4.28)

≤ lim inf
i→∞

∣∣∣∣∫
TVi

divTΓiXd||Vi||
∣∣∣∣ (4.29)

+ lim inf
i→∞

C(X)

∫
||TΓi − π||d||Vi|| (4.30)

≤ lim inf
i→∞

(||Hi||∞||X||∞||Vi||(B1(0)) (4.31)

+ lim inf
i→∞

C(X)(||Vi||(B1(0)))1/2E(Vi, π, 0, 1)))
1
2 (4.32)

= 0. (4.33)

Now let z1, . . . , zk, y1, . . . , yN−k be a system of coordinates such that π = {y = 0},

then by (4.28) ∫
θ(z)divzY (z)dz = 0, ∀Y ∈ C1

c (BRk(0, 1),Rk). (4.34)
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A way to prove this fact is to take for instance a standard mollifier ϕδ and test (4.34)

with the smooth vector fields Y ∗ ϕδ to conclude, via the divergence theorem, that the

derivative of θ ∗ ϕδ vanishes on B1−δ; letting δ ↓ 0, we then conclude that θ is a constant

θ0. On the other hand, since µ(∂Bρ) = 0, we have θ0ωkρ
k = µ(Bρ) = limi→∞ ||Vi||(Bρ).

However, as already observed, by the monotonicity formula and (H1),

ωke
−||Hi||∞ρρk ≤ ||Vi||(Bρ) ≤ (ωk + εi)ρ

k.

Thus θ0 = limi→∞
||Vi||(Bρ)

ωkρk
= 1. Summarizing, any convergent subsequence of {||Vi||}

converges weak∗ to Hkxπ. By the weak∗ compactness of closed bounded convex sets in

the space of measures, we conclude the proof.

Lemma 4.3. Let k < N be positive integers. For any δ ∈]0, 1/2[ there is a positive

number εH(δ) such that. If V satisfies the assumptions of Theorem 4.1 with ε = εH then:

(i): spt(||V ||) ∩Br/2(x0) ⊂ (δ)r-neighborhood of π + x0.

(ii): ||V ||(Bρ(x)) ≤ (ωk + δ)ρk, ∀x ∈ Br/4 and ρ ≤ r/2.

The proof of this lemma is based on the blow up argument explained in Lemma 4.2.

Proof. Scaling an translating we can assume x0 = 0 and r = 1. Arguing by contradiction,

suppose that the proposition is false, then there would be a positive constant δ < 1/2, a

plane π and a sequence of varifolds Vi ∈ IVk(Σ) satisfying the assumptions of the previous

lemma, and for each i, one of the following alternatives holds:

1. There is a point xi ∈ spt(µ) ∩B1/2(0) such that |P⊥π (xi)| ≥ δ

2. there is a point xi ∈ B1/4(0) and a radius ρi ∈]0, 1/2[ such that ||Vi||(Bρi(xi)) ≥

(ωk + δ)ρki .

Remark 4.1. Observe here that the plane π is fixed and is the same for all Vi. If we

take the negation of the statement of the theorem this ensures just the existence of a

sequence ηi and a sequence of planes πi such that the remaining it is true with ηi in

place of εi. But it is also true that from the sequence πi we can extract a subsequence

that we call again (πi) that converges to a plane π ∈ G(n, k), by the compactness of

G(n, k). Furthermore as it is easy to check, we have E(Vi, x0, π, r) ≤ E(Vi, x0, πi, r) +

1
2
||π − πi||2||Vi||(Br(x0)) ≤ E(Vi, x0, πi, r) + 1

2
||π − πi||2(ωk + ηi)r

k. So for i large enough
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we have E(Vi, x0, π, r) ≤ ηi
(
1 + 1

2
(ωk + ηi)r

k
)
. Taking εi := ηi

(
1 + 1

2
(ωk + ηi)r

k
)
> ηi,

we obtain the desired sequence of εi and Vi satisfying the hypotheses of Lemma 4.2.

Since Lemma 4.2 guarantees that Vi
∗
⇀ Hkxπ in B1(0), without loss of generality we can

assume that one of the two alternatives holds for every i.

Suppose that 1 holds, we can also assume xi → x. Then x ∈ B1/2(0) and |P⊥(x)| ≥ δ.

Thus Bδ(x) ⊂ B1(0) and Bδ(x) ∩ π = ∅. On the other hand, if i is large enough,

Bδ/2(xi) ⊂ Bδ(x). Since Hk(∂Bδ(x) ∩ π) = 0, using (iv) of Proposition 3.5 we get

0 = Hk(Bδ(x) ∩ π) = lim
i→∞
||Vi||(Bδ(x)) ≥ lim sup

i→∞
||Vi||(Bδ/2(xi))

≥ lim sup
i→∞

e−||Hi||∞
δ
2ωk

(
δ

2

)k
≥ ωk

(
δ

2

)k
> 0,

which is manifestly a contradiction.

Now assume that 2 holds. By (iv) of Proposition 3.5

||Vi||(B1/2(xi)) ≥ e−||Hi||∞1/2(ωk + δ)2−k.

Without loss of generality we can assume xi → x ∈ B1/4(0). Fix r > 1/2, and notice that

for i large enough Br(x) ⊃ B1/2(xi). Since Hk(∂Br ∩ π) = 0, then

Hk(Br(x) ∩ π) = lim
i→∞
||Vi||(Br(x)) ≥ lim

i→∞
||Vi||(B1/2(xi)) ≥ (ωk + δ)2−k.

Letting r ↓ 1/2 we then conclude Hk(B1/2(x)∩π) ≥ (ωk + δ)2−k which is a contradiction,

because Hk(B1/2(x) ∩ π) can be at most ωk2
−k which correspond to the case x ∈ π.

Lipschitz Approximation: Proof of Theorem 4.3. Without loss of generality we can as-

sume x0 = 0 and r = 1. To simplify the notation set E := E(V, π, 0, 1).

C1 First choose λ < εH(δ1) (given by Lemma 4.3) with δ1 := (N−k)−1/2l
3

.

C2 Then choose εL < min{λ, εH(δ2)} (given by Lemma 4.3) with δ2 := min{λ, (N −

k)−1/2β}.

Observe here that as a consequence of the estimate (4.36) below and (iv) of Proposition

3.5, G is not empty and have k-dimensional Hausdorff measure that goes to ωk
(

1
8

)k
when
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εL → 0. This allow us to make the following construction. Suppose x ∈ G and pick

y ∈ G. Observe that |y − x| < 1/4. Therefore choose r > |x− y| so that

2r < min{1/2, 3|x− y|}.

Since 2r < 1/2, by the choice C2 of εL we have

||V ||(B2r(x)) ≤ (ωk + λ)(2r)k,

and since x ∈ G we also have E(V, π, x, 2r) < λ. So applying Lemma 4.3 again

spt(||V ||) ∩Br(x) ⊂ Uδ2r(π).

Since y ∈ Br(x)

|P⊥π (x)− P⊥π (y)| ≤ δ1r = 3−1l(N − k)−1/2r

|P⊥π (x)− P⊥π (y)| ≤ 1

2
|x− y|. (4.35)

On the other hand we have that |P⊥π (x) − P⊥π (y)| + |Pπ(x) − Pπ(y)| ≥ |x − y|, then

subtracting (4.35), we have

|Pπ(x)− Pπ(y)| ≥ 1

2
|x− y|,

which implies that Pπ : G→ π is an injective map. So if we set D = Pπ(G) we can define

f : D ⊂ π → π⊥

v 7→ f(v) = P⊥π (z),

where z is such that Pπ(z) = v.

Since Pπ : G → π is injective, P−1
π is well defined, and since P⊥π : G → π⊥ is already a

function, f is well defined, and Gr(f) = G.

Notice that by construction

||f ||∞ = sup
x∈D
|f(x)| ≤ (N − k)−1/2β,

and that

|f(v)− f(w)| = |P⊥π (v, f(v))− P⊥π (w, f(w))|

≤ 2

3
(N − k)−1/2l|(v, f(v))− (w, f(w))|

≤ (N − k)−1/2l|Pπ(v, f(v))− Pπ(v, f(v))|

= (N − k)1/2l|v − w|

69



Thus f : D → π⊥ has Lipschitz constant (N−k)1/2l. Now fixing a system of orthonormal

coordinates on π⊥ and let f1 . . . , fN−k be the corresponding coordinate functions of f .

