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Abstract

Let K/Q be a number field and let Kab be the maximal abelian extension

of K. Let E/K be an elliptic curve and let ĥ : E(K̄)→ R be the canonical

height on E. In this dissertation we prove the existence of a constant C =

C(E/K) > 0 such that ĥ(P ) ≥ C for all nontorsion P ∈ E(Kab).

Keywords: Elliptic Curve, Number Field, Canonical Height, Lehmer’s Con-

jecture.

Resumo

Seja K/Q um corpo de números e Kab a extensão abeliana maximal de

K. Seja E/K uma curva eĺıtica e ĥ : E(K̄) → R a altura canônica em E.

Nesta dissertação prova-se a existência de uma constante C = C(E/K) > 0

tal que ĥ(P ) ≥ C para todos os pontos P ∈ E(Kab) que não são de torção.

Palavras-chave: Curva Eĺıtica, Corpo de Números, Altura Canônica, Con-

jectura de Lehmer.
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1 Introduction

The main objective of this text is to present an article due to Joseph

H. Silverman [Si04], where he extends the work of Baker [Ba03], proving a

lower bound for the canonical height (on elliptic curves over number fields)

restricted to nontorsion points in the maximal abelian extension. In this

section we are going to, from a pedestrian point of view, briefly discuss some

of the contents and ideas that will appear throughout this dissertation.

One of the central objects here is the canonical height on elliptic curves

(also known as the Néron-Tate height). Roughly speaking, a height is a

function which measures the arithmetic complexity of a point in a set with

an arithmetic structure. For example, in some sense the rational numbers

1

3
and

100000

300001

are very “close” to one another, however, the second is much more arithmeti-

cally complicated than the first, so a height function over Q would attain a

much higher value when computed on the second point than on the first one.

Note that in mathematics, what is known as height may change according to

the subject and there is no precise definition of what is called a height func-

tion. However, usually the guiding principles for calling something a height,

besides the arithmetic complexity measurement, are the concepts of geomet-

ric relations leading to height relations and the existence of only finitely many

points of bounded height.

Now that we have briefly introduced what a height is, to contextualize

the main problem of this text we shall briefly discuss the conjecture which

in some sense is the origin of such a problem, namely: the classical Lehmer

conjecture. It states that there exists a constant C > 0 such that the absolute
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logarithmic height h on Q̄∗ satisfies h(α) ≥ C/[Q(α) : Q] for every α ∈ Q̄∗

that is not a root of unity, i.e., roughly, it is asserting that every nonroot

of unity element of Q̄∗ has at least a certain minimal arithmetic complexity

which depends only on the degree of such an element over Q.

This problem has revealed itself to be very difficult and survived for over

80 years. It was first proposed in one of its earliest forms by Derrick H.

Lehmer in 1933 [Le33] and up to now it has still not been solved. Currently,

the best known result in the direction of this conjecture is Dobrowolski’s

estimate [Do79],

h(α) ≥ C

D

(
log logD

logD

)3

,

where D ··= [Q(α) : Q] and α runs over all the elements of Q̄∗ which are not

roots of unity.

Now getting back to our subject, as the reader may already be aware,

every elliptic curve has a group structure attached to it, and so it makes

sense to talk about the arithmetic of an elliptic curve (relative to such a

group structure). The canonical height on elliptic curves, that we have briefly

mentioned at the beginning and that we shall always denote by ĥ, is in some

sense the most outstanding height to measure such arithmetic complexity. It

is derived from the ordinary height h for elliptic curves, which for a number

field K and an elliptic curve E/K, can be computed for any P ∈ E(K̄) by

h(P ) ··=
1

2[L : Q]

∑
w∈ML

max{−[Lw : Qw]w(x(P )), 0},

where L/K is any finite extension such that P ∈ E(L), and ML as usual is the

set of normalized representatives for the places of L. With these settings,

the canonical height ĥ is then a certain limiting process of these ordinary
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heights, precisely

ĥ(P ) ··= lim
n→∞

1

n2
h([n]P ).

As was mentioned earlier, this height will be a central object in this disser-

tation. Throughout this text, whenever we require some of its properties, we

will always try to provide further references and clarifications, therefore in

this section we won’t go any further. For a much more specific description

and construction one can refer to [Si09, VIII].

Keeping the canonical height in mind, we may turn back to the Lehmer

conjecture and try to contrast our elliptic settings with the classical number

theoretical settings, and so as the reader may have already guessed, what we

define as the elliptic Lehmer conjecture is the “translation” of the classical

Lehmer conjecture to the case of elliptic curves. In summary, it asserts that

every nontorsion point in an elliptic curve has at least a certain minimal

arithmetic complexity, which depends on the curve and the degree of such a

point over the field of definition of the curve. Formally, the elliptic analogue

of the classical Lehmer conjecture states:

Conjecture 1.1. Let E/K be an elliptic curve defined over a number field

K and let ĥ be the canonical height on E. For any P ∈ E(K̄), denote by

K(P ) its minimal field of definition over K and set D(P ) ··= [K(P ) : K].

Then, there exists a constant C = C(E/K) > 0 such that

ĥ(P ) ≥ C

D(P )
for all nontorsion points P ∈ E(K̄).

(The “C = C(E/K)” is just to reflect the fact that C depends on E/K.)

Even though much progress has been made in the direction of this con-

jecture, up to now it remains unsolved. The next table provides a small list

of some of the most relevant recent improvements toward it.
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History of lower bounds for ĥ in E(K̄) \ {tors}. (D ··= [K(P ) : K])

ĥ(P ) ≥ Restriction on E Reference

C/(D10(logD)6) none Anderson-Masser [AnMa80]

C/(D( logD
log logD

)3) CM Laurent [La83]

C/(D3(logD)2) none Masser [Ma89]

C/(D2(logD)2) j(E) nonintegral Hindry-Silverman [HiSi90]

Besides the classical settings and the configuration for elliptic curves over

number fields that we just mentioned, the Lehmer conjecture can also be con-

sidered for many other subjects, for instance, abelian varieties. Indeed, we

point out that Masser [Ma84] could prove a very strong bound in the direc-

tion of the abelian varieties analogue of Lehmer’s conjecture. Furthermore,

assuming complex multiplication, David and Hindry [DaHi00] could gener-

alize the Dobrowolski-type estimate for the elliptic case (given by Laurent,

see table above) to the abelian variety case.

As the reader may have already noticed at this point, the kind of problem

presented by Lehmer’s conjecture gives rise to a very rich field of questions

and problems going much beyond just number theory. In this dissertation we

shall work solely toward the elliptic Lehmer conjecture over number fields,

and indeed we will end up proving it for points that are defined over the

maximal abelian extension. But note that in a general sense, what we are

doing here is just scratching the surface of this vast and elegant question.
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Now to contrast what we are going to handle ahead we turn back once

more to the classical Lehmer conjecture, for even though this conjecture in

the general settings remains open, a natural approach would be to consider

it with some restrictions. A very peculiar case is the one occurring when

we restrict the conjecture to the maximal abelian extension. In such a case,

Amoroso and Dvornicich [AmDv00] produced a lower bound that is even

stronger than the one proposed by the general conjecture (but which of course

is restricted only to points in the maximal abelian extension). Precisely, they

proved the existence of a constant C > 0 such that the absolute logarithmic

height h on Q̄∗ satisfies

h(α) ≥ C for all nonroot of unity α ∈ Qab∗.