We can extend each fi to B1/8 ∩ π preserving Lipschitz constant and L∞ norm. Thus the

resulting extended function (abusing of notation) f will have Lipschitz constant at most

l and L∞ norm at most β. Thus (i) is satisfied, and also (iii) by construction.

Now consider any point x ∈ Spt(V ) ∩B1/8(x) by Lemma 4.3 and our choice C2 we have

V (Br(x)) ≤ (ωk + λ)rk ∀r < 1/2

V (Br(x))

ωkρk
≤
(

1 +
λ

ωk

)
.

So letting r ↓ 0 we have

Θk(V, x) = lim
r↓0

V (Br(x))

ωkρk
≤
(

1 +
λ

ωk

)
< 2.

Since Θ ∈ N for Hk- a.e. and x ∈ Spt(V ), then Θ ≡ 1 Hk-a.e. on Spt(V ) ∩B1/8(x).

Also notice that, by our choice of εL on C2, Spt(V )∩B1/8(0) is contained in a (N−k)−1/2β-

neighbourhood of π. So (ii) is satisfied.

Finally, for each x ∈ F := (spt||V || \ G) ∩ B1/8(0) choose a radius ρx < 1/2 such that

E(V, π, x, ρx) ≥ λ.

Then by Besicovich’s Theorem 1.13 we can find countably many pairwise disjoint balls

Bρi(xi) such that

{Bρi(xi)}i covers F and E(V, π, xi, ρi) ≥ λ,

and

Hk(F ) ≤ 5kωk
∑
i

ρi

=
5kωk
λ

∑
i

λρi

≤ 5kωkλ
−1
∑
i

E(V, π, xi, ρi)

≤ 5kωkλ
−1
∑
i

∫
Bρi (xi)

||TxiV − π||2dV

≤ Cλ−1

∫
B1(0)

||T0V − π||2dV

Hk(F ) ≤ Cλ−1E (4.36)
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To estimate F ′ := Γ \G we have

Hk(F ′) ≤ C(ωk8
−k −Hk(D))

≤ C

(
ωk
8k
−
∫
G

JTV PπdHk

)
≤ C

(
ωk
8k
−
∫
G

|JTV Pπ − 1|dHk −
∫
G

dHk

)
≤ C

(
ωk
8k

+ C0

∫
G

||TV − π||2 −Hk(G)

)
≤ C

(ωk
8k

+ C0E−Hk(G)
)

≤ C
(ωk

8k
+ C0E− V (B1/8(0)) +Hk(F )

)
≤ C(C0E + Cλ−1E) + (ωk8

−k − V (B1/8(0)))

≤ C1

λ
E + Cωk8

k(1− e−||H||∞1/8)

Hk(F ′) ≤ C1

λ
E + C||H||∞. (4.37)

The result follows from combining (4.36) and (4.37).

4.4 Allard’s decay theorem

The aim of this chapter is to prove Theorem 4.4, the idea of the proof is divided in four

steeps, making use of all the tools developed until now. Before to start with the proof of

Theorem 4.4, we will establish two useful lemmas about harmonic functions.

Lemma 4.4. Let k ∈ N \ {0}, for every ρ ∈]0,+∞[ there exists εHar,ρ > 0 such that, if

f ∈ W 1,2(Br(x)), ||∇f ||22,Br(x) ≤ rk, with Br(x) ⊆ Rk, and∣∣∣∣∫ 〈∇ϕ,∇f〉∣∣∣∣ ≤ εHar,ρr
k||∇ϕ||∞,

for all ϕ ∈ C1
c (Br(x)), then there exists u ∈ H(Br(x)) where H(Br(x)) := {u : Br(x) →

R : ∆u = 0} satisfying the following properties

1. ||∇u||22,Br(x) ≤ rk,

2. ||f − u||22,Br(x) ≤ ρr2+k.

Proof. We argue the lemma by contradiction. To this aim, suppose that there exists

ρ > 0 such that ∀ε > 0 there exist a function fε ∈ W 1,2(Br(x)), ||∇fε||22,Br(x) ≤ rk, and
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|
∫
〈∇ϕ,∇fε〉| ≤ εrk||∇ϕ||∞, ∀ϕ ∈ C1

c (Br(x)) such that there not exists u ∈ H(Br(x)),

with ||∇u||22,Br(x) ≤ rk, and ||f − u||22,Br(x) ≤ ερr2+k. Put Lϕ[ψ] :=
∫
∇ϕ · ∇ψ, whenever

ϕ, ψ ∈ W 1,2(Br(x)). Taking a sequence εj → 0, we can find a sequence of functions

fj ∈ W 1,2(Br(x)), such that

lim
j→+∞

sup
ϕ∈C1

c (Br(x)),||∇ϕ||∞≤1

|Lfj [ϕ]| = 0, (4.38)

but ∫
(u− fj)2 ≥ ρrk+2 > 0. (4.39)

Observe now that the two preceding conditions remains invariant by adding a constant cj

to fj. In particular we can assume without loss of generality that
∫
fj = 0. The Poincare’s

inequality then applies, which in turn allows us to conclude that ||fj||W 1,2(Br(x)) ≤ 2rk.

We know that W 1,2(Br(x)) is reflexive so we can extract a subsequence weakly conver-

gent to some u ∈ W 1,2(Br(x)), furthermore Rellich-Kondrakov’s theorem ensures that

this sequence is strongly convergent to the same u in L2(Br(x)). The weakly lower semi-

continuity of the Dirichlet energy guarantees that ||∇u||22 ≤ rk. Since fj ⇀
∗ u, implies∫

∇ϕ · ∇u = limj→+∞
∫
∇ϕ · ∇fj, and the right hand side of the last equation is zero by

(4.38), u satisfies
∫
∇ϕ ·∇u = 0 that is a weak formulation of the equation ∆u = 0, which

by classical elliptic regularity theory means that u is harmonic on Br(x). To finish the

proof we just have to observe that fj → u in L2(Br(x)), which is in contradiction with

(4.39).

Lemma 4.5. Let u ∈ H(Br(x0)). Then there exists a constant C = C(k) > 0 such that

sup
x∈Bρ
|u(x)− u(x0)−∇u(x0) · x| ≤ Cρ2r−

k
2
−1||∇u||2,Br , ∀ρ ≤

r

2
. (4.40)

Proof. As it is known, by standard elliptic regularity theory, an harmonic function is

an analytic function and so, in particular is a C2(Br(x)) function. Thus by a classical

Taylor’s expansion argument we immediately get

sup
x∈Bρ
|u(x)− u(x0)−∇u(x0) · x| ≤ Cρ2r−

k
2
−1||∇2u||∞,Br/2(x0), ∀ρ ≤

r

2
. (4.41)

Indeed ∇u and ∇2u are also harmonic so by the mean value property, that is a special

property satisfied only by harmonic functions we get

|∇2u(x)| =

∣∣∣∣∣ 1

|B1/2|

∫
Br/2(x0)

∇2u(x)dx

∣∣∣∣∣ ≤ Ck||∇2u||1,Br/2(x0)

Hölder

≤ C||∇2u||2,Br/2(x0).
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Taking the supremum with respect to x, in the preceding inequality we obtain

||∇2u||∞,Br/2(x0) ≤ C||∇2u||2,Br/2(x0).

Now, from a straightforward application of Caccioppoli’s inequality (see for example The-

orem 4.1 of [GM12]) easily follows (4.40).

Theorem 4.4. There exist two positive mutually independent constants η ∈]0, 1
2
[ and

εE > 0 which depends only on the dimension and on the geometry of the ambient space

Σn, such that whenever V ∈ IVk(Σ) with bounded generalized mean curvature satisfies

for a given point x0 ∈ Σ and radius r > 0, the following three assumptions

(i): ||V ||(B(x0, r)) ≤ (ωk + εE)rk,

(ii): there exists π ∈ G(n, k) such that E := E(V, x0, π, r) ≤ εE,

(iii): ||H||∞r ≤ E,

then there exists π̃ ∈ G(n, k) such that

E(V, x0, π̃, ηr) ≤
1

2
E(V, x0, π, r). (4.42)

The idea underlying the proof is to take the Lipschitz approximation f given by

Theorem 4.3 and to show that f could be approximated by an harmonic function u

applying Lemma 4.4. After taking as π̃ the tangent plane to the graph of u in u(x0) we

show that thanks to the mean value property of harmonic functions we find an upper

bound for the L2 height excess which inserted in the tilt excess inequality (4.3) gives

the desired decay estimate (4.42). We sometimes refer to Inequality (4.42) as the tilt

excess decay inequality (or estimate) to distinguish it from the tilt excess inequality (4.3).

The principal reason to be forced to use an harmonic approximation is that for harmonic

functions the mean value properties leading to (4.40) holds. This ensures the control of

the height of a function in a point by the L2 norm of the function in a neighborhood,

which is in general, not possible for an arbitrary Lipschitz function

Proof. Without loss of generality, assume r = 1, x0 = 0 and E := E(V, π, 0, 1).

Lipschitz approximation:

Assume ε0 < εL given by Theorem 4.3 for some choice of l and β, and consider the

Lipschitz approximation

f : B(0, 1/8) ∩ π → π⊥,
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and λ, again given by Theorem 4.3.

Now assume (y1, . . . , yk, z1, . . . , zn−k) an orthonormal system of coordinates in Rn such

that π = {z = 0}, and denote f = (f1, . . . , fn−k), and {e1, . . . , en−k} the canonical

orthonormal base of Rn−k (i.e. for fixed j ∈ {1, . . . , n − k}, ej = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is in the j − th place), let ϕ ∈ C1
c (B(0, 1/16) ∩ π), and consider the vector field

X(y, z) = ϕ(y)ej.

Notice that spt(X) is not compact in B(0, 1/8), by the mere definition of X. However

recall that Γ∩B(0, 1/8) ⊂ Uβr(π) (remember that we have denoted Γ := spt(||V ||)), then

assume β < 1/16, so we can multiply X ba a cut-off function in the z variables to make

it compactly supported in B(0, 1/18) without afecting its values on Γ∩B(0, 1/16). Since,

by Theorem 4.3 Θ ≡ 1 ||V ||-a.e. on Γ∩B(0, 1/8), testing the first variation formula with

the field X, we get by the estimates in Theorem 4.3 that∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)

∣∣∣∣ ≤ ∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)− δV (X)

∣∣∣∣+ |δV (X)|

=

∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)−
∫
divTxΓX

∣∣∣∣+ |δV (X)|

=

∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)−
∫

Γ

〈∇TxΓϕ, ej〉
∣∣∣∣+ |δV (X)|,

since ∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x) =

∫
Gr(f)∩Γ∩B(0,1/16)

〈∇TxGr(f)ϕ, ej〉dHk(x)

+

∫
(Gr(f)\Γ)∩B(0,1/16)

〈∇TxGr(f)ϕ, ej〉dHk(x),∫
Γ

〈∇TxΓϕ, ej〉dHk(x) =

∫
Γ∩Gr(f)∩B(0,1/16)

〈∇TxΓϕ, ej〉dHk(x)

+

∫
(Γ\Gr(f))∩B(0,1/16)

〈∇TxGr(f)ϕ, ej〉dHk(x),

and by Theorem 4.3, we know that f is Lipschitz and by definition Γ is rectifiable thus

Hk
({
x ∈ Rn : 〈∇TxGr(f)ϕ, ej〉 6= 〈∇TxΓϕ, ej〉

})
= 0,

and then∫
Gr(f)∩Γ∩B(0,1/16)

〈∇TxGr(f)ϕ, ej〉dHk(x) =

∫
Gr(f)∩Γ∩B(0,1/16)

〈∇TxΓϕ, ej〉dHk(x).
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This shows that∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)

∣∣∣∣ ≤ ∣∣∣∣∫
Gr(f)\Γ∩B(0,1/16)

〈∇TxGr(f)ϕ, ej〉dHk(x)

∣∣∣∣
+

∣∣∣∣∫
Γ\Gr(f)∩B(0,1/16)

〈∇TxΓϕ, ej〉dHk(x)

∣∣∣∣+ |δV (X)|

≤ ||∇ϕ||∞
[
Hk(Gr(f) \ Γ ∩B(0, 1/16))

+ Hk(Γ \Gr(f) ∩B(0, 1/16))
]

+

∣∣∣∣∫ 〈H,X〉d||V ||∣∣∣∣
≤ ||∇ϕ||∞

(
C

λ
E + C||H||∞

)
+ ||ϕ||∞||H||∞Hk(Γ ∩B(0, 1/16))

≤ ||∇ϕ||∞
(
C

λ
E + C||H||∞

)
+ C||∇ϕ||∞||H||∞

≤ ||∇ϕ||∞
(
C

λ
E + C||H||∞

)
,

by hypothesis (iii) we have ||H||∞ ≤ E, then∣∣∣∣∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x)

∣∣∣∣ ≤ ||∇ϕ||∞CλE. (4.43)

Next, let {ξ1, . . . , ξk} be an orthonormal basis for π, and consider the first fundamental

form in TxGr(f), i.e., the n× n matrix

gij = 〈ξi +
n−k∑
l=1

∂yiflel, ξj +
n−k∑
m=1

∂yjfmem〉 := 〈vi, vj〉,

where vi := dΦy(ξi), and Φ : y 7→ (y, f(y)). Then, since ξi ⊥ ej

|gij − δij| = |〈vi, vj〉 − δij|

=

∣∣∣∣∣〈ξi, ξj〉+
∑
l

∂yifl〈el, ξj〉+
∑
m

∂yjfm〈em, ξi〉

+
∑
l

∑
m

∂yifl∂yjfm〈el, em〉 − δij

∣∣∣∣∣
=

∣∣∣∣∣δij +
∑
l

∑
m

∂yifl∂yjfm〈el, em〉 − δij

∣∣∣∣∣
≤ |Df |2.

Thus, if l < 1 then |gij−δij| ≤ C|Df |2O(l), where gij are the entries of the inverse matrix

of G := [gij], i.e., G−1 := [gij]. This in turn implies, that

|gij − δij| ≤ C|Df |2,
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provided l is less than a geometric constant ensuring that O(l) < 1 holds. Now let us

calculate the projection PTxGr(f) : Rn → TxGr(f),

PTxGr(f)(w) =
∑
i,j

〈w, vi〉gij(y)vj,

since

〈ej, vl〉 = 〈ej, ξl +
n−k∑
m=1

∂ylfmem〉

= 〈ej, ξl〉+
n−k∑
m=1

∂ylfm〈ej, em〉

= ∂ylfj,

and

〈∇ϕ, vm〉 = 〈∇ϕ, ξm +
n−k∑
l=1

∂ymflel〉

= 〈∇ϕ, ξm〉+
n−k∑
l=1

〈∂ymflel,∇ϕ〉

= ∂ymϕ.

Therefore, if we fix the point x = (w, f(w))

〈PTxGr(f)(∇ϕ(w)), ej〉 = 〈
∑
l,i

〈∇ϕ(w)〉gli(w)vl, ej〉

=
∑
i,j

〈∇ϕ(w), vl〉gij(w)〈vl, ej〉

=
∑
l,i

∂yifj(w)gij(w)∂ylϕ(w)

=
∑
l

∑
i

∂yifj(w)gij(w)∂ylϕ(w)

=
∑
l

∂ylfj(w)∂ylϕ(w) +O(|Df |3(w)|∇ϕ(w)|). (4.44)

Now applying the Area Formula we have∫
Gr(f)

〈∇TxGr(f)ϕ, ej〉dHk(x) =

∫
B(0,1/16)∩π

〈PTxGr(f)ϕ(w), ej〉Jf(w)dw.

Setting ∇ϕ = (∂yiϕ, . . . , ∂ykϕ), we have by (4.44)∫
B(0,1/16)∩π

〈PTxGr(f)ϕ(w), ej〉Jf(w)dw ≤
∫
B(0,1/16)∩π

〈∇ϕ(w),∇f(w)〉Jf(w)dw+

+ C

∫
B(0,1/16)∩π

|Df |3|∇ϕ(w)|Jf(w)dw. (4.45)
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On the other hand, by a simple Taylor expansion we get

|Jf(w)− 1| ≤ C|Df |2, (4.46)

then combining (4.43), (4.45) and (4.46), and notice that spt(ϕ) ⊂ B(0, 1/16) ∩ π∣∣∣∣∫
B(0,1/16)∩π

〈∇ϕ(w),∇fj(w)〉dw
∣∣∣∣ ≤ C

λ
E||∇ϕ||∞ + C||∇ϕ||∞

∫
B(0,1/16)∩π

|Df |2. (4.47)

On the other hand, notice

||π − TxΓ||2 ≥ |Pπ(ej)− PTxΓ(ej)|2

≥ |PTxΓ(ej)|2

=

∣∣∣∣∣∑
l,m

∂ylfj(w)glm(w)vm(w)

∣∣∣∣∣
2

≥
∑
l

|∂ylfj(w)ej|2 − 2
∑
l

|Df(w)||gll − 1|2 − 2
∑
l 6=m

|Df(w)|
(
glm(w)

)2

≥ |∇fj(w)|2 − C|Df(w)|3.