With this approach to the classical Lehmer conjecture in mind, the nat-

ural question when looking back at the elliptic Lehmer conjecture would be

to ask if some better estimates could also be produced for the elliptic case

if we restrict the conjecture just to points defined over the maximal abelian

extension of our field of definition. In the last 30 years, much progress has

been made in this direction, culminating in Silverman’s article [Si04] where,

making use of Baker [Ba03], he finally was able to prove that in the elliptic

case it is also possible to bound with a constant. The following table provides

some of the history concerning the progress made in this variant of the con-

jecture, i.e., the elliptic Lehmer conjecture (over number fields) restricted to

points defined over the maximal abelian extension of the field of definition.

5



History of lower bounds for ĥ in E(Kab) \ {tors}. (D ··= [K(P ) : K])

ĥ(P ) ≥ Restriction on E Reference

C/(D2) none Silverman [Si81]

C/(D(logD)2) none Masser [Ma89]

C/(D2/3) j(E) nonintegral Hindry-Silverman [HiSi90]

C CM or j(E) nonintegral Baker [Ba03]

C none Silverman [Si04]

This last article [Si04] in the table above will be what we work on here

in this text. So, we formally state once and for all the main objective of this

dissertation:

Theorem 1.2. Let K be a number field, let E/K be an elliptic curve, and

let ĥ : E(K̄)→ R be the canonical height on E. Then there exists a constant

C = C(E/K) > 0 such that

ĥ(P ) ≥ C for all nontorsion P ∈ E(Kab).

In addition, it is relevant to point out that after establishing this result,

Silverman and Baker worked together to prove the abelian varieties analogue

of this same result, which was published in [BaSi04]. Furthermore, the same

kind of problem presented in Theorem 1.2 has also been considered for Drin-

feld modules of arbitrary rank, and indeed, this configuration of the problem

has already been solved by David and Pacheco in [DaPa08].

Now that our main problem has been introduced, we will provide a brief

sketch of the method of the proof, so the reader can be somewhat aware of

why we are building theorems in a certain way during each one of the sections

ahead.
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Sketch:

Since the case in which the elliptic curve E has complex multiplication

has already been proved by Baker [Ba03], we may assume that our curve E

does not have CM, i.e., End(E) ≡ Z. So with this additional assumption

in hand, we fix a prime p of K, which we take satisfying some very useful

properties and whose existence is guaranteed due to our section 4. Next

for a given generic nontorsion P ∈ E(Kab), we define L ··= K(P ) (i.e., the

minimal field of definition for P over K), thus we know that L/K is Galois,

and therefore the ramification index of all the primes of L lying over p is the

same. The demonstration then proceeds by splitting in two cases according

to this ramification index:

— The first one is when our prime p does not ramify in the extension

L/K. In this case we can use the results we are going to build in section 5

to prove the existence of a certain point (Φp(σ)P ) that has a lot of useful

properties. With this new point and its properties in hand, we then use our

results from section 3 to produce a lower bound for the (global) canonical

height of this point (Φp(σ)P ), and thus finally, using this last bound, we

produce a lower bound for the (global) canonical height of P .

— The second case is when our prime p does ramify in the extension L/K.

Here we can use the results we are going to build in section 6 to prove the

existence of another certain point ([p]((τ−1)2P )) that also has a lot of useful

properties. So with this new point and its properties in hand, we proceed in

a similar way as in the previous case. i.e., we use our results from section 3

to produce a lower bound for the (global) canonical height of this new point

([p]((τ − 1)2P )), and then finally, using this last bound, we produce a lower

bound for the (global) canonical height of P .
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2 Notation and Preliminaries

In this section we recall some well known results concerning algebraic

number theory and elliptic curves that will be used over and over throughout

this dissertation. This is also the section where we set notation, and indeed,

we start by doing that. We set the following notation:

K/Q a number field.

OK the ring of integers of K.

K̄ the algebraic closure of K.

Kab the maximal abelian extension of K.

Kv the completion of K with respect to a valuation v.

Kp the completion of K with respect to a valuation vp of a prime p.

E/K an elliptic curve defined over K.

ĥ : E(K̄)→ R the canonical height on E.

λ̂v : E(K̄) r {O} → R the local canonical height on E associated to a

place v of K, and normalized as described in [Si94, VI 1.1].

Note that unless otherwise specified, we shall always consider this nota-

tion as fixed. Even though, whenever we enunciate a theorem or any kind of

formal statement, we will always try to be very specific and precise, therefore

we will naturally end up rewriting some of this notation. The only exceptions

to this are the two heights above, which we will always consider as being the

ones relative to the elliptic curve we are handling without further ado (since

there is always going to be only one curve, this won’t cause any problem at

all). Also note that, although we have set all of the above notation for a fixed

number field K, whenever we are handling another number field, say F , we

will use the same notation for the objects attached to F in the very obvious

way, for instance: F̄ for the algebraic closure, OF for the ring of integers,
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and so on.

Next, for a generic number field F/Q, we denote by MF the set of absolute

values on F extending the usual absolute values on Q. And just to clarify,

by “usual absolute values on Q” we mean the | . |p’s defined by∣∣∣pna
b

∣∣∣
p
··= p−n for a, b ∈ Z satisfying p - ab,

together with the | . |∞ defined by |x|∞ ··= max{x,−x}.

For any absolute value | . |v ∈ MF , we write v( . ) ··= − log | . |v, and from

now on through this correspondence we make the standard abuse of consid-

ering MF also as the set of such functions. Note that this way the representa-

tives we are taking for the equivalence classes of valuations are normalized in

a manner slightly different from the usual, since for a finite place associated

to a prime p of F , it is standard to set the representative for the associated

equivalence class of valuations as being the function vp(x) ··= Ordp(x), and

so one has vp(F
∗) = Z. On the other hand, here we are taking the represen-

tatives defined by v(x) ··= − log |x|v, so we won’t have v(F ) = Z. The reason

for us to take the representatives normalized in this unusual way is to be in

agreement with [Si94, VI], which makes this assumption to conclude many

formulas and theorems that are of great relevance to this dissertation. (Also

note that this choice provides that on a finite extension L/K, if w ∈ ML

lies over v ∈ MK , then w(α) = v(α) for any α ∈ K, which can ease many

calculations.)

Now that we have set notation, we start to recall some basic results from

algebraic number theory that will be used frequently, and so they are restated

here for the convenience of the reader.
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The first one is the product formula [La94, V §1], which if we assume that

the set of valuations MK is normalized as above, then it may be rewritten as

the standard summation∑
v∈MK

[Kv : Qv]

[K : Q]
v(α) = 0 ∀α ∈ K∗. (2.1)

Further, for a finite extension L/K, we recall the extension formula [La94,

II §1 Corollary 1], ∑
w∈ML,w|v

[Lw : Kv] = [L : K]. (2.2)

Finally, we note that since we are assuming v ( . ) ··= − log | . |v and the

absolute values we are considering are the ones extending the usual ones from

Q, if we denote by vp the valuation associated to a prime p of K, then vp is

discrete and its smallest positive value is (log p)/e(p/K/Q), i.e.,

inf{vp(α) ; α ∈ K∗ and vp(α) > 0} =
log p

e(p, K/Q)
, (2.3)

where e(p, K/Q) denotes the ramification index of p in the extension K/Q,

or equivalently, of p over p. And just to clarify why the above statement is

true: if we set e ··= e(p, K/Q) and take any uniformizer π ∈ Kp for p, then

locally we have (p) = (π)e, thus vp(π) = vp(p)/e = (log p)/e.

Now again for the convenience of the reader, we shall also restate two key

results about the canonical height that are crucial to this work.