Summing over j and using the fact that Lip(f) < l, we conclude

||π − TxΓ||2 ≥ |Df(w)|2 − Cl|Df(w)|2 = (1− Cl) |Df(w)|2.

Then if l is less than a geometric constant, i.e., l ≤ 1
2C

we have

2||π − TxΓ||2 ≥ |Df |2.

Inserting this in (4.47) we have∣∣∣∣∫
B(0,1/16)∩π

〈∇ϕ(w),∇fj(w)〉dw
∣∣∣∣ ≤ C

λ
E||∇ϕ||∞ + 2C||∇ϕ||∞

∫
G

||π − TxΓ||2d||V ||(x)

≤ C

λ
E||∇ϕ||∞.

Finally, since l has been chosen smaller than a geometric constant, by Theorem 4.3 λ =

λ(l) (i.e. λ depends only on l), then∣∣∣∣∫
B(0,1/16)∩π

〈∇ϕ(w),∇fj(w)〉dw
∣∣∣∣ ≤ CE||∇ϕ||∞ ∀ϕ ∈ C1

c (B(0, 1/16) ∩ π). (4.48)

Moreover ∫
B(0,1/16)∩π

|∇fj(y)|dy ≤ Cl2

λ
E +

∫
π(G)

|∇fj(y)|2dy ≤ CE.
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Harmonic Approximation:

Let ϑ (to be specified soon) and consider εHar,ρ given by Lemma 4.4. Choosing ϑ = ρ,

define

f j := coE
−1/2fj,

where c0 has been chosen so that
∫
B(0,1/16)∩π |f j|

2 ≤ 1. Then∣∣∣∣∫
B(0,1/16)∩π

〈∇ϕ(y),∇, f j(y)〉dy
∣∣∣∣ =

∣∣∣∣∫
B(0,1/16)∩π

〈∇ϕ(y), c0E
−1/2∇fj(y)〉dy

∣∣∣∣
=

∣∣∣∣∫
B(0,1/16)∩π

c0E
−1/2〈∇ϕ(y),∇fj(y)〉dy

∣∣∣∣
≤ c0E

−1/2(CE||∇ϕ||∞)

≤ CE||∇ϕ||∞.

Assuming ε0 ≤ (εHarm,ρ/C)2, we can apply the Lemma 4.4, to conclude the existence of

an harmonic function

uj : B(0, 1/16) ∩ π → R,

with
∫
|∇uj|2 ≤ 1 and ∫

B(0,1/16)∩π
(f j − uj)2 ≤ ϑ.

Setting

uj :=
1

c0

E−1/2uj,

we have ∫
B(0,1/16)∩π

(fj − uj)2 ≤ CϑE. (4.49)

Notice, in particular, that if we define u := (u1, . . . , un−k), we have

||Du||2L2(B(0,1/16)∩π)) ≤ CE. (4.50)

Height excess estimates:

Denote by

L : B(0, 1/16) ∩ π → π⊥

y 7→ L(y) =
∑
j

〈∇uj(0), y〉ej,

by x0 = u(0), and by π̄, the plane

π̄ := {(y, L(y)) : y ∈ B(0, 1/16) ∩ π}.
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We are interested in estimating

1

ηk+2

∫
B(x0,4η)

dist(x− x0, π)2d||V ||(x),

for η ∈]0, 1/2[.

We start by observing, that by the mean value property for harmonic functions

dist(x− x0, π) = |u(0)|

≤ C||u||L1

≤ C||u||L2

≤ C||u− f ||L2 + C||u||L2

≤ Cϑ1/2E1/2 + Cβ,

where in the last inequality we use the fact that by Theorem 4.3 ||f ||∞ < β, on the other

hand

||P⊥π − P⊥π || ≤ C
∑
j

|∇uj(0)|

B.3

≤ ||∇u||L1

Hölder

≤ C||∇u||L2

(4.50)

≤ Cϑ1/2E1/2

≤ Cϑ1/2E1/2 + Cβ.

Since

||P⊥π − P⊥π || ≥ |P⊥π (x− x0)− P⊥π (x− x0)| ≥ |P⊥π (x− x0)| − |P⊥π (x− x0)|,

then, for x ∈ Γ ∩B(0, 1/16), we have

dist(x− x0, π) = |P⊥π (x− x0)|

≤ Cϑ1/2E1/2 + Cβ + |P⊥π (x− x0)|

≤ Cϑ1/2E1/2 + Cβ.

Then, we conclude∫
B(x0,4η)\Gr(f)

dist(x− x0, π̄)2d||V ||(x) =

∫
(Γ\Gr(f))∩B(x0,4η)

dist(x− x0, π̄)2dHk(x)

≤ C(ϑ1/2E1/2 + β)2E. (4.51)
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Finally, observe, that, if x = (y, f(y)) ∈ Gr(f), then

dist(x− x0, π̄) ≤ |f(y)− u(0)− L(y)|.

Recalling that L(y) = 〈Du(0), y〉, from Lemma 4.5 we have

sup
y∈B(x0,4η)∩π

|u(y)− u(0)− L(y)|2 ≤ Cη4||Du||2L2(B(x0,4η)) ≤ Cη4E.

Summarizing: ∫
Gr(f)∩B(x0,4η)

dist(x− x0, π)2d||V ||(x) ≤ CϑE + Cηk+4E. (4.52)

Then to conclude

1

ηk+2

∫
B(x0,4η)

dist(x− x0, π)2d||V ||(x) =
1

ηk+2

(∫
B(x0,4η)\Gr(f)

dist(x− x0, π)2d||V ||(x)

+

∫
B(x0,4η)∩Gr(f)

dist(x− x0, π)2d||V ||(x)

)
≤ 1

ηk+2

(
C(ϑ1/2E1/2)2E + CϑE + ηk+4E

)
≤ 1

ηk+2

(
CϑE2 + 2Cϑ1/2E1/2β + Cβ2E + CϑE + Cηk+4E

)
≤ 1

ηk+2

(
CϑE + Cβ2E + ηk+4E + 2Cϑ1/2E1/2β

)
≤ Cϑ

ηk+2
E +

Cβ2

ηk+2
E + Cη2E.

Then

1

ηk+2

∫
B(x0,4η)

dist(x− x0, π)2d||V ||(x) ≤ Cϑ

ηk+2
E +

Cβ2

ηk+2
E + Cη2E. (4.53)

Tilt decay inequality:

c Now, impose that ϑ and β satisfies

Cϑ1/2 ≤ η

2
and Cβ ≤ η

2
. (4.54)

Then B(0, η) ⊂ B(x0, 2η), so

1

ηk

∫
B(0,η)

||π̄ − TxΓ||2d||V ||(x) ≤ 2k
1

(2η)k

∫
B(x0,2η)

||π̄ − TxΓ||2d||V ||(x),

therefore

E(V, π̄, 0, η) ≤ 2kE(V, π̄, x0, 2η).
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Applying Theorem 4.2

2kE(V, π̄, x0, 2η) ≤ C

ηk+2

∫
B(x0,4η)

dist(x−x0, π̄)2d||V ||(x)+
C

ηηk−2

∫
B(x0,4η)

|H|2dV, (4.55)

then applying previous bound on first term, and the fact that ||H||∞ ≤ E, we have

E(V, π̄, 0, η) ≤ Cϑ

ηk+2
E +

Cβ2

ηk+2
E + Cη2E + η2E2. (4.56)

Finally, notice that C never depends on η, β, ϑ or ε0, then we can choose

Cη2 =
1

8
,

and, β, and ϑ, such that
Cϑ

ηk+2
≤ 1

8
, and

Cβ2

ηk+2
≤ 1

8
,

which are compatibles with (4.54), then, replacing in (4.56) we have

E(V, π̄, 0, η) ≤ 1

8
E +

1

8
E +

1

8
E +

1

8
E =

1

2
E.

4.5 Allards interior regularity theorem

In this section we finally prove Theorem 4.1, using all the tools developed until here. The

proof is divided into four steps, first we apply Theorem 4.4 to conclude a power law decay

for the excess due to the very nature of this, then we show that we can include spt||V ||

into the graph of a Lipschitz function f , and prove the ”absence of holes”. Finally we

prove a Morrey’s type estimate for the derivative of the Lipschitz function f , which by

classical arguments implies that f is actually a C1,α function.