The first one is [Si94, VI 2.1], which asserts that for any finite extension

L/K of our field of definition K, the canonical height on E can be written

as a certain summation over the local canonical heights of the places from L.

Precisely, it states

ĥ(P ) =
∑
w∈ML

[Lw : Qw]

[L : Q]
λ̂w(P ) ∀P ∈ E(L) r {O}. (2.4)
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Next we have [Si94, VI 1.1], which provides that if E/Lw is an ellip-

tic curve defined over a field Lw that is complete with respect to a nonar-

chimedean valuation w, then for any w-integral Weierstrass equation for E

we have

λ̂w(P ) =
1

12
w(∆) +

1

2
max{w(x(P )−1), 0} ∀P ∈ E0(Lw) r {O}, (2.5)

where ∆ is the discriminant of the Weierstrass equation, and E0(Lw) is the

set of points in E(Lw) with nonsingular reduction modulo w.

This identity (2.5) will be of such major importance to this work that we

shall once and for all reformulate it into the format it will be used throughout

this dissertation. This reformulation is our first lemma, even though in some

sense it is just a corollary of (2.5).

Lemma 2.1. Let K be a number field, let E/K be an elliptic curve, let v ∈

MK be a finite place of good reduction for E and fix a minimal Weierstrass

equation for E at v, say

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let L/K be any finite extension and let w ∈ML be a place of L lying over v.

Then for all points P ∈ E(L)r {O} such that w(x(P )) < 0 or w(y(P )) < 0,

we have

λ̂w(P ) = w(x(P )/y(P )) > 0.

Proof. Since we are assuming that E has good reduction at v (therefore also

at w) and fixing a Weierstrass which is minimal, we have w(∆) = 0 and

E0(Lw) = E(Lw). Thus (2.5) gives us

λ̂w(P ) = max{1

2
w(x(P )−1), 0} ∀P ∈ E(L) r {O}.
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Furthermore, due to the integrality of the minimal Weierstrass equation,

one has

w(x) < 0 ⇐⇒ w(y) < 0,

and in this case, from a standard computation with the equation we get

w(y2) = w(x3), which implies that w(x−1) = 2w(x/y). Hence, for any point

P ∈ E(L) r {O} we have

w(x(P )) < 0 or w(y(P )) < 0 =⇒ 1

2
w(x(P )−1) = w(x(P )/y(P )) > 0.

Thus from the previous identity for λ̂w(P ), we see that if P ∈ E(L) r {O}

satisfies w(x(P )) < 0 or w(y(P )) < 0, then

λ̂w(P ) =
1

2
w(x(P )−1) = w(x(P )/y(P )) > 0.

12



3 Some Useful Lower Bounds

The main objective of this section is to build results in a way that allows us

to translate some lower bounds for a particular set of local canonical heights

of a point, into a lower bound for the (global) canonical height of this same

point. In order to do that we must first prove a key lemma. Once this lemma

is established, the theorem that is the main result of this section will follow

as a corollary.

Lemma 3.1. If E/K is an elliptic curve defined over a number field K, then

there exists a constant C0 = C0(E/K) ≥ 0 such that for any finite extension

L/K we have∑
w∈ML

[Lw : Qw]

[L : Q]
min{λ̂w(P ), 0} ≥ −C0 ∀P ∈ E(L) r {O}.

Proof. We begin by decomposing the above sum into three sums, each one

over a certain subset of ML. Namely, we split ML into the three following

sets:

M good
L the set of finite good reduction places for E.

M bad
L the set of finite bad reduction places for E.

M∞
L the set of archimedean places (infinite places).

First we handle the summation over M good
L which is the easiest of all

three, for if w ∈ M good
L , then E0(Lw) = E(Lw) and the discriminant ∆ of

any minimal Weierstrass equation for E at w satisfies w(∆) = 0, so for any

point P ∈ E(L) r {O} the formula (2.5) mentioned in the previous section

immediately gives us λ̂w(P ) ≥ 0, and thus min{λ̂w(P ), 0} = 0 for all such

places w ∈ M good
L . Therefore we have just proven a “bound” for our first

13



partial sum∑
w∈Mgood

L

[Lw : Qw]

[K : Q]
min{λ̂w(P ), 0} = 0 ∀P ∈ E(L) r {O}.

Second, we deal with the summation over M bad
L . We start by taking a

generic w ∈ M bad
L , then we consider the place v ∈ M bad

K lying below w and

proceed according to how the bad reduction of E at v behaves. If E has split

multiplicative reduction at v, then [Si09, VII 5.5] guarantees |j(E)|v > 1,

thus we know that E can be identified (over Kv) to a certain Tate curve

Eqv/Kv (|qv|v < 1, see [Si94, V 5.3(b)]). On the other hand, we may also

consider this curve Eqv as a Tate curve defined over Lw (since Kv ⊂ Lw and

w|K = v), so we can write the usual Tate parametrization for it over Lw, i.e.,

φ : L∗w/q
Z
v
∼−−→ Eqv(Lw).

This way we are able to evoke [Si94, VI 4.2.b] for Eqv/Lw, which asserts

that in this parametrization, if we choose the representatives modulo qZv for

u(P ) := φ−1(P ) to satisfy

0 ≤ w(u(P )) < w(qv),

then the local canonical height λ̂w on Eqv(Lw) is given by the explicit formula

λ̂w(P ) =


1

2
B2

(
w(u)

w(qv)

)
w(qv) if 0 < w(u) < w(qv)

1

12
w(qv) + w(1− u) if w(u) = 0

where u = u(P ) = φ−1(P ) and B2(t) is the second Bernoulli polynomial (i.e.,

t2 − t+ 1
6
) for 0 ≤ t ≤ 1 extended periodically to R/Z.

So, using the fact that B2(t) has a minimum at t = 1/2 and B2(1/2) =

−1/12, we can compute

14



λ̂w(P ) =
1

2
B2

(
w(u(P ))

w(qv)

)
w(qv) ≥ −

1

24
w(qv) =

1

24
log |qv|v

∀P ∈ Eqv(Lw) r {O}.

Therefore, as |qv|v < 1, for an appropriate constant Cv > 0 we may write

λ̂w(P ) > −Cv ∀P ∈ Eqv(Lw) r {O}.

Thus, since Eqv
∼= E (over Kv), we get

λ̂w(P ) > −Cv ∀P ∈ E(Lw) r {O},

which is a suitable enough lower bound for λ̂w that we have produced as-

suming the bad reduction of E at v is split multiplicative. (Note that this

constant Cv depends on the place v lying below w, but not on w itself, there-

fore Cv depends on K, but not on L. This is the reason why we were working

with v instead of directly with w, for otherwise our constant would end up

depending on L.)

On the other hand, if the bad reduction of E at the v lying below w is not

split multiplicative, then it must be additive or nonsplit multiplicative, and

in these cases, we may take a tower of finite extensions L′w′/K ′v′/Kv (with

Lw ⊂ L′w′) such that E has good reduction or split multiplicative reduction at

v′. So we can again use the same arguments as above (just replacing Lw/Kv

by L′w′/K ′v′) to conclude that for any w ∈ M bad
L we can produce a constant

Cv > 0 such that

λ̂w(P ) > −Cv ∀P ∈ E(L) r {O}.

This way, since the number of bad reduction places for any elliptic curve

is finite, we may set C1 as the greatest of all the constants Cv with w running
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all over M bad
L to get

λ̂w(P ) ≥ −C1 ∀w ∈M bad
L ∀P ∈ E(L) r {O}.