Proof of Allard’s ε-regularity theorem 4.1. Without loss of generality we can assume x0 =

0 and r = 1.

Power-law decay of the excess: Let εE > 0 be as in Theorem 4.4 and choose ε so

small that Lemma 4.3 can be applied with δ = εE, thus

||V ||(B(x, r)) ≤ (ωk + ε0)rk, ∀r < 1

2
, ∀x ∈ Γ ∩B(0, 1/4).

Fix x ∈ Γ ∩B(0, 1/4), and define

F (r) := E(r) +
4

ηk
||H||∞r := min

τ
E(V, τ, x, r) +

4

ηk
||H||∞r.
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If F (r) ≤ ε0, then either

||H||∞r ≤ E(r) or E(r) ≤ ||H||∞r.

If ||H||∞ ≤ E(r), by Theorem 4.4, for 0 < η < 1/2

F (ηr) = min
τ
E(V, τ, x, ηr) +

4

ηk
||H||∞(ηr)

≤ 1

2
E(V, τ, x, r) +

4

ηk
(ηr)

≤ 1

2
E(r) +

4

ηk
||H||∞

r

2

=
1

2
F (r),

and, if E(r) ≤ ||H||∞r, again by Theorem 4.4

F (ηr) = E(ηr) +
4

ηk
||H||∞(ηr)

≤ 1

2
E(r) +

4

ηk
||H||∞(ηr)

≤ 1

2
||H||∞r +

4

ηk
||H||∞r

=
4

η
||H||∞r

(
1

2

ηk

4
+ η

)
≤ 4

ηk
||H||∞r

(
1

4
+ η

)
≤ 3

4

(
4

ηk
||H||∞r

)
=

3

4
F (r).

Thus, we can conclude that, if F (r) < εE, then F (ηr) ≤ 3
4
F (r). In particular F (ηr) < εE,

for 0 < η < 1/2, and we can iterate again with ηr in place of r.

Notice that

F (
1

2
) ≤ 1

2k
E(V, π, 0, 1) +

1

2

4

η
||H||∞ ≤

(
1

2
+

1

2

4

ηk

)
ε.

Thus, if ε > 0 is sufficiently small, we can start from r = 1/2, and iterate the argument

to infer

F

(
ηn

1

2

)
≤ C

(
3

4

)n
ε ∀n ∈ N.
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Then, given any r < 1/2, let n = blogη(2r)c, we conclude

E(r) ≤ 1

ηk
E

(
ηn

1

2

)
≤ 1

ηn
F

(
ηn

1

2

)
≤ C

(
3

4

)blogη 2rc−1

ε

E(r) ≤ C2αε, (4.57)

where C and α > 0 depends only of the dimension of the varifold and the ambient

Euclidian space.

Inclusion in a Lipschitz graph:

Fix x ∈ B(0, 1/4). Set π0 = π, and for n ≥ 1 let πn be a plane such that

E(V, πn, x,
1

2n
) = min

τ
E(V, τ, x,

1

2n
) = E(

1

2n
).

Recalling that by Theorem (3.24)

||V ||(B(x, r)) ≥ ωke
−||H||∞rrk ≥ C−1rk, for any r < 1− |x|,

then by (4.57) we have

||πn − πn+1|| ≤
1

||V ||(B(x, r))

∫
B(x, 1

2n+1 )

(||πn − TyΓ||+ πn+1 − TyΓ||)d||V ||(y)

≤ C

rk

(∫
B(x, 1

2n+1 )

||πn − TyΓ||d||V ||(y)

)
+
C

rk
(||πn+1 − TyΓ||d||V ||(y))

≤ C

(
E(V πn, x,

1

2n+1
)1/2 + E(V πn+1, x,

1

2n+1
)1/2

)
≤ C

((
1

2n

)2α

ε1/2 +

(
1

2n+1

)2α

ε1/2

)

||πn − πn+1|| ≤ C

(
1

2n

)2α

ε1/2. (4.58)

Now, summing over n from 0 to j − 1

||πj − π|| = ‖
j−1∑
n=0

πn − πn+1|

≤
j−1∑
n+0

||πn − πn+1||

≤
j−1∑
n=0

C

(
1

4α

)n
ε1/2

||πj − π|| ≤ Cε1/2,
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where C is a dimensional constant.

Thus

E(V, x, π, r) ≤ Cε ∀x ∈ Γ ∩B(0, 1/4), and r <
1

2
.

Next, fix a constant l ≤ 1/2 and let λ(l) and εL(λ) the corresponding constants given

by Theorem 4.3, and assume ε < εL and also small that the set G of the same Theorem

contains in Γ ∩B(0, 1/4). We then conclude that there exists a Lipschitz function

f : B(0, 1/4) ∩ π → π⊥,

such that Γ ∩B(0, 1/4) ⊂ Gr(f) and Lip(f) ≤ l.

Absence of ”holes”:

Let Bk(0, 1) the k-ball, x ∈ ∂Bk(0, 1) and let

Lk(Bk(0, 1) \Bk(x, 1)) = 2ϑ.

Assume that B(0, 1/16)∩ π 6⊂ D = Pπ(Γ∩B(0, 1/4)) (D as defined in Theorem 4.3), and

let w ∈ (B(0, 1/16) ∩ π). Define

r := inf
z∈D
|w − z|.

It is clear that r < 1/16, because 0 ∈ Γ, therefore any infimizing sequence {zn}n∈N must

be contained in B(0, 1/8) ∩ π. Then modulo a subsequence, we can suppose

zn → z ∈ B(0, 1/8) ∩ π,

and recalling that 0 ∈ Γ we conclude ||f ||∞ ≤ l.

If l is sufficiently small we conclude that xn = (zn, f(zn)) ∈ B(0, 3/16) and thus xn con-

verges to x = (z, f(z)) ∈ B(0, 3/16), where z ∈ B(0, 1/8) ∩ π.

Observe that Γ ∩ B(x, r) ⊂ Gr(f) because r, 1/16. In particular, considering that

Bk(w, r) ∩D = ∅, using the area formula we can estimate

||V ||(B(x, r)) = Hk(B(x, r) ∩ Γ)

=

∫
Bk(z,r)\Bk(w,r)

Jf(u)du

≤ (ωk − 2ϑ)(1 + Cl2)rk.

Now we choose l such that

(ωk − 2ϑ)(1 + Cl2)rk = ωk − ϑ.
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On the other hand, by Theorem 3.2 and the hypothesis, we have

||V ||(B(x, r)) ≥ ωkr
ke||H||∞r ≥ ωkr

ke−ε.

then choosing ε such that

ωk − ϑ < ωkr
ke−ε,

we reach a contradiction (in fact it is enough to have ε being smaller than k log(r)).

Morrey Estimate for Df

So far we have conclude that spt||V || coincides with the graph of a Lipschitz function on

the intersection of (B(0, 1/8) ∩ π)× π⊥ and B(0, 1/4).

Now, for every z ∈ B(0, 1/4) and every r < 1/16 let πz,r, the k-dimensional plane such

that

E(V, πz,r, (z, f(z))) = min
τ
E(V, τ, (z, f(z)), r) ≤ Cεr2α.

Recalling that E(V, π, (z, f(z)), r) ≤ Cε, we conclude

||π − πz,r|| ≤ Cε1/2.

If ε is sufficiently small, πz,r is the graph of a linear function

Tz,r : π → π⊥,

with

||Tz,r||HS ≤ 1.

Consider two linear maps T, T : π → π⊥, with ||T ||HS, ||T ||HS ≤ Cl, the k-dimensional

planes τT , τT , given by the corresponding graphs and, PT and PT the orthogonal projection

onto τT and τT respectively. Observe that, if l is smaller than a geometric constant

|PT (v)| ≤ 1

2
|v|, for any v ∈ π⊥.