Hence, for any P ∈ E(L) r {O} we have

∑
w∈Mbad

L

[Lw : Qw]

[L : Q]
min{λ̂w(P ), 0}

≥
∑

w∈Mbad
L

[Lw : Qw]

[L : Q]
(−C1)

≥
∑

v∈Mbad
K

∑
w|v

[Lw : Qw]

[L : Q]
(−C1)

=
∑

v∈Mbad
K

(−C1) (from the extension formula (2.2))

= −C1(#M
bad
K ) = −C2,

and so we have proven the desired lower bound for the summation over M bad
L .

Now finally, we handle the archimedean places. For convenience, here

we work on M∞
K instead of M∞

L , and later we extend our conclusions to

M∞
L . We start by taking a generic v ∈M∞

K and fixing an isomorphism chain

E(K̄v) ∼= E(C) ∼= C/(Z + τvZ) ∼= C∗/qZv with 0 < |qv|v < e−π as in [Si94,

VI 3.4]. (To clarify a bit, this whole chain is given by the map P 7→ u(P ),

where u is the function from [Si94, I §6], i.e., it is defined by u(P ) = e2πiz

where the z = z(P ) is the one related to P by the Weierstrass ℘-function, in

other words P = (℘(z), ℘′(z)). For a precise description and construction of

this chain one can refer to [Si09, VI] and [Si94, I], in the following we shall

just briefly use it for the next formula, which makes use of it but overall

doesn’t really concern its rich construction very deeply.) With this chain of
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isomorphisms fixed, we may evoke [Si94, VI 3.4] which asserts that the local

canonical height λ̂v over E(K̄v) r {O} is given by the explicit formula

λ̂v(P ) =
1

2
B2

(
log |u|v
log |qv|v

)
log |q−1v |v−log |1−u|v−

∑
n≥1

log |(1−qnvu)(1−qnv /u)|v,

(3.1)

where u = u(P ) = e2πiz(P ) ∈ C∗/qZv , B2(t) is the second Bernoulli polynomial

for 0 ≤ t ≤ 1 extended periodically to R/Z, and we are computing | . |v on C

through the isomorphism C ∼= K̄v. Again the reader can refer to the proof

of this formula in [Si94, VI 3.4] for more precise clarifications, here we just

point out that by construction this equation is well defined, i.e., the value of

λ̂v(P ) is independent of the chosen representative for the equivalence class

of u ∈ C∗/qZv which we take during the computation of the absolute values

above, as long we use the same representative in the whole formula.

With the above explicit formula for λ̂v in mind, we define the compact

set

B ··= {α ∈ C : |qv|v ≤ |α|v ≤ |qv|−1v },

which by construction contains at least one representative for each equiva-

lence class of C∗/qZv . Thus, for any P ∈ E(K̄v), when using formula (3.1) we

can take the representative for u(P ) always inside B, and so from now on we

consider them to be always taken in this way.

One immediate consequence of this particular choice of representatives is

that since B is compact we can easily see

log |1− u(P )|v < C1,v ∀P ∈ E(K̄v),

for an appropriate constant C1,v > 0.

Next, we split the summation in formula (3.1) as∑
n≥1

log |(1− qnvu)(1− qnv /u)|v = log
∏
n≥1

|(1− qnvu)(1− qnv /u)|v
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= log |
∏
n≥1

(1− qnvu)|v + log |
∏
n≥1

(1− qnv /u)|v,

and to handle these infinite products we consider the set

Ω ··= {α ∈ C : |qv|2v < |α| < |qv|−2v },

which is an open subset of C, so we can use the standard complex analysis

result [StSh03, V 3.2] to guarantee that the products∏
n≥1

(1− qnvu) and
∏
n≥1

(1− qnv /u)

define holomorphic functions of u on Ω. Thus, the fact that B is a compact

subset of Ω implies that these products are bounded in B. In other words,

we have just proven that there is another positive constant C2,v such that∑
n≥1

log |(1− qnvu)(1− qnv /u)|v ≤ C2,v ∀u ∈ B.

Hence, since we are taking the representatives for u(P ) always inside B, we

have ∑
n≥1

log |(1− qnvu(P ))(1− qnv /u(P ))|v ≤ C2,v ∀P ∈ E(K̄v).

So, formula (3.1) gives us

λ̂v(P ) ≥ 1

2
B2

(
log |u|v
log |qv|v

)
log |q−1v |v − C1,v − C2,v ∀P ∈ E(K̄v) r {O}.

Furthermore, using the fact that the second Bernoulli polynomial t2 − t+ 1
6

has a minimum at t = 1/2 and B2(1/2) = −1/12, for an appropriate positive

constant C3,v we can see that

λ̂v(P ) ≥ − 1

24
log |q−1v |v − C1,v − C2,v ≥ −C3,v ∀P ∈ E(K̄v) r {O}.

Thus, since the number of archimedean places v ∈ MK is finite, we may

set C4 as the greatest of all the constants C3,v with v running over M∞
K to

conclude

λ̂v(P ) ≥ −C4 ∀v ∈M∞
K , ∀P ∈ E(K̄v) r {O}.
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On the other hand, we know that every w ∈M∞
L lies over a v ∈M∞

K and

for such pair we have L̄w = K̄v, so we can compute λ̂w on E(L) using the

height λ̂v and the inclusion E(L) ⊂ E(K̄v). Therefore, from the above lower

bound we get

λ̂w(P ) ≥ −C4 ∀w ∈M∞
L , ∀P ∈ E(L) r {O}.

Hence, making use of the extension formula (2.2) for L/Q, one can conclude∑
w∈M∞

L

[Lw : Qw]

[L : Q]
min{λ̂w(P ), 0} ≥

∑
w∈M∞

L

[Lw : Qw]

[L : Q]
(−C4) = −C4.

And this accomplishes the result for the summation over the archimedean

places.

In summary, we have constructed lower bounds for the summations over

each one of the three subsets of ML that we mentioned at the beginning. So,

adding up these three summations and taking C0 ··= C2 + C4 gives us∑
w∈ML

[Lw : Qw]

[L : Q]
min{λ̂w(P ), 0} ≥ −(0+C2 +C4) = −C0 ∀P ∈ E(L)r{O},

which concludes the proof since all the constants here were constructed de-

pending only on K and E, but never on P or L.

Remark: During the above demonstration, we were not very careful

about keeping track of the constants we were building, so we have only proved

the existence of a constant C0 > 0 for which the result holds even though we

don’t really know how this constant looks like. It is interesting to note that

a more precise approach could be taken to the above constructions. Indeed,

using the explicit formulas for the local canonical heights, it is possible to

give an estimate for the constant C0 in terms of the j-invariant and minimal
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discriminant DE/K of E/K. Roughly, we can prove the existence of an

absolute constant C ′0 > 0 such that we can take our C0 = C0(E/K) in the

above lemma as

C0 ··= C ′0 max{1, h(j), logNK/QDE/K}.

For further computations of the explicit constants associated to the local

canonical heights one can refer to [Si90].

Now that we have proven the above key lemma, we can produce our

first theorem, which translates certain lower bounds for some local canonical

heights of a point into a lower bound for the (global) canonical height of this

same point. In the later sections, we will show that for any nontorsion point

P ∈ E(Kab), we can produce another point related to the first one, whose

local canonical heights are bounded in the manner required by this theorem.

Actually, this fact will play a major role during the proof of our main result

in the last section.

Theorem 3.2. Let E/K be an elliptic curve defined over a number field

K, let p be a degree 1 unramified prime of K (over Q) and denote by p its

residual characteristic. Let L/K be a finite extension and assume there is a

nontrivial point Q ∈ E(L) such that

λ̂P(Q) ≥ log p for all primes P of L lying over p.