Fix an orthonormal basis {e1, . . . , ek} for π, then

|T (ei)− T (ei)| = |(ei + T (ei))− (ei + T (ei))|

= |PT (ei + T (ei))− PT (ei − T (ei))|

≤ |PT (ei)− PT (ei)|+ |PT (T (ei))− PT (T (ei))|

+ |PT (T (ei)− T (ei))|,
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since T (ei)− T (ei) ∈ π⊥, then

|T (ei)− T (ei)| ≤ C||τT τT ||+
1

2
|T (ei)− T (ei)|,

so

|T (ei)− T (ei)| ≤ C||τT − τT ||.

Finally, from the previous discussion, for r < 1/16,∫
B(z,r/2)∩π

|Df(y)− Tz,r|2dy ≤
∫
B(z,r/2)∩π

|Df(y)− Tz,r|2Jf(y)dy

≤ CrkE(V, πz,r, (z, f(z)), 2r)

≤ Crk+2α.

Then, using the notation on C.1, we have∫
B(z,r)∩π

∣∣Df(y)− (Df)B(z,r)∩π
∣∣2 dy = min

T

∫
B(z,r)∩∩π

|Df(y)− T |2dy ≤ Crk+2α. (4.59)

Conclusion: The conclusion of this theorem is a simple application of the Campanato’s

criterion, wich can be found in [Mag12] Theorem 6.1, and Proposition 16.23 on [CDK11].

However, we give a sketch of this, as a direct consequence of our previous estimates.

In first, arguing as in the proof of (4.58), we conclude

|(Df)B(x,2−k) − (Df)B(x,2−k−1)| ≤ C
1

2kα
, ∀k > 5, and, x ∈ B(0, 1/32) ∩ π. (4.60)

Hence the sequence of continuous functions x 7→ (Df)B(x,2k) is a Cauchy sequence, with

the supremum norm, then there exists a continuous function g, such that

{(Df)B(x,2−k)}k∈N → g,

uniformly, and g = Df for all the Lebesgue points on B(x, 1/32) ∩ π. Summing (4.60)

over different scales, we have

|(Df)B(x,r) − (Df)B(x,ρ)| ≤ C(max{r, ρ})α, ∀x ∈ B(0, 1/32) ∩ π, and all r, ρ < 1

32
.

(4.61)

Observe that, if r = |x− y| and x, y ∈ B(0, 1/64)∩π , applying the triangular inequality

|(Df)x,r − (Df)x,ρ|2 ≤ Cr−k
∫
B(x,r)∩π

|Df − (Df)B(x,r)|2+

+ Cr−k
∫
B(y,r)∩π

|Df − (Df)B(y,r)|2 ≤ Cr2α.
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Combining (4.60) and (4.61) and (4.5) we conclude the existence of a dimensional

constant such that

|(Df)B(x,2−k) − (Df)B(y,2−k)| ≤ C

(
max{ 1

2k
, |x− y|}

)α
. (4.62)

Thus, fixing x and y and letting k →∞ we obtain

|g(x)− g(y)| ≤ C|x− y|α.

Finally, mollifying f with a standard kernel ϕδ to get f ∗ ϕδ. Then we have

D(f ∗ ϕδ) = g ∗ ϕδ,

and therefore ||f ∗ ϕδ||C1,α(B(0,1/64)∩π) is bounded, and independently of δ. Letting δ ↓ 0

by [CDK11] Proposition 16.23, which shows that

f ∈ C1,α(B(0, 1/64) ∩ π),

as we claimed.

87



Appendices

88



Appendix A

Grassmanian Manifold

In this section we will study the geometry of the set of all k-dimensional subspaces of

a Euclidean space. Let n, k be fixed integers, with n ≥ 0 and 0 ≤ k ≤ n; we will

denote by G(n, k) the set of all k-dimensional vector subspaces of Rn ; G(n, k) is called

the Grassmannian of k-dimensional subspaces of Rn.

Our goal is to describe a differentiable atlas for G(n, k), and the main idea is to view

the points of G(n, k) as graphs of linear maps defined on a fixed k-dimensional subspace

of Rn and taking values in another fixed (nk)-dimensional subspace of Rn , where these

two fixed subspaces are transversal. To this aim, we consider a direct sum decomposition

Rn = W0 ⊕W1 , where dim(W0) = k (and obviously dim(W1) = nk). For every linear

map T : W0 → W1 , the graph of T given by:

Gr(T ) = {v + T (v) : v ∈ W0}

is an element in G(n, k). Moreover, an element W ∈ G(n, k) is of the form Gr(T ) if and

only if it is transversal to W1 , i.e., iff it belongs to the set:

G0
W1

(n, k) = {W ∈ G(n, k) : W ∩W1 = {0}} ⊂ G(n, k).

In this situation, the linear map T is uniquely determined by W . We can therefore define

a bijection:

ϕW0,W1 : G0
W1

(n, k)→ Lin(W0,W1), (A.1)

by setting ϕW0,W1(W ) = T when W = Gr(T ).

More concretely, if π0 and π1 denote respectively the projections onto W0 and W1 in the

decomposition Rn = W0 ⊗W1 , then the linear map T = ϕW0,W1(W ) is given by:

T = (π1 |W ) ◦ (π1 |W ) .
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Observe that the condition that W be transversal to W1 is equivalent to the condition

that the restriction π0 |W be an isomorphism onto W0.

We will now show that the collection of the charts W0,W1 , when (W0,W1) run over the

set of all direct sum decomposition of Rn with dim(W0) = k, is a differentiable atlas for

G(n, k). To this aim, we need to study the transition functions between these charts. Let

us give the following definition.

Definition A.1. Given subspaces W0,W
′
0 ⊂ Rn and given a common complementary

subspace W1 ⊂ Rn of theirs, i.e., Rn = W0⊗W1 = W ′
0⊗W1, then we have an isomorphism:

η = ηW1

W0,W ′0
: W0 → W ′

0,

obtained by the restriction to W0 of the projection onto W ′
0 relative to the decomposition

Rn = W ′
0⊗W1 . We say that ηW1

W0,W ′0
is the isomorphism of W0 and W0 determined by the

common complementary subspace W1.

The inverse of ηW1

W0,W ′0
is simply ηW1

W ′0,W0
.

Let us consider charts ϕW0,W1 and ϕW0,W1 in G(n, k), with k = dim(W0) = dim(W ′
0);

observe that they have the same domain. In this case it is easy to obtain the following

formula for the transition function:

ϕW ′0,W1
◦ ϕ−1

W0,W1
= (π′1 |W0 +T ) ◦ ηW1

W ′0,W0
, (A.2)

where π′1 denotes the projection onto W1 relative to the decomposition Rn = W ′
0 ⊗W1.

Let us now consider decompositions Rn = W0⊗W ′
1 = W0⊗W1 , with dim(W0) = k, and

let us look at the transition function ϕW0,W ′1
◦ ϕ−1

W0,W1
. First, we observe that its domain

consists of those linear maps T ∈ Lin(W0,W1) such that Gr(T ) ∈ G0
W ′1

(n, k); it is easy to

see that this condition is equivalent to the invertibility of the map

Id+ (π′0 |W1) ◦ T,

where π′0 denotes the projection onto W0 relative to the decomposition Rn = W0 ⊗W ′
1

and Id is the identity map on W0 . We have the following formula for ϕW ′0,W1
◦ ϕ−1

W0,W1

ϕW ′0,W1
◦ ϕ−1

W0,W1
(T ) = ηW0

W1,W ′1
◦ T ◦ (Id+ (π′0 |W1) ◦ T )

−1
. (A.3)

We have therefore proven the following proposition.
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Proposition A.1. The set of all charts ϕW0,W1 in G(n, k), where the pair (W0,W1) run

over the set of all direct sum decompositions of Rn with dim(W0) = k, is a differentiable

atlas for G(n, k).

Proof. Since every subspace of Rn admits one complementary subspace, it follows that

the domains of the charts ϕW0,W1 cover G(n, k). The transition functions A.2 and A.3 are

differentiable maps defined in open subsets of the vector space Lin(W0,W1). The general

case of compatibility between charts ϕW0,W1 and ϕW ′0,W ′1 follows from transitivity.

Theorem A.1. The differentiable atlas in Proposition A.1 makes G(n, k) into a differ-

entiable manifold of dimension k(n− k).

Proof. If dim(W0) = k and dim(W1) = n − k, then dim(Lin(W0,W1)) = k(n − k). It

remains to prove that the topology defined by the atlas is Hausdorffand second countable.