Then, this point satisfies

ĥ(Q) ≥ log p

[K : Q]
− C0,

where C0 = C0(E/K) is the constant from the previous lemma.

Proof. The idea here is to use the decomposition (2.4) of the canonical height

into a summation over the local heights. As usual, we denote by vp the
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valuation on K associated to p, and then we first compute a lower bound

for the contribution related to the valuations w ∈ ML lying over vp to the

summation (2.4). We proceed as follows,

∑
w∈ML,w|vp

[Lw : Qw]

[L : Q]
λ̂w(Q) =

=
∑

w∈ML,w|vp

[Lw : Kvp ]

[L : K][K : Q]
λ̂w(Q) (since p is unramif. of deg. 1, so Kvp = Qvp = Qw)

=
1

[K : Q]

∑
P|p

[LP : Kp]

[L : K]
λ̂P(Q) (here we translated into prime ideal notation)

≥ 1

[K : Q]

∑
P|p

[LP : Kp]

[L : K]
log p (since we are assuming λ̂P(Q) ≥ log p ∀P|p)

=
log p

[K : Q]
. (due to the extension formula (2.2))

Now that we have established this lower bound, we use it together with

(2.4) to compute
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ĥ(Q) =
∑
w∈ML

[Lw : Qw]

[L : Q]
λ̂w(P ) (this is (2.4))

≥ log p

[K : Q]
+

∑
w∈ML,w-vp

[Lw : Qw]

[L : Q]
λ̂w(Q) (from the above lower bound)

≥ log p

[K : Q]
+

∑
w∈ML,w-vp

[Lw : Qw]

[L : Q]
min{λ̂w(Q), 0}

≥ log p

[K : Q]
+
∑
w∈ML

[Lw : Qw]

[L : Q]
min{λ̂w(Q), 0}

≥ log p

[K : Q]
− C0. (due to the previous lemma)

22



4 Torsion in Abelian Extensions

In this small section we will use a deep result due to Serre to guarantee

that the `-torsion in E(Kab) is trivial except for a finite number of primes

` ∈ Z. This will be required during the proof of our main theorem to ensure

the existence of a certain prime that has some useful properties.

Theorem 4.1. Let K be a number field and let E/K be an elliptic curve

without complex multiplication (i.e., End(E) ∼= Z). Then there is a finite set

of primes S ⊂ Z such that

E(Kab)[`] = {O} for all primes ` /∈ S.

Proof. Recall that for any given integer m ≥ 2, Gal(K̄/K) acts naturally on

E[m] (since if [m]P = O, then [m](P σ) = ([m]P )σ = O), therefore we have

the natural representation

ρm : Gal(K̄/K)→ Aut(E[m]) ∼= GL2

(
Z
mZ

)
,

where the above isomorphism takes place because of the well known state-

ment [Si09, III 6.4] which asserts that Char(K) = 0 implies

E[m] ∼=
Z
mZ
× Z
mZ

. (4.1)

With this brief review in mind, we evoke the outstanding result due to

Serre [Se72] that guarantees the above representation is surjective for all but

finitely many primes, i.e., there exists a finite set of primes S ⊂ Z such that

for all ` /∈ S the Galois representation

ρ` : Gal(K̄/K)→ Aut(E[`]) ∼= GL2(F`) (4.2)

is surjective. This way, for any fixed ` /∈ S and any given T ∈ E(Kab)[`] r

{O}, we can use the isomorphism (4.1) to consider T also as an element of
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F2
` , and since the group GL2(F`) acts transitively on the nonzero vectors of

F2
` , from the surjectivity of (4.2) we see that the Galois orbit of T is the

whole F2
` r {(0, 0)} (i.e., the whole E[`]) r {O}). Meanwhile, we know that

all Galois conjugates of T are also defined over Kab, and so we may conclude

E[`] ⊂ E(Kab). Furthermore, since any σ ∈ Gal(K̄/K) when restricted to

Kab can be seen as an element of Gal(Kab/K) (for Kab/K is Galois), the fact

that E[`] ⊂ E(Kab) implies that our representation (4.2) can be decomposed

as

Gal(K̄/K)→ Gal(Kab/K)→ Aut(E[`]) ∼= GL2(F`),

where the first arrow is the restriction to Kab (in other words, ρ` factors

through Gal(Kab/K)).

On the other hand, the surjectivity of (4.2) also implies

Im(ρ`) = Aut(E[`]) ∼= GL2(F`),

but these groups are nonabelian, and so one has a contradiction with the fact

that ρ` factors through the abelian group Gal(Kab/K). Thus we must have

E(Kab)[`] r {O} = ∅, which concludes our demonstration.

Remark: This result as it is stated above will be enough for our purposes

later on, nevertheless, it is good to point out that we could strengthen it even

more, since also due to Serre (this time [Se98]), the image of Gal(K̄/K) in

Aut(T`(E)) is open, and thus has finite index. Therefore, we could proceed

with a similar argument as the above to prove that for any ` ∈ S, the `-power

torsion in E(Kab) is finite, and hence conclude that E(Kab)tors is finite under

the same hypothesis.
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5 Tools for the Unramified Case

In this section we will use some reduction techniques, and therefore we

will end up working with elliptic curves defined over finite fields. So for this

purpose, we shall briefly recall here some key facts about elliptic curves over

finite fields that will be required ahead.

Before anything else, for a generic elliptic curve E ′/Fq (the prime “ ′ ”

here is just to make a clear distinction from our fixed curve E/K), remember

we have the q-power Frobenius endomorphism

fq : E ′ → E ′, (x, y) 7→ (xq, yq),

which provides some very useful tools:

The first tool is the well known bound due to Hasse for the number of

points in E ′(Fq) (see [Si09, V 1.1]). It asserts that

|q + 1−#E ′(Fq)| ≤ 2
√
q, (5.1)

and for convenience we set aq = aq(E
′/Fq) ··= q + 1−#E ′(Fq).

The second one is [Si09, V 2.3.1], which ensures that the roots of the

polynomial X2 − aqX + q have absolute value
√
q and that this polynomial

evaluated at fq is the zero map, i.e.,

f 2
q − aqfq + q = 0 in End(E ′). (5.2)

Now with these two results on hand, we are ready to enunciate and prove

the following theorem, which provides all the machinery required to handle

the unramified case during the proof of our main theorem. It is also good to

note that this next theorem makes no assumptions about being or not in the
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unramified case, and therefore is much more general. However, it is under

the hypothesis that we are in the unramified case that it will be useful during

the proof of our main theorem, since in this case, the (c) ahead will provide

a lower bound that is exactly what we need.

Theorem 5.1. Let K/Q be a number field and let L/K be a finite Galois

extension. Let p be a prime of K, let P be a prime of L lying over p and

let σ ∈ Gal(L/K) be a Frobenius element associated to P (i.e., σ(x) ≡

xq (modP)). Let κ ··= OK/p, p ··= Char(κ) and q ··= #κ. Finally, let E/K

be an elliptic curve with good reduction at p (therefore also at P) and set

Φp(X) ··= X2 − aqX + q ∈ Z[X] (the polynomial from (5.2)).

Then, for any given P ∈ E(L) we have:

(a) Φp(σ)P is in the kernel of the reduction modulo P.

(b) If Φp(σ)P = O, then P is a torsion point.

(c) If P is a nontorsion point, then

λ̂P(Φp(σ)P ) ≥ log p

e(P, L/Q)

(where as usual e(P, L/Q) denotes the ramification index of P in the exten-

sion L/Q, i.e., the ramification index of P over p).

Proof. Through this demonstration a tilde will always denote reduction mod-

ulo P.

(a) We begin by fixing a minimal Weierstrass equation for E at p, which

since the reduction is good, also has to be minimal at P.

26



Now remember we have the natural embedding

κ =
OK
p

↪→ OL
P

that allows us to see κ as if it were a subfield of OL/P. But since E is

defined over K and our fixed Weierstrass equation was taken as minimal at

p, we know that all of its coefficients are in OK . Thus, when we reduce

this equation modulo P, all of its coefficients will lie in the image of the

above embedding, and therefore we may regard Ẽ as defined over κ, and not

merely over OL/P as we would normally expect. But as #κ = q, we have

just proven that Ẽ is defined over a field with q elements, and for such a

case we can use (5.2) to conclude that the q-power Frobenius endomorphism

fq ∈ End(Ẽ) satisfies

Φp(fq) = 0 in End(Ẽ).

On the other hand, since σ was defined as a Frobenius element for P,

when reduced modulo P, it acts over Ẽ as if it were the q-power Frobenius

endomorphism fq ∈ End(Ẽ), i.e.,

σ = fq in End(Ẽ).

So, we may use the fact that the Galois action commutes with the reduc-

tion to compute

Φ̃p(σ)P = Φp(fq)P̃ = Õ.

(b) Assume P satisfies Φp(σ)P = O and define m ··= [L : K]. Now

note that the roots of Xm − 1 have absolute value 1, and as mentioned at

the beginning of this section, the roots of Φp(X) have absolute value
√
q,

thus, as elements of Q[X] these two polynomials have no common factors,

and therefore their GCD is 1. So, since Q[X] is a Euclidean domain, we
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may use the extended euclidean algorithm to guarantee the existence of two

polynomial a(X), b(X) ∈ Q[X] such that

a(X)Φp(X) + b(X)(Xm − 1) = 1.

Further, multiplying the above equation by an appropriate constant r ∈ Z

that cancels out all the denominators of the coefficients of a(X) and b(X),

we end up with two polynomials A(X) and B(X) ∈ Z[X] such that

A(X)Φp(X) +B(X)(Xm − 1) = r.

Thus, since this above equation is taking place in Z[X], we may replace

X by σ and consider it as an identity in the group ring Z[Gal(L/K)], i.e.,

A(σ)Φp(σ) +B(σ)(σm − 1) = r in Z[Gal(L/K)].

Therefore we have

[r]P = (A(σ)Φp(σ) +B(σ)(σm − 1))P

= A(σ)(Φp(σ)P ) +B(σ)((σm − 1)P )

= O. (since we are assuming Φp(σ)P = O and m = [L : K])

Hence P is a torsion point as we wanted to prove.

(c) Assume P is a nontorsion point, denote by wP the valuation on L

associated to P, and to ease notation set Q ··= Φp(σ)P . This way, since P

is nontorsion, we can use the item (b) above to guarantee Q 6= O. On the

other hand, (a) tells us that Q is in the kernel of the reduction modulo P, so

we must have wP(y(Q)−1) > 0 (where as usual x and y are the ones relative

to a fixed minimal Weierstrass equation for E at p, which therefore is also

minimal at P). But in this case, we can apply Lemma 2.1 to conclude

λ̂P(Q) = wP(x(Q)/y(Q)) > 0,
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and furthermore, due to (2.3) we have

wP(x(Q)/y(Q)) ≥ log p

e(P, L/Q)
.

Thus, our proof is complete.
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6 Tools for the Ramified Case

In the previous section, we proved under some hypotheses that for any

point P ∈ E(L) (L/K finite and Galois), we could produce a certain key

point Φp(σ)P that have lots of useful properties. These key points will be

used to handle the unramified case during the proof of our main theorem. To

deal with the ramified case, we will need to produce other points that also

have some amazing properties similar to these key points we just mentioned,

but which are suitable for the ramified case. Roughly speaking, these new

key points will be the points [p]((τ−1)2P ) where τ is a very peculiar element

from Gal(L/K) as we shall see ahead.

Remember that for an abelian extension L/K, if we fix any prime p of

K, then all primes P of L lying over p have the same inertia group. So, in

situations like this, as usual we denote by Ip(L/K) the subgroup of Gal(L/K)

that is simultaneously the inertia group of all the primes of L lying over p.

In the following, we shall need some number theoretical results that are

mainly due to Amoroso and Dvornicich. For the sake of convenience, here we

glue all these results into a single statement (the next lemma) that is exactly

what is required ahead. Specifically, the following lemma is modeled after

[AmDv00, §2, Lemma 2].

Lemma 6.1. Let K be a number field, let p be a degree 1 unramified prime

of K (over Q) with residual characteristic p, and let L/K be a finite abelian

extension that is ramified at p. Then there exists a nontrivial element τ ∈

Ip(L/K) such that for any prime P of L lying over p we have:

(τα)p ≡ αp (mod pOLP
) ∀α ∈ OLP

,

where OLP
denotes the ring of integers of LP (i.e., the valuation ring of LP).
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Proof. We begin by fixing a prime P of L lying over p, and first we will prove

the result just for this fixed prime, i.e., we will produce a τ ∈ Ip(L/K) that

a priori has the stated property just for this fixed prime P. Later we shall

make a simple argument to guarantee that this same τ also works for all the

other primes of L lying over p.

As by hypothesis p is unramified of degree 1, the local fundamental equa-

tion gives us [Kp : Qp] = 1, therefore we must have Kp = Qp. Hence, the fact

that L/K is abelian implies that LP is an abelian extension of Qp. Thus,

by the local Kronecker-Weber theorem, there is an integer (which we take as

being minimal) m ≥ 1 such that LP ⊂ Qp(ζm), where ζm denotes a primitive

mth root of unity. Meanwhile, recall that if gcd(m,p)=1, then Qp(ζm)/Qp

is unramified (this is [Ne99, II 7.12]). So, since by our assumptions LP/Qp

is ramified, we must have p|m, and consequently, it makes sense to write

ζm/p ··= ζpm.

Now with the above discussion in mind, we take τ as being a generator

for the cyclic group Gal(Qp(ζm)/Qp(ζm/p)). This way, the minimality of m

implies that LP 6⊂ Qp(ζm/p), and thus τ restricted to LP is a nontrivial

element of Gal(LP/Qp). But since τ fixes ζm/p = ζpm, we must have

τ(ζm) = ωζm,

where ω is a certain pth root of unity. Further, for any α ∈ OLP
, due to

the inclusion OLP
⊂ OQp(ζm) = Zp[ζm], we can see that α = f(ζm) for some

polynomial f(x) ∈ Zp[x], hence

τ(α) = τ(f(ζm)) = f(τ(ζm)) = f(ωζm).
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Thus we can take the pth power to yield

(τα)p = (f(ωζm))p

≡ f((ωζm)p) (mod pZp[ζm])

= f(ζpm)

≡ (f(ζm))p (mod pZp[ζm])

= αp,

i.e., in summary we have just proven: if α ∈ OLP
, then

(τα)p − αp ∈ pZp[ζm].

But on the other hand, α ∈ OLP
⊂ LP naturally implies

(τα)p − αp ∈ LP.

So taking the intersection,

α ∈ OLP
⇒ (τα)p − αp ∈ LP ∩ pZp[ζm] = pOLP

.

In other words,

(τα)p ≡ αp (mod pOLP
) ∀α ∈ OLP

.