The Hausdorff property follows from the fact that every pair of points of G(n, k) belongs to

the domain of a chart. The second countability property follows from the fact that, if we

consider the finite set of chart ϕW0,W1 , where both W0 and W1 are generated by elements

of the canonical basis of Rn, we obtain a finite differentiable atlas for G(n, k).

Finally we introduce the Grassmannian bundle of a given manifold.

Definition A.2. Let Σn a n-dimensional manifold, we define the k-Grassmannian

bundle of Σ as the topological space

Gk(Σ) =
⊔
x∈Σ

Gx(n, k),

where Gx(n, k) is the k-Grassmannian manifold of TxΣ, which is isomorphic to Rn.

Proposition A.2. Gk(Σ
n) as defined before, is a fiber bundle with fiber Gx(n, k).

Proof. Let

π : Gk(Σ)→ Σ

(x, S) 7→ x,

the canonical projection onto Σ, which is a continuous function, and since π−1(x) =

{x} ×Gx(n, k) ≈ Gx(n, k), which is a manifold.
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To prove the local trivialization, let x ∈ U an open neighbourhood in Σ, and define

ψ : U × Lin(W0,W1)→ π−1(U)

(x, T ) 7→ (x, ϕ−1
W0,W1

(T )),

where W0⊕W1 = Rn, dim(W0) = k, dim(W1) = n− k, and ϕW0,W1 is a chart of Gx(n, k).

Notice that the fact that TxΣ ≈ Rn guarantees that ϕW0,W1 is a chart of Gx(n, k) also.

Finally since Lin(W0,W1) ≈ Rk(n−k) we can define

ψ : U × Rk(n−k) → π−1(U),

as the corresponding identification. Then ψ is clearly an isomorphism.
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Appendix B

Harmonic Functions

The purpose of this appendix is to introduce the harmonic functions, and some of their

main proprieties, illustrating some aspects of the classical model problem in the theory

of elliptic regularity: the Dirichlet problem for the Laplace operator.

Definition B.1. Given a function u ∈ C2(Ω), where Ω is an open, connected and bounded

subset of Rn, we say that u is:

• harmonic, if ∆u = 0,

• subharmonic, if ∆u ≥ 0,

• superharmonic, if ∆u ≤ 0,

where

∆u(x) :=
n∑
i=1

∂2u

∂x2
i

(x),

is the Laplacian operator.

We shall be concerned with the problem of the existence of harmonic functions with

prescribed boundary value, i.e., the solution of the following Dirichlet problem:∆u = 0, in Ω

u = g, on ∂Ω

in C2(Ω) ∩ C0(Ω), for a given function g ∈ C0(∂Ω). The problem of finding a harmonic

function with prescribed boundary value g ∈ C0(∂Ω) is tied, but not equivalent, to the

following one: find a minimizer function to the functional

D(u) =
1

2

∫
Ω

||D(u)||2dx,
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on the set

A := {u ∈ C2(Ω) ∩ C0(Ω) : u = g on ∂Ω}.

The functional D is called the Dirichlet integral.

In fact, if such minimizer, call it u, exists, then the first variation of Dirichlet integral,

vanishes, i.e.
d

dt
(D(u+ tϕ)) |t=0 = 0,

for all ϕ ∈ C0
c (Ω), then by integrating by parts

0 =
d

dt
(D(u+ tϕ)) |t=0

=
1

2

d

dt

(∫
Ω

||D(u+ tϕ)||2dx
)

=
1

2

∫
Ω

d

dt
〈∇u+ t∇ϕ,∇u+ t∇ϕ〉 |t=0 dx

=

∫
Ω

〈∇u,∇ϕ〉dx

= −
∫

Ω

∆uϕdx ∀ϕ ∈ C0
c (Ω),

then ∆u = 0, i.e. minimizers of Dirichlet integral are harmonic functions.

Then we have proved that to minimize the Dirichlet integral is equivalent to find harmonic

functions with prescribed boundary value, then we can state the next principle.

Theorem B.1 (Dirichlet’s Principle). A minimizer u of the Dirichlet integral in Ω with

prescribed boundary value g always exists, it is unique and it is a harmonic function;

moreover, solves the problem ∆u = 0, in Ω

u = g, on ∂Ω.

(B.1)

Conversely, any solution of B.1 is a minimizer of the Dirichlet integral in the class of

functions with boundary value g.

But this principle is not always true, because we faces two problems, first, a minimizer

of a functional always exists?, and second, since we know that if the minimizer is a

harmonic function, is possible to assert the converse? To answer the first question, we

exhibit an example where this is not true, to answer the second question the reader can

consult [GM12] 1.2.2.
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Example B.1. Consider the area functional defined on the unit ball B(0, 1) ⊂ R2

F(u) =

∫
B(0,1)

√
1 + ||D(u)||2,

defined on

A = {u ∈ Lip(B(0, 1)) : u = 0 on ∂B(0, 1), u(0) = 1}.

As F(u) ≥ π for every u ∈ A, the sequence of functions

un(x) =

1− n||x||, for ||x|| ∈ [0, 1
n
]

0, for ||x|| ∈ [ 1
n
, 1]

shows that infAF = π. On the other hand if F(u) = π for some u ∈ A, then u is

constant, thus cannot belong to A.

Before to prove the solvability of the Dirichlet problem, we introduce some properties

of harmonic functions, the full proof of those can be found in [GM12] section 1.3.

Proposition B.1 (Weak maximum principle). If u ∈ C2(Ω) ∩ C0(Ω) is subharmonic,

then

sup
Ω
u = max

∂Ω
u;

If u is superharmonic, then

inf
Ω
u = min

∂Ω
u.

Proposition B.2 (Comparison principle). Let u, v ∈ C2(Ω) ∩ C0(Ω) be such that u is

subharmonic, v is superharmonic and u ≤ v on ∂Ω, then u ≤ v in Ω.

Corollary B.1 (Maximum estimate). Let u and v be two harmonic functions in Ω, then

sup
Ω
|u− v| ≤ max

∂Ω
|u− v|.

Corollary B.2 (Uniqueness). Two harmonic functions on Ω that agree on ∂Ω are equal.

Proposition B.3 (Mean value inequalities). Suppose that u ∈ C2(Ω) is subharmonic,

then for every ball B(x, r) $ Ω

u(x) ≤ 1

Hn−1(B(x, r))

∫
∂B(x,r)

u(y)dHn−1(y)

u(x) ≤ 1

Ln−1(B(x, r))

∫
B(x,r)

u(y)dy.

If u is superharmonic, the reverse inequalities hold; consequently for u harmonic equalities

are true.
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Corollary B.3 (Strong maximum principle). If u ∈ C2(Ω)∩C0(Ω) is subharmonic (resp.

superharmonic), then it cannot attain its maximum (resp. minimum) in Ω unless it is

constant.

Lemma B.1 (Weyl). A function u ∈ L1
loc(Ω) is harmonic if and only if∫

Ω

u∆ϕdx = 0, ∀ϕ ∈ C∞c (Ω).

Proposition B.4. Given u ∈ C0(Ω), the following facts are equivalent:

1. For every ball B(x,R) $ Ω we have

u(x) ≤ 1

Hn−1(B(x, r))

∫
∂B(x,r)

u(y)dHn−1(y);

2. for every ball B(x,R)

u(x) ≤ 1

Ln−1(B(x, r))

∫
B(x,r)

u(y)dy;

3. for every x ∈ Ω, R0 > 0, there exist R ∈]0, R0[ such that B(x,R) $ Ω and

u(x) ≤ 1

Ln−1(B(x, r))

∫
B(x,r)

u(y)dy;

4. for each h ∈ C0(Ω) harmonic in Ω′ $ Ω whit u ≤ h in ∂Ω′, we have u ≤ h in Ω′;

5. For all ϕ ∈ C∞c (Ω) and ϕ ≥ 0 ∫
Ω

u(x)∆ϕ(x)dx ≥ 0.
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Appendix C

Morrey and Campanato spaces

The aim of this appendix is to introduce the reader to certain sub-spaces of the well known

Lp-spaces with a finer structure and which describe the scaling of the Lp-norm in small

balls in terms of powers of the radii of these balls.

Before to begin let us introduce some notation, based on the definition of Lp-spaces and

their norms.