Next, to see that τ restricted to LP is indeed an element of I(LP/Kp) =

Ip(L/K), we again take a generic α ∈ OLP
and use what we have already

proved for τ to compute

(τ(α)− α)p ≡ τ(α)p − αp ≡ 0 (mod pOLP
),

hence

(τ(α)− α)p ∈ pOLP
⊂ POLP

,
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and thus, since POLP
is a prime ideal, we must have (τ(α) − α) ∈ POLP

,

therefore

τ(α) ≡ α (mod POLP
).

But it means τ ∈ I(LP/Kp), and so the result is proven for our fixed P.

Now in order to prove that the same τ also works for any other prime P′

of L lying over p, we proceed as follows:

Since all primes of L lying over the same prime of K are Galois conjugates,

we know there is a g ∈ Gal(L/K) such that g(P) = P′. So for any α ∈ OLP′

we have g−1(α) ∈ OLP
, and then we may compute

τ(α)p = τ(g(g−1(α)))p

= g(τ(g−1(α))p) (since L/K is abelian.)

≡ g(g−1(α)p) (mod g(pOLP
))

= αp,

but g(pOLP
) = pOLP′ , therefore we have proven

τ(α)p = αp (mod pOLP′ ) ∀α ∈ OLP′ .

Next we make use of some of the basic properties of formal groups to

compute the following inclusion that will be used later in this section.

Lemma 6.2. Let R be a ring, let F (x, y) ∈ R[[x, y]] be a formal group over

R, and let p ∈ Z be a prime. Let ι(t) ∈ R[[t]] be the inversion series for F

and let Mp(t) ∈ R[[t]] be the multiplication-by-p series for F . Then,

Mp(F (x, ι(y))) ∈ (xp − yp)R[[x, y]] + pR[[x, y]].
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Proof. Due to the standard result concerning formal groups [Si09, IV 4.4],

we know that there are two power series A(t), B(t) ∈ R[[t]] such that

A(0) = B(0) = 0 and Mp(t) = A(tp) + pB(t).

On the other hand, by the definition of ι, we have F (t, ι(t)) ≡ 0, thus

F (x, ι(y)) must be divisible by x−y (since it vanishes at x = y). Hence there

exists a G(x, y) ∈ R[[x, y]] such that

F (x, ι(y)) = (x− y)G(x, y).

Therefore,

Mp(F (x, ι(y))) = A(F (x, ι(y))p) + pB(F (x, ι(y)))

= A((x− y)pG(x, y)p) + pB(F (x, ι(y)))

∈ A((x− y)pG(x, y)p) + pR[[x, y]],

but since A(0) = 0, the constant term of A(t) must be 0, so we have

A((x− y)pG(x, y)p) + pR[[x, y]] ⊂ (x− y)pR[[x, y]] + pR[[x, y]].

Further, except for xp and yp, all the other terms of (x−y)p have coefficients

that are multiples of p, and thus they lie in pR[[x, y]]. This way we can see

(x− y)pR[[x, y]] + pR[[x, y]] ⊂ (xp − yp)R[[x, y]] + pR[[x, y]].

Finally, fitting together all these inclusions yields

Mp(F (x, ι(y))) ∈ (xp − yp)R[[x, y]] + pR[[x, y]].

Next, we note the following corollary of this lemma.
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Corollary 6.3. Let L/K be a finite Galois extension of number fields that

ramifies at a prime p of K, let E/K be an elliptic curve with good reduction

at p and let z ··= −x/y be the parameter for the formal group Ê associated

to a fixed minimal Weierstrass equation for E at p. Then, for any prime P

of L lying over p and any τ ∈ I(LP/Kp) we have:

(a) (τ − 1)P ∈ E1(LP) ∀P ∈ E(LP).

(b) z([p](τ−1)Q) ∈ (τz(Q)p−z(Q)p)OLP
+pOLP

∀Q ∈ E1(LP).

(Where as usual E1(LP) denotes the kernel of the reduction modulo POLP
,

so we have the very useful isomorphism E1(LP) ∼= Ê(POLP
). See [Si09, VII

2.2].)

Proof. (a) By definition of the inertia group, any of its elements fixes every-

thing modulo POLP
, so we have τP − P ≡ P − P ≡ O (mod POLP

), thus

τP − P lies in the kernel of the reduction.

(b) This is immediate from the isomorphism E1(LP) ∼= Ê(POLP
), which

we can apply in the previous lemma with x = τz(Q) and y = z(Q) to conclude

what we desired to prove.

Now that we have produced all the above machinery, we can finally state

and prove the central result of this section. As mentioned before, it ensures

some properties for a certain point in a similar way as Theorem 5.1 did for

the point Φp(σ)P .
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Theorem 6.4. Let K be a number field, let E/K be an elliptic curve with

good reduction at an unramified degree 1 prime p of K (over Q), and denote

by p the residual characteristic of p. For a fixed P ∈ E(Kab), let L ··= K(P )

be its minimal field of definition and assume p ramifies in L. Finally, take a

nontrivial τ ∈ Ip(L/K) such that

(τα)p ≡ αp (mod pOLP
) ∀α ∈ OLP

∀P|p,

whose existence is guaranteed by Lemma 6.1, and define

P ′ ··= [p]((τ − 1)2P ).

Then we have

(a) λ̂P(P ′) ≥ log p for all primes P of L lying over p.

(b) If P is a nontorsion point and E(Kab)[p] = {O}, then P ′ 6= O.

Proof. (a) Note that even though λ̂P is not naturally defined on O, here as

usual we evaluate it on O according to the extended definition λ̂P(O) ··=∞,

thus the desired result is trivially true if P ′ = O. Therefore, from now on we

may assume P ′ 6= O without any loss of generality.

We begin by taking a generic P of L lying over p and fixing once and for

all a minimal Weierstrass equation for E at P, say

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

As in the following we will work with the formal group of E, here we also

make the standard change of variables

z ··= −
x

y
w ··= −

1

y
,
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this way z is a parameter for the formal group and we have (z(O), w(O)) = (0, 0)

(see [Si09, IV §1]).

Keeping the above discussion in mind, we define Q ··= (τ − 1)P , so by

Corollary 6.3.a, Q is in the kernel of the reduction modulo POLP
. Thus,

since P ′ = [p](τ − 1)Q, we can use Corollary 6.3.b to obtain

z(P ′) ∈ ((τz(Q))p − z(Q)p)OLP
+ pOLP

. (6.1)

But on the other hand, we may also use the fact that Q lies in the kernel of

the reduction modulo POLP
to see

(z̃(Q), w̃(Q)) = (0̃, 0̃),

hence we can conclude z(Q) ∈ OLP
. Therefore, from our choice of τ we get

τz(Q)p ≡ z(Q)p (mod pOLP
). Thus τz(Q)p − z(Q)p ∈ pOLP

, and then (6.1)

z(P ′) ∈ pOLP
. (6.2)

Meanwhile, one can write P ′ = (τ − 1)([p]Q), so Corollary 6.3.a also

guarantees P ′ is in the kernel of the reduction modulo POLP
. Thus for P ′

as well we have

(z̃(P ′), w̃(P ′)) = (0̃, 0̃),

hence

wP(y(P ′)−1) = wP(w(P ′)) > 0

(note here wP is the valuation on L associated to P, and so it has nothing

to do with the variable w = −1/y above).
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Therefore, we may use Lemma 2.1 to compute

λ̂P(P ′) = wP(x(P ′)/y(P ′))

= wP(z(P ′))

≥ wP(p) (from (6.2))

= − log |p|wP

= log p.