Definition C.1. Let Ω ⊂ Rn be an bounded, open set, p ∈ [1,∞[ and λ ≥ 0.

1. We denote by Lp,λ(Ω,Rm) the Morrey space of all functions f ∈ Lp(Ω,Rm) such

that

||f ||p
Lp,λ

:= sup
x0∈Ω,0<ρ<diam(Ω)

1

ρλ

∫
B(x0)∩Ω

|f |pdx,

is finite.

2. We denote by Lp,λ(Ω,Rm) the Campanato space of all functions f ∈ Lp(Ω,Rm)

such that

[f ]Lp,λ(Ω,Rm) := sup
x0∈Ω,0<ρ<diam(Ω)

1

ρλ

∫
B(x0)∩Ω

|f − (f)B(x0,ρ)∩Ω|pdx,

is finite, where

(f)B(x0,ρ)∩Ω :=
1

Ln(B(x0, ρ) ∩ Ω)

∫
B(x0,rho)∩Ω

fdx,

i.e. the average of f over B(x0, ρ) ∩ Ω.

The following remarks are direct consequences of the definitions above, and their proof

are left to the reader, or may also be found in [GM12] Chapter 5.
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Remark C.1. Endowed with the norm || · ||Lp,λ(Ω,Rm) the Morrey spaces Lp,λ(Ω,Rm) are

Banach spaces for all p ∈ [1,∞[ and λ ≥ 0.

The Campanato spaces Lp,λ(Ω,Rm) are also Banach spaces,endowed with the norm

|| · ||Lp,λ(Ω,Rm) := [·]Lp,λ(Ω,Rm) + || · ||Lp(Ω,Rm).

Remark C.2. From the definition is it clear that both conditions only depend on the

behaviour of the functions f for small radii. Therefore, it is sufficient so check that the

supremum remains bounded for all ρ < ρ0 for some fixed, positive ρ0.

Remark C.3. For the Morrey spaces we have Lp,0(Ω,Rm) = Lp(Ω,Rm) and Lp,n(Ω,Rm) =

L∞(Ω,Rm). Moreover, Lp,λ(Ω,Rm) ≈ {0} for λ > n in view of Theorem 2.2.

We further have Lp,λ(Ω,Rm) = Lp,λ(Ω,Rm) for the intermediate parameters λ ∈ [0, n[.

Remark C.4. The Campanato space L1,n(Ω,Rm) has a special role and is usually known

as the bounded mean oscillation space. It is smaller than any Lebesgue space Lp(Ω,Rm)

with p <∞ but still containing L∞(Ω,Rm) as a strict subspace.

To end this appendix we enunciate the next useful theorem which we use in crucial

way in the last part of the proof of Theorem 4.1, and whose proof can be found in [GM12]

Theorem 5.5.

Theorem C.1. Let Ω be a bounded, open set in Rn which satisfies

Ln(B(x0, ρ) ∩ Ω) ≥ Aρn, ∀x0 ∈ Ω, and ∀ρ ≤ diam(Ω)

for some A > 0. Then we have Lp,n+α(Ω,Rm) ≈ C0,α(Ω,Rm) for all α ∈]0, 1].
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Appendix D

Caccioppoli’s inequality

As we mentioned before, the Theorem 4.3, is a version of the Caccioppili’s inequality,

which enables us to give a priori estimates of the L2-norm of the derivatives of a weak

solution u, of a linear elliptic of PDE’s system, in terms of the L2-norm of u.

We start our discussion with the simpler case, the harmonic case.

Theorem D.1 (Caccioppoli’s inequality for harmonic functions). Let u ∈ W 1,2(Ω) be a

weak solution of ∆u = 0, that is∫
Ω

DαuDαϕdx = 0, ∀ϕW 1,2
0 (Ω). (D.1)

Then for each x0 ∈ Ω, 0 < ρ < R ≤ dist(x0, ∂Ω) we have∫
B(x0,ρ)

|Du|2dx ≤ c

(R− ρ)2

∫
B(x0,R)\B(x0,ρ)

|u− λ|2dx, ∀λ ∈ R

for some universal constant c.

Proof. Define a cut-off function η ∈ C∞c (Ω) such that

• 0 ≤ η ≤ 1;

• η ≡ 1 on B(x0, ρ) and η ≡ 0 on B(x0, R) \B(x0, ρ);

• |Dη| ≤ 2
R−ρ .

Choosing as test function ϕ := (u− λ)η2 we get∫
Ω

DαuDαϕdx =

∫
Ω

DαuDα

(
(u− λ)η2

)
dx

=

∫
Ω

Dαu
(
η2Dαu+ 2ηuDαη − 2ηλDαη

)
dx

=

∫
Ω

|Du|2η2 +

∫
Ω

2ηDαu (u− λ)Dαηdx,
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then, replacing in in D.1∫
Ω

|Du|2η2 +

∫
Ω

2ηDαu (u− λ)Dαηdx = 0,

therefore ∫
B(x0,R)

|Du|2|η|2 ≤
∫
B(x0,R)

(|η||Du|) (2|u− λ||Dη|) dx.

Now applying the Holder inequality, we have∫
B(x0,R)

|Du|2|η|2 ≤
(∫

B(x0,R)

|η|2|Du|2dx
)1/2(

4

∫
B(x0,R)

|u− λ|2|Dη|2dx
)1/2

.

Now dividing by (∫
B(x0,R)

|η|2|Du|2dx
)1/2

,

and squaring in both sides, we obtain∫
B(x0,R)

|Du|2|η|2 ≤ 4

∫
B(x0,R)

|u− λ|2|Dη|2dx,

or equivalently∫
B(x0,R)

|Du|2|η|2 ≤ 4

(∫
B(x0,R)

|u− λ|2|Dη|2dx+

∫
B(x0,R)\B(x0,ρ)

|u− λ|2|Dη|2dx
)
,

finally taking account the properties of η, we have that∫
B(x0,ρ)

|Du|2dx ≤
∫
B(x0,R)

|Du|2|η|2dx,∫
B(x0,R)

|u− λ|2|Dη|dx = 0,∫
B(x0,R)\B(x0,ρ)

|u− λ|2|Dη|2dx ≤ 4

(R− ρ)2

∫
B(x0,R)\B(x0,ρ)

|u− λ|2.

Then ∫
B(x0,ρ)

|Du|2dx ≤ c

(R− ρ)2

∫
B(x0,R)\B(x0,ρ)

|u− λ|2dx, ∀λ ∈ R.

The following result is the general case of the Caccioppoli’s inequality for elliptic

system of PDE’s

Theorem D.2 (Caccioppoli’s inequality for elliptic systems). Let u ∈ W 1,2(Ω,Rm) be a

weak solution of

−Dα(Aαβij Dβu
j) = fi −DαF

α
i ,

with fi, F
α
i ∈ L2(Ω) and assume one of the following conditions holds:
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1. Aαβij ∈ L∞(Ω) and there exists λ ≥ 0 such that

Aαβij ξ
i
αξ

j
β ≥ λ|ξ|2, ∀ξ ∈ Rm × Rn.

This condition is known as the Legendre ellipticity condition.

2. Aαβij ≡ constant and there exists λ ≥ 0 such that

Aαβij ξαξβη
iηj ≥ λ|ξ|2|η|2, ∀ξ ∈ Rn,∀η ∈ Rm.

This condition is known as the Legendre-Hadamard condition.

3. Aαβij ∈ C0(Ω) satisfying the Legendre-Hadamard condition.

Then for any ball B(x0, R) ⊂ Ω (R ≤ R0 small enough under condition 3.) and 0 ≤ ρ ≤ R,

the following Caccioppoli’s inequality holds:∫
B(x0,ρ)

|Du|2dx ≤ c

(
1

(R− ρ)2

∫
B(x0,R)\B(x0,ρ)

|u− ξ|2dx+R2

∫
B(x0,R)

|f |2dx+

∫
B(x0,R)

|F |2dx
)
.

For all ξ ∈ Rm, where under conditions 1. or 2.

c = c(λ,Λ), Λ := sup |A|,

under condition 3., the constant c also depends on the modulus of continuity of Aαβij and

R0.

The proof of the Theorem D.2 under the assumption 1. is very similar to the case of

harmonic functions when fi = 0. In the other case we get the desired bounds applying the

Jensen inequality; under the assumptions 2. and 3. after applying the Garding’s inequality.

The details can be found in [GM12] 4.2.
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