(b) Here we proceed by reductio ad absurdum. So, assume we have

P ′ = O.

We begin by setting m ··= o(τ) (the order of τ as element of Gal(L/K)),

and then we note that the resultant of the polynomials (X−1) and (
∑m−1

i=0 X i)

is m, so we know there exist two polynomials A(X), B(X) ∈ Z[X] such that

A(X)(X − 1) +B(X)
m−1∑
i=0

X i = m.

Next, multiplying both sides of this equation by p(X − 1) provides

pA(X)(X − 1)2 + pB(X)(Xm − 1) = mp(X − 1).

So, keeping in mind that m was taken as the order of τ , we evaluate this

identity at X = τ and apply it to the point P . This way we can see

[p]A(τ)(τ − 1)2P + [p]B(τ)(1− 1)P = [mp](τ − 1)P.

But, since we are under the hypothesis [p](τ − 1)2P = P ′ = O, the left side

above is clearly O, hence we have just proven

[mp](τ − 1)P = O,

and so

(τ − 1)P ∈ E(L)tors
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On the other hand, we know from Corollary 6.3.a that for any prime P

of L lying over p, (τ − 1)P is in the kernel of the reduction modulo POLP
,

therefore (due to the isomorphism E1(LP) ∼= Ê(POLP
) [Si09, VII 2.2]) we

can regard (τ − 1)P as an element of the formal group Ê(POLP
). Then we

evoke the result concerning formal groups [Si09, IV 3.2.b], which states that

any finite order element of the formal group Ê(POLP
) has an order that is

a p-power, to conclude that, since (τ − 1)P ∈ E(L)tors, there must exist a

n ∈ Z>0 such that

[pn](τ − 1)P = O.

Hence, as we are assuming E(Kab)[p] = {O}, we must have (τ − 1)P = O,

and thus

τ(P ) = P.

Therefore P ∈ Lτ (the fixed field of τ). However, as L/K is Galois and τ

is nontrivial, we know that Lτ is a proper subfield of L, and so we have a

contradiction to the fact that L was taken as the minimal field of definition

of P .

39



7 The Main Theorem

In this section we shall use the theorems previously constructed to finally

prove our main theorem.

Theorem 7.1. Let K be a number field, let E/K be an elliptic curve, and

let ĥ : E(K̄)→ R be the canonical height on E. Then there exists a constant

C = C(E/K) > 0 such that

ĥ(P ) ≥ C for all nontorsion P ∈ E(Kab).

Proof. As mentioned in the introductory section, the approach here will be

to prove this theorem just for the case when our elliptic curve does not have

complex multiplication (i.e., when End(E) = Z), since due to Baker [Ba03]

this result already is established for the CM case. Therefore, keep in mind

that throughout this whole demonstration we will be under the additional

hypothesis that End(E) = Z. (Note that Baker in [Ba03] could also prove

this theorem for the case when j(E) is nonintegral, but we won’t use this

fact here.)

The central key for our proof is a certain prime p of K, which we fix

through the course of this demonstration, and consider it to have been chosen

with the following properties:

(p.1) p is unramified of degree 1 (over Q).

(p.2) E has good reduction at p.

(p.3) p ≥ exp([K : Q](1 + C0)).

(p.4) E(Kab)[p] = {O}.

(here as usual we are denoting by p the residual characteristic of p, and

C0 = C0(E/K) is the constant from Theorem 3.2.) To clarify why we can

40



guarantee the existence of such a prime with these properties: from standard

algebraic number theory, we know that the set of unramified degree 1 primes

of K is infinite (see [Ne99, VII §13]). On the other hand, (p.2) and (p.3)

eliminate only finitely many primes, and since we are under the hypothesis

End(E) = Z, we may use Theorem 4.1 to conclude that (p.4) also excludes

only a finite number of primes. (Note that it is here where we are making use

of the assumption that E does not have complex multiplication, for otherwise

we could not evoke Theorem 4.1 to conclude this last step.)

Now with this (fixed) prime p on hand, we can begin our demonstration.

We start by taking a generic nontorsion point P ∈ E(Kab) and defining L

as its minimal field of definition (i.e., L ··= K(P )). This way, since P was

taken in E(Kab), we know that L/K is abelian, and therefore all the primes

of L lying over p have the same ramification index. Henceforth, we split our

proof according to such ramification index.

First, assume p is unramified at L/K. In this case, we know that the

Frobenius elements associated to each prime P of L lying over p are also all

the same element, which we shall denote from now on by σ. Under these

circumstances, we take the polynomial

Φp(X) ··= X2 − apX + p ∈ Z[X]

from Theorem 5.1 (here q=p because p has degree 1). So, as P is a nontorsion

point and p is an unramifed prime that does not ramify at L/K, Theorem

5.1 assures Φp(σ)P 6= O and

λ̂P(Φp(σ)P ) ≥ log p ∀ P|p.

But then, Theorem 3.2 together with our hypothesis (p.3) gives us:

ĥ(Φp(σ)P ) ≥ log p

[K : Q]
− C0 ≥ 1.
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On the other hand, we can use the fact that ĥ is a Galois invariant positive

semidefinite quadratic form (see [Si09, VIII 5.10 & 9.3]), to produce a lower

bound for ĥ(P ) in terms of ĥ(Φp(σ)P ). Precisely, we compute

ĥ(Φp(σ)P ) = ĥ(σ2P − [ap]σP + [p]P )

≤ 3(ĥ(σ2P ) + ĥ([ap]σP ) + ĥ([p]P ))

= 3(ĥ(P ) + a2pĥ(P ) + p2ĥ(P ))

≤ 3(1 + 4p+ p2)ĥ(P ). (since |ap| ≤ 2
√
p)

Therefore

ĥ(P ) ≥ ĥ(Φp(σ)P )

3(1 + 4p+ p2)
≥ 1

3(1 + 4p+ p2)
,

and as the primes p and p were taken depending only on E and K, this is

the desired lower bound for the case when L/K is unramified at p.

Now let us suppose L/K ramifies at p (remember L ··= K(P ) where P

is a given generic nontorsion point of E(Kab)). In this case, we can take

τ ∈ Ip(L/K) according to Lemma 6.1 and use Theorem 6.4.a to guarantee

that the point P ′ ··= [p]((τ − 1)2P ) satisfies

λ̂P(P ′) ≥ log p ∀ P|p.

Further, due to our hypothesis (p.4), we may use Theorem 6.4.b to conclude

P ′ 6= O. So, from Theorem 3.2 together with our assumption (p.3), we get

ĥ(P ′) ≥ log p

[K : Q]
− C0 ≥ 1.

On the other hand, we may again use the fact that ĥ is a Galois invariant

positive semidefinite quadratic form to argue in a similar way as we did for

the previous case. We proceed as follows
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ĥ(P ′) = ĥ([p](τ − 1)2P )

= p2ĥ(τ 2P − [2]τP + P )

≤ 3p2(ĥ(τ 2P ) + 4ĥ(τP ) + ĥ(P ))

= 18p2ĥ(P ).

Hence

ĥ(P ) ≥ ĥ(P ′)

18p2
≥ 1

18p2
.

And so, as the primes p and p were taken depending only on E and K, the

proof is also complete for the case when p ramifies at L/K.
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module de Drinfeld, Int. J. Number Theory 4 (2008), 1043-1067.

[Do79] E. Dobrowolski, On a question of Lehmer and the number of

irreducible factors of a polynomial, Acta Airth. 34 (1979), 391-

401.
